blob: 2f3fbeef34856963c66f70e721054276122b590f [file] [log] [blame]
/*
* ARM MPS2 AN505 FPGAIO emulation
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/* This is a model of the "FPGA system control and I/O" block found
* in the AN505 FPGA image for the MPS2 devboard.
* It is documented in AN505:
* http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/registerfields.h"
#include "hw/misc/mps2-fpgaio.h"
#include "hw/qdev-properties.h"
#include "qemu/timer.h"
REG32(LED0, 0)
REG32(BUTTON, 8)
REG32(CLK1HZ, 0x10)
REG32(CLK100HZ, 0x14)
REG32(COUNTER, 0x18)
REG32(PRESCALE, 0x1c)
REG32(PSCNTR, 0x20)
REG32(MISC, 0x4c)
static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
{
return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
}
static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
{
return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
}
static void resync_counter(MPS2FPGAIO *s)
{
/*
* Update s->counter and s->pscntr to their true current values
* by calculating how many times PSCNTR has ticked since the
* last time we did a resync.
*/
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
int64_t elapsed = now - s->pscntr_sync_ticks;
/*
* Round elapsed down to a whole number of PSCNTR ticks, so we don't
* lose time if we do multiple resyncs in a single tick.
*/
uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
/*
* Work out what PSCNTR and COUNTER have moved to. We assume that
* PSCNTR reloads from PRESCALE one tick-period after it hits zero,
* and that COUNTER increments at the same moment.
*/
if (ticks == 0) {
/* We haven't ticked since the last time we were asked */
return;
} else if (ticks < s->pscntr) {
/* We haven't yet reached zero, just reduce the PSCNTR */
s->pscntr -= ticks;
} else {
if (s->prescale == 0) {
/*
* If the reload value is zero then the PSCNTR will stick
* at zero once it reaches it, and so we will increment
* COUNTER every tick after that.
*/
s->counter += ticks - s->pscntr;
s->pscntr = 0;
} else {
/*
* This is the complicated bit. This ASCII art diagram gives an
* example with PRESCALE==5 PSCNTR==7:
*
* ticks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
* PSCNTR 7 6 5 4 3 2 1 0 5 4 3 2 1 0 5
* cinc 1 2
* y 0 1 2 3 4 5 6 7 8 9 10 11 12
* x 0 1 2 3 4 5 0 1 2 3 4 5 0
*
* where x = y % (s->prescale + 1)
* and so PSCNTR = s->prescale - x
* and COUNTER is incremented by y / (s->prescale + 1)
*
* The case where PSCNTR < PRESCALE works out the same,
* though we must be careful to calculate y as 64-bit unsigned
* for all parts of the expression.
* y < 0 is not possible because that implies ticks < s->pscntr.
*/
uint64_t y = ticks - s->pscntr + s->prescale;
s->pscntr = s->prescale - (y % (s->prescale + 1));
s->counter += y / (s->prescale + 1);
}
}
/*
* Only advance the sync time to the timestamp of the last PSCNTR tick,
* not all the way to 'now', so we don't lose time if we do multiple
* resyncs in a single tick.
*/
s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
s->prescale_clk);
}
static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
{
MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
uint64_t r;
int64_t now;
switch (offset) {
case A_LED0:
r = s->led0;
break;
case A_BUTTON:
/* User-pressable board buttons. We don't model that, so just return
* zeroes.
*/
r = 0;
break;
case A_PRESCALE:
r = s->prescale;
break;
case A_MISC:
r = s->misc;
break;
case A_CLK1HZ:
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
break;
case A_CLK100HZ:
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
break;
case A_COUNTER:
resync_counter(s);
r = s->counter;
break;
case A_PSCNTR:
resync_counter(s);
r = s->pscntr;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 FPGAIO read: bad offset %x\n", (int) offset);
r = 0;
break;
}
trace_mps2_fpgaio_read(offset, r, size);
return r;
}
static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
int64_t now;
trace_mps2_fpgaio_write(offset, value, size);
switch (offset) {
case A_LED0:
/* LED bits [1:0] control board LEDs. We don't currently have
* a mechanism for displaying this graphically, so use a trace event.
*/
trace_mps2_fpgaio_leds(value & 0x02 ? '*' : '.',
value & 0x01 ? '*' : '.');
s->led0 = value & 0x3;
break;
case A_PRESCALE:
resync_counter(s);
s->prescale = value;
break;
case A_MISC:
/* These are control bits for some of the other devices on the
* board (SPI, CLCD, etc). We don't implement that yet, so just
* make the bits read as written.
*/
qemu_log_mask(LOG_UNIMP,
"MPS2 FPGAIO: MISC control bits unimplemented\n");
s->misc = value;
break;
case A_CLK1HZ:
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
break;
case A_CLK100HZ:
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
break;
case A_COUNTER:
resync_counter(s);
s->counter = value;
break;
case A_PSCNTR:
resync_counter(s);
s->pscntr = value;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
break;
}
}
static const MemoryRegionOps mps2_fpgaio_ops = {
.read = mps2_fpgaio_read,
.write = mps2_fpgaio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void mps2_fpgaio_reset(DeviceState *dev)
{
MPS2FPGAIO *s = MPS2_FPGAIO(dev);
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
trace_mps2_fpgaio_reset();
s->led0 = 0;
s->prescale = 0;
s->misc = 0;
s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
s->counter = 0;
s->pscntr = 0;
s->pscntr_sync_ticks = now;
}
static void mps2_fpgaio_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
MPS2FPGAIO *s = MPS2_FPGAIO(obj);
memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
"mps2-fpgaio", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
}
static bool mps2_fpgaio_counters_needed(void *opaque)
{
/* Currently vmstate.c insists all subsections have a 'needed' function */
return true;
}
static const VMStateDescription mps2_fpgaio_counters_vmstate = {
.name = "mps2-fpgaio/counters",
.version_id = 2,
.minimum_version_id = 2,
.needed = mps2_fpgaio_counters_needed,
.fields = (VMStateField[]) {
VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
VMSTATE_UINT32(counter, MPS2FPGAIO),
VMSTATE_UINT32(pscntr, MPS2FPGAIO),
VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription mps2_fpgaio_vmstate = {
.name = "mps2-fpgaio",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(led0, MPS2FPGAIO),
VMSTATE_UINT32(prescale, MPS2FPGAIO),
VMSTATE_UINT32(misc, MPS2FPGAIO),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&mps2_fpgaio_counters_vmstate,
NULL
}
};
static Property mps2_fpgaio_properties[] = {
/* Frequency of the prescale counter */
DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
DEFINE_PROP_END_OF_LIST(),
};
static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &mps2_fpgaio_vmstate;
dc->reset = mps2_fpgaio_reset;
device_class_set_props(dc, mps2_fpgaio_properties);
}
static const TypeInfo mps2_fpgaio_info = {
.name = TYPE_MPS2_FPGAIO,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MPS2FPGAIO),
.instance_init = mps2_fpgaio_init,
.class_init = mps2_fpgaio_class_init,
};
static void mps2_fpgaio_register_types(void)
{
type_register_static(&mps2_fpgaio_info);
}
type_init(mps2_fpgaio_register_types);