blob: f1293d16c07a86812fb179e0e4e753b291b81596 [file] [log] [blame]
/*
* QEMU ARM CP Register access and descriptions
*
* Copyright (c) 2022 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#ifndef TARGET_ARM_CPREGS_H
#define TARGET_ARM_CPREGS_H
/*
* ARMCPRegInfo type field bits:
*/
enum {
/*
* Register must be handled specially during translation.
* The method is one of the values below:
*/
ARM_CP_SPECIAL_MASK = 0x000f,
/* Special: no change to PE state: writes ignored, reads ignored. */
ARM_CP_NOP = 0x0001,
/* Special: sysreg is WFI, for v5 and v6. */
ARM_CP_WFI = 0x0002,
/* Special: sysreg is NZCV. */
ARM_CP_NZCV = 0x0003,
/* Special: sysreg is CURRENTEL. */
ARM_CP_CURRENTEL = 0x0004,
/* Special: sysreg is DC ZVA or similar. */
ARM_CP_DC_ZVA = 0x0005,
ARM_CP_DC_GVA = 0x0006,
ARM_CP_DC_GZVA = 0x0007,
/* Flag: reads produce resetvalue; writes ignored. */
ARM_CP_CONST = 1 << 4,
/* Flag: For ARM_CP_STATE_AA32, sysreg is 64-bit. */
ARM_CP_64BIT = 1 << 5,
/*
* Flag: TB should not be ended after a write to this register
* (the default is that the TB ends after cp writes).
*/
ARM_CP_SUPPRESS_TB_END = 1 << 6,
/*
* Flag: Permit a register definition to override a previous definition
* for the same (cp, is64, crn, crm, opc1, opc2) tuple: either the new
* or the old must have the ARM_CP_OVERRIDE bit set.
*/
ARM_CP_OVERRIDE = 1 << 7,
/*
* Flag: Register is an alias view of some underlying state which is also
* visible via another register, and that the other register is handling
* migration and reset; registers marked ARM_CP_ALIAS will not be migrated
* but may have their state set by syncing of register state from KVM.
*/
ARM_CP_ALIAS = 1 << 8,
/*
* Flag: Register does I/O and therefore its accesses need to be marked
* with translator_io_start() and also end the TB. In particular,
* registers which implement clocks or timers require this.
*/
ARM_CP_IO = 1 << 9,
/*
* Flag: Register has no underlying state and does not support raw access
* for state saving/loading; it will not be used for either migration or
* KVM state synchronization. Typically this is for "registers" which are
* actually used as instructions for cache maintenance and so on.
*/
ARM_CP_NO_RAW = 1 << 10,
/*
* Flag: The read or write hook might raise an exception; the generated
* code will synchronize the CPU state before calling the hook so that it
* is safe for the hook to call raise_exception().
*/
ARM_CP_RAISES_EXC = 1 << 11,
/*
* Flag: Writes to the sysreg might change the exception level - typically
* on older ARM chips. For those cases we need to re-read the new el when
* recomputing the translation flags.
*/
ARM_CP_NEWEL = 1 << 12,
/*
* Flag: Access check for this sysreg is identical to accessing FPU state
* from an instruction: use translation fp_access_check().
*/
ARM_CP_FPU = 1 << 13,
/*
* Flag: Access check for this sysreg is identical to accessing SVE state
* from an instruction: use translation sve_access_check().
*/
ARM_CP_SVE = 1 << 14,
/* Flag: Do not expose in gdb sysreg xml. */
ARM_CP_NO_GDB = 1 << 15,
/*
* Flags: If EL3 but not EL2...
* - UNDEF: discard the cpreg,
* - KEEP: retain the cpreg as is,
* - C_NZ: set const on the cpreg, but retain resetvalue,
* - else: set const on the cpreg, zero resetvalue, aka RES0.
* See rule RJFFP in section D1.1.3 of DDI0487H.a.
*/
ARM_CP_EL3_NO_EL2_UNDEF = 1 << 16,
ARM_CP_EL3_NO_EL2_KEEP = 1 << 17,
ARM_CP_EL3_NO_EL2_C_NZ = 1 << 18,
/*
* Flag: Access check for this sysreg is constrained by the
* ARM pseudocode function CheckSMEAccess().
*/
ARM_CP_SME = 1 << 19,
};
/*
* Interface for defining coprocessor registers.
* Registers are defined in tables of arm_cp_reginfo structs
* which are passed to define_arm_cp_regs().
*/
/*
* When looking up a coprocessor register we look for it
* via an integer which encodes all of:
* coprocessor number
* Crn, Crm, opc1, opc2 fields
* 32 or 64 bit register (ie is it accessed via MRC/MCR
* or via MRRC/MCRR?)
* non-secure/secure bank (AArch32 only)
* We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
* (In this case crn and opc2 should be zero.)
* For AArch64, there is no 32/64 bit size distinction;
* instead all registers have a 2 bit op0, 3 bit op1 and op2,
* and 4 bit CRn and CRm. The encoding patterns are chosen
* to be easy to convert to and from the KVM encodings, and also
* so that the hashtable can contain both AArch32 and AArch64
* registers (to allow for interprocessing where we might run
* 32 bit code on a 64 bit core).
*/
/*
* This bit is private to our hashtable cpreg; in KVM register
* IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
* in the upper bits of the 64 bit ID.
*/
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
/*
* To enable banking of coprocessor registers depending on ns-bit we
* add a bit to distinguish between secure and non-secure cpregs in the
* hashtable.
*/
#define CP_REG_NS_SHIFT 29
#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
(CP_REG_AA64_MASK | \
((cp) << CP_REG_ARM_COPROC_SHIFT) | \
((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
/*
* Convert a full 64 bit KVM register ID to the truncated 32 bit
* version used as a key for the coprocessor register hashtable
*/
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
uint32_t cpregid = kvmid;
if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
cpregid |= CP_REG_AA64_MASK;
} else {
if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
cpregid |= (1 << 15);
}
/*
* KVM is always non-secure so add the NS flag on AArch32 register
* entries.
*/
cpregid |= 1 << CP_REG_NS_SHIFT;
}
return cpregid;
}
/*
* Convert a truncated 32 bit hashtable key into the full
* 64 bit KVM register ID.
*/
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
uint64_t kvmid;
if (cpregid & CP_REG_AA64_MASK) {
kvmid = cpregid & ~CP_REG_AA64_MASK;
kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
} else {
kvmid = cpregid & ~(1 << 15);
if (cpregid & (1 << 15)) {
kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
} else {
kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
}
}
return kvmid;
}
/*
* Valid values for ARMCPRegInfo state field, indicating which of
* the AArch32 and AArch64 execution states this register is visible in.
* If the reginfo doesn't explicitly specify then it is AArch32 only.
* If the reginfo is declared to be visible in both states then a second
* reginfo is synthesised for the AArch32 view of the AArch64 register,
* such that the AArch32 view is the lower 32 bits of the AArch64 one.
* Note that we rely on the values of these enums as we iterate through
* the various states in some places.
*/
typedef enum {
ARM_CP_STATE_AA32 = 0,
ARM_CP_STATE_AA64 = 1,
ARM_CP_STATE_BOTH = 2,
} CPState;
/*
* ARM CP register secure state flags. These flags identify security state
* attributes for a given CP register entry.
* The existence of both or neither secure and non-secure flags indicates that
* the register has both a secure and non-secure hash entry. A single one of
* these flags causes the register to only be hashed for the specified
* security state.
* Although definitions may have any combination of the S/NS bits, each
* registered entry will only have one to identify whether the entry is secure
* or non-secure.
*/
typedef enum {
ARM_CP_SECSTATE_BOTH = 0, /* define one cpreg for each secstate */
ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
} CPSecureState;
/*
* Access rights:
* We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
* defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
* PL2 (hyp). The other level which has Read and Write bits is Secure PL1
* (ie any of the privileged modes in Secure state, or Monitor mode).
* If a register is accessible in one privilege level it's always accessible
* in higher privilege levels too. Since "Secure PL1" also follows this rule
* (ie anything visible in PL2 is visible in S-PL1, some things are only
* visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
* terminology a little and call this PL3.
* In AArch64 things are somewhat simpler as the PLx bits line up exactly
* with the ELx exception levels.
*
* If access permissions for a register are more complex than can be
* described with these bits, then use a laxer set of restrictions, and
* do the more restrictive/complex check inside a helper function.
*/
typedef enum {
PL3_R = 0x80,
PL3_W = 0x40,
PL2_R = 0x20 | PL3_R,
PL2_W = 0x10 | PL3_W,
PL1_R = 0x08 | PL2_R,
PL1_W = 0x04 | PL2_W,
PL0_R = 0x02 | PL1_R,
PL0_W = 0x01 | PL1_W,
/*
* For user-mode some registers are accessible to EL0 via a kernel
* trap-and-emulate ABI. In this case we define the read permissions
* as actually being PL0_R. However some bits of any given register
* may still be masked.
*/
#ifdef CONFIG_USER_ONLY
PL0U_R = PL0_R,
#else
PL0U_R = PL1_R,
#endif
PL3_RW = PL3_R | PL3_W,
PL2_RW = PL2_R | PL2_W,
PL1_RW = PL1_R | PL1_W,
PL0_RW = PL0_R | PL0_W,
} CPAccessRights;
typedef enum CPAccessResult {
/* Access is permitted */
CP_ACCESS_OK = 0,
/*
* Combined with one of the following, the low 2 bits indicate the
* target exception level. If 0, the exception is taken to the usual
* target EL (EL1 or PL1 if in EL0, otherwise to the current EL).
*/
CP_ACCESS_EL_MASK = 3,
/*
* Access fails due to a configurable trap or enable which would
* result in a categorized exception syndrome giving information about
* the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
* 0xc or 0x18).
*/
CP_ACCESS_TRAP = (1 << 2),
CP_ACCESS_TRAP_EL2 = CP_ACCESS_TRAP | 2,
CP_ACCESS_TRAP_EL3 = CP_ACCESS_TRAP | 3,
/*
* Access fails and results in an exception syndrome 0x0 ("uncategorized").
* Note that this is not a catch-all case -- the set of cases which may
* result in this failure is specifically defined by the architecture.
* This trap is always to the usual target EL, never directly to a
* specified target EL.
*/
CP_ACCESS_TRAP_UNCATEGORIZED = (2 << 2),
} CPAccessResult;
/* Indexes into fgt_read[] */
#define FGTREG_HFGRTR 0
#define FGTREG_HDFGRTR 1
/* Indexes into fgt_write[] */
#define FGTREG_HFGWTR 0
#define FGTREG_HDFGWTR 1
/* Indexes into fgt_exec[] */
#define FGTREG_HFGITR 0
FIELD(HFGRTR_EL2, AFSR0_EL1, 0, 1)
FIELD(HFGRTR_EL2, AFSR1_EL1, 1, 1)
FIELD(HFGRTR_EL2, AIDR_EL1, 2, 1)
FIELD(HFGRTR_EL2, AMAIR_EL1, 3, 1)
FIELD(HFGRTR_EL2, APDAKEY, 4, 1)
FIELD(HFGRTR_EL2, APDBKEY, 5, 1)
FIELD(HFGRTR_EL2, APGAKEY, 6, 1)
FIELD(HFGRTR_EL2, APIAKEY, 7, 1)
FIELD(HFGRTR_EL2, APIBKEY, 8, 1)
FIELD(HFGRTR_EL2, CCSIDR_EL1, 9, 1)
FIELD(HFGRTR_EL2, CLIDR_EL1, 10, 1)
FIELD(HFGRTR_EL2, CONTEXTIDR_EL1, 11, 1)
FIELD(HFGRTR_EL2, CPACR_EL1, 12, 1)
FIELD(HFGRTR_EL2, CSSELR_EL1, 13, 1)
FIELD(HFGRTR_EL2, CTR_EL0, 14, 1)
FIELD(HFGRTR_EL2, DCZID_EL0, 15, 1)
FIELD(HFGRTR_EL2, ESR_EL1, 16, 1)
FIELD(HFGRTR_EL2, FAR_EL1, 17, 1)
FIELD(HFGRTR_EL2, ISR_EL1, 18, 1)
FIELD(HFGRTR_EL2, LORC_EL1, 19, 1)
FIELD(HFGRTR_EL2, LOREA_EL1, 20, 1)
FIELD(HFGRTR_EL2, LORID_EL1, 21, 1)
FIELD(HFGRTR_EL2, LORN_EL1, 22, 1)
FIELD(HFGRTR_EL2, LORSA_EL1, 23, 1)
FIELD(HFGRTR_EL2, MAIR_EL1, 24, 1)
FIELD(HFGRTR_EL2, MIDR_EL1, 25, 1)
FIELD(HFGRTR_EL2, MPIDR_EL1, 26, 1)
FIELD(HFGRTR_EL2, PAR_EL1, 27, 1)
FIELD(HFGRTR_EL2, REVIDR_EL1, 28, 1)
FIELD(HFGRTR_EL2, SCTLR_EL1, 29, 1)
FIELD(HFGRTR_EL2, SCXTNUM_EL1, 30, 1)
FIELD(HFGRTR_EL2, SCXTNUM_EL0, 31, 1)
FIELD(HFGRTR_EL2, TCR_EL1, 32, 1)
FIELD(HFGRTR_EL2, TPIDR_EL1, 33, 1)
FIELD(HFGRTR_EL2, TPIDRRO_EL0, 34, 1)
FIELD(HFGRTR_EL2, TPIDR_EL0, 35, 1)
FIELD(HFGRTR_EL2, TTBR0_EL1, 36, 1)
FIELD(HFGRTR_EL2, TTBR1_EL1, 37, 1)
FIELD(HFGRTR_EL2, VBAR_EL1, 38, 1)
FIELD(HFGRTR_EL2, ICC_IGRPENN_EL1, 39, 1)
FIELD(HFGRTR_EL2, ERRIDR_EL1, 40, 1)
FIELD(HFGRTR_EL2, ERRSELR_EL1, 41, 1)
FIELD(HFGRTR_EL2, ERXFR_EL1, 42, 1)
FIELD(HFGRTR_EL2, ERXCTLR_EL1, 43, 1)
FIELD(HFGRTR_EL2, ERXSTATUS_EL1, 44, 1)
FIELD(HFGRTR_EL2, ERXMISCN_EL1, 45, 1)
FIELD(HFGRTR_EL2, ERXPFGF_EL1, 46, 1)
FIELD(HFGRTR_EL2, ERXPFGCTL_EL1, 47, 1)
FIELD(HFGRTR_EL2, ERXPFGCDN_EL1, 48, 1)
FIELD(HFGRTR_EL2, ERXADDR_EL1, 49, 1)
FIELD(HFGRTR_EL2, NACCDATA_EL1, 50, 1)
/* 51-53: RES0 */
FIELD(HFGRTR_EL2, NSMPRI_EL1, 54, 1)
FIELD(HFGRTR_EL2, NTPIDR2_EL0, 55, 1)
/* 56-63: RES0 */
/* These match HFGRTR but bits for RO registers are RES0 */
FIELD(HFGWTR_EL2, AFSR0_EL1, 0, 1)
FIELD(HFGWTR_EL2, AFSR1_EL1, 1, 1)
FIELD(HFGWTR_EL2, AMAIR_EL1, 3, 1)
FIELD(HFGWTR_EL2, APDAKEY, 4, 1)
FIELD(HFGWTR_EL2, APDBKEY, 5, 1)
FIELD(HFGWTR_EL2, APGAKEY, 6, 1)
FIELD(HFGWTR_EL2, APIAKEY, 7, 1)
FIELD(HFGWTR_EL2, APIBKEY, 8, 1)
FIELD(HFGWTR_EL2, CONTEXTIDR_EL1, 11, 1)
FIELD(HFGWTR_EL2, CPACR_EL1, 12, 1)
FIELD(HFGWTR_EL2, CSSELR_EL1, 13, 1)
FIELD(HFGWTR_EL2, ESR_EL1, 16, 1)
FIELD(HFGWTR_EL2, FAR_EL1, 17, 1)
FIELD(HFGWTR_EL2, LORC_EL1, 19, 1)
FIELD(HFGWTR_EL2, LOREA_EL1, 20, 1)
FIELD(HFGWTR_EL2, LORN_EL1, 22, 1)
FIELD(HFGWTR_EL2, LORSA_EL1, 23, 1)
FIELD(HFGWTR_EL2, MAIR_EL1, 24, 1)
FIELD(HFGWTR_EL2, PAR_EL1, 27, 1)
FIELD(HFGWTR_EL2, SCTLR_EL1, 29, 1)
FIELD(HFGWTR_EL2, SCXTNUM_EL1, 30, 1)
FIELD(HFGWTR_EL2, SCXTNUM_EL0, 31, 1)
FIELD(HFGWTR_EL2, TCR_EL1, 32, 1)
FIELD(HFGWTR_EL2, TPIDR_EL1, 33, 1)
FIELD(HFGWTR_EL2, TPIDRRO_EL0, 34, 1)
FIELD(HFGWTR_EL2, TPIDR_EL0, 35, 1)
FIELD(HFGWTR_EL2, TTBR0_EL1, 36, 1)
FIELD(HFGWTR_EL2, TTBR1_EL1, 37, 1)
FIELD(HFGWTR_EL2, VBAR_EL1, 38, 1)
FIELD(HFGWTR_EL2, ICC_IGRPENN_EL1, 39, 1)
FIELD(HFGWTR_EL2, ERRSELR_EL1, 41, 1)
FIELD(HFGWTR_EL2, ERXCTLR_EL1, 43, 1)
FIELD(HFGWTR_EL2, ERXSTATUS_EL1, 44, 1)
FIELD(HFGWTR_EL2, ERXMISCN_EL1, 45, 1)
FIELD(HFGWTR_EL2, ERXPFGCTL_EL1, 47, 1)
FIELD(HFGWTR_EL2, ERXPFGCDN_EL1, 48, 1)
FIELD(HFGWTR_EL2, ERXADDR_EL1, 49, 1)
FIELD(HFGWTR_EL2, NACCDATA_EL1, 50, 1)
FIELD(HFGWTR_EL2, NSMPRI_EL1, 54, 1)
FIELD(HFGWTR_EL2, NTPIDR2_EL0, 55, 1)
FIELD(HFGITR_EL2, ICIALLUIS, 0, 1)
FIELD(HFGITR_EL2, ICIALLU, 1, 1)
FIELD(HFGITR_EL2, ICIVAU, 2, 1)
FIELD(HFGITR_EL2, DCIVAC, 3, 1)
FIELD(HFGITR_EL2, DCISW, 4, 1)
FIELD(HFGITR_EL2, DCCSW, 5, 1)
FIELD(HFGITR_EL2, DCCISW, 6, 1)
FIELD(HFGITR_EL2, DCCVAU, 7, 1)
FIELD(HFGITR_EL2, DCCVAP, 8, 1)
FIELD(HFGITR_EL2, DCCVADP, 9, 1)
FIELD(HFGITR_EL2, DCCIVAC, 10, 1)
FIELD(HFGITR_EL2, DCZVA, 11, 1)
FIELD(HFGITR_EL2, ATS1E1R, 12, 1)
FIELD(HFGITR_EL2, ATS1E1W, 13, 1)
FIELD(HFGITR_EL2, ATS1E0R, 14, 1)
FIELD(HFGITR_EL2, ATS1E0W, 15, 1)
FIELD(HFGITR_EL2, ATS1E1RP, 16, 1)
FIELD(HFGITR_EL2, ATS1E1WP, 17, 1)
FIELD(HFGITR_EL2, TLBIVMALLE1OS, 18, 1)
FIELD(HFGITR_EL2, TLBIVAE1OS, 19, 1)
FIELD(HFGITR_EL2, TLBIASIDE1OS, 20, 1)
FIELD(HFGITR_EL2, TLBIVAAE1OS, 21, 1)
FIELD(HFGITR_EL2, TLBIVALE1OS, 22, 1)
FIELD(HFGITR_EL2, TLBIVAALE1OS, 23, 1)
FIELD(HFGITR_EL2, TLBIRVAE1OS, 24, 1)
FIELD(HFGITR_EL2, TLBIRVAAE1OS, 25, 1)
FIELD(HFGITR_EL2, TLBIRVALE1OS, 26, 1)
FIELD(HFGITR_EL2, TLBIRVAALE1OS, 27, 1)
FIELD(HFGITR_EL2, TLBIVMALLE1IS, 28, 1)
FIELD(HFGITR_EL2, TLBIVAE1IS, 29, 1)
FIELD(HFGITR_EL2, TLBIASIDE1IS, 30, 1)
FIELD(HFGITR_EL2, TLBIVAAE1IS, 31, 1)
FIELD(HFGITR_EL2, TLBIVALE1IS, 32, 1)
FIELD(HFGITR_EL2, TLBIVAALE1IS, 33, 1)
FIELD(HFGITR_EL2, TLBIRVAE1IS, 34, 1)
FIELD(HFGITR_EL2, TLBIRVAAE1IS, 35, 1)
FIELD(HFGITR_EL2, TLBIRVALE1IS, 36, 1)
FIELD(HFGITR_EL2, TLBIRVAALE1IS, 37, 1)
FIELD(HFGITR_EL2, TLBIRVAE1, 38, 1)
FIELD(HFGITR_EL2, TLBIRVAAE1, 39, 1)
FIELD(HFGITR_EL2, TLBIRVALE1, 40, 1)
FIELD(HFGITR_EL2, TLBIRVAALE1, 41, 1)
FIELD(HFGITR_EL2, TLBIVMALLE1, 42, 1)
FIELD(HFGITR_EL2, TLBIVAE1, 43, 1)
FIELD(HFGITR_EL2, TLBIASIDE1, 44, 1)
FIELD(HFGITR_EL2, TLBIVAAE1, 45, 1)
FIELD(HFGITR_EL2, TLBIVALE1, 46, 1)
FIELD(HFGITR_EL2, TLBIVAALE1, 47, 1)
FIELD(HFGITR_EL2, CFPRCTX, 48, 1)
FIELD(HFGITR_EL2, DVPRCTX, 49, 1)
FIELD(HFGITR_EL2, CPPRCTX, 50, 1)
FIELD(HFGITR_EL2, ERET, 51, 1)
FIELD(HFGITR_EL2, SVC_EL0, 52, 1)
FIELD(HFGITR_EL2, SVC_EL1, 53, 1)
FIELD(HFGITR_EL2, DCCVAC, 54, 1)
FIELD(HFGITR_EL2, NBRBINJ, 55, 1)
FIELD(HFGITR_EL2, NBRBIALL, 56, 1)
FIELD(HDFGRTR_EL2, DBGBCRN_EL1, 0, 1)
FIELD(HDFGRTR_EL2, DBGBVRN_EL1, 1, 1)
FIELD(HDFGRTR_EL2, DBGWCRN_EL1, 2, 1)
FIELD(HDFGRTR_EL2, DBGWVRN_EL1, 3, 1)
FIELD(HDFGRTR_EL2, MDSCR_EL1, 4, 1)
FIELD(HDFGRTR_EL2, DBGCLAIM, 5, 1)
FIELD(HDFGRTR_EL2, DBGAUTHSTATUS_EL1, 6, 1)
FIELD(HDFGRTR_EL2, DBGPRCR_EL1, 7, 1)
/* 8: RES0: OSLAR_EL1 is WO */
FIELD(HDFGRTR_EL2, OSLSR_EL1, 9, 1)
FIELD(HDFGRTR_EL2, OSECCR_EL1, 10, 1)
FIELD(HDFGRTR_EL2, OSDLR_EL1, 11, 1)
FIELD(HDFGRTR_EL2, PMEVCNTRN_EL0, 12, 1)
FIELD(HDFGRTR_EL2, PMEVTYPERN_EL0, 13, 1)
FIELD(HDFGRTR_EL2, PMCCFILTR_EL0, 14, 1)
FIELD(HDFGRTR_EL2, PMCCNTR_EL0, 15, 1)
FIELD(HDFGRTR_EL2, PMCNTEN, 16, 1)
FIELD(HDFGRTR_EL2, PMINTEN, 17, 1)
FIELD(HDFGRTR_EL2, PMOVS, 18, 1)
FIELD(HDFGRTR_EL2, PMSELR_EL0, 19, 1)
/* 20: RES0: PMSWINC_EL0 is WO */
/* 21: RES0: PMCR_EL0 is WO */
FIELD(HDFGRTR_EL2, PMMIR_EL1, 22, 1)
FIELD(HDFGRTR_EL2, PMBLIMITR_EL1, 23, 1)
FIELD(HDFGRTR_EL2, PMBPTR_EL1, 24, 1)
FIELD(HDFGRTR_EL2, PMBSR_EL1, 25, 1)
FIELD(HDFGRTR_EL2, PMSCR_EL1, 26, 1)
FIELD(HDFGRTR_EL2, PMSEVFR_EL1, 27, 1)
FIELD(HDFGRTR_EL2, PMSFCR_EL1, 28, 1)
FIELD(HDFGRTR_EL2, PMSICR_EL1, 29, 1)
FIELD(HDFGRTR_EL2, PMSIDR_EL1, 30, 1)
FIELD(HDFGRTR_EL2, PMSIRR_EL1, 31, 1)
FIELD(HDFGRTR_EL2, PMSLATFR_EL1, 32, 1)
FIELD(HDFGRTR_EL2, TRC, 33, 1)
FIELD(HDFGRTR_EL2, TRCAUTHSTATUS, 34, 1)
FIELD(HDFGRTR_EL2, TRCAUXCTLR, 35, 1)
FIELD(HDFGRTR_EL2, TRCCLAIM, 36, 1)
FIELD(HDFGRTR_EL2, TRCCNTVRn, 37, 1)
/* 38, 39: RES0 */
FIELD(HDFGRTR_EL2, TRCID, 40, 1)
FIELD(HDFGRTR_EL2, TRCIMSPECN, 41, 1)
/* 42: RES0: TRCOSLAR is WO */
FIELD(HDFGRTR_EL2, TRCOSLSR, 43, 1)
FIELD(HDFGRTR_EL2, TRCPRGCTLR, 44, 1)
FIELD(HDFGRTR_EL2, TRCSEQSTR, 45, 1)
FIELD(HDFGRTR_EL2, TRCSSCSRN, 46, 1)
FIELD(HDFGRTR_EL2, TRCSTATR, 47, 1)
FIELD(HDFGRTR_EL2, TRCVICTLR, 48, 1)
/* 49: RES0: TRFCR_EL1 is WO */
FIELD(HDFGRTR_EL2, TRBBASER_EL1, 50, 1)
FIELD(HDFGRTR_EL2, TRBIDR_EL1, 51, 1)
FIELD(HDFGRTR_EL2, TRBLIMITR_EL1, 52, 1)
FIELD(HDFGRTR_EL2, TRBMAR_EL1, 53, 1)
FIELD(HDFGRTR_EL2, TRBPTR_EL1, 54, 1)
FIELD(HDFGRTR_EL2, TRBSR_EL1, 55, 1)
FIELD(HDFGRTR_EL2, TRBTRG_EL1, 56, 1)
FIELD(HDFGRTR_EL2, PMUSERENR_EL0, 57, 1)
FIELD(HDFGRTR_EL2, PMCEIDN_EL0, 58, 1)
FIELD(HDFGRTR_EL2, NBRBIDR, 59, 1)
FIELD(HDFGRTR_EL2, NBRBCTL, 60, 1)
FIELD(HDFGRTR_EL2, NBRBDATA, 61, 1)
FIELD(HDFGRTR_EL2, NPMSNEVFR_EL1, 62, 1)
FIELD(HDFGRTR_EL2, PMBIDR_EL1, 63, 1)
/*
* These match HDFGRTR_EL2, but bits for RO registers are RES0.
* A few bits are for WO registers, where the HDFGRTR_EL2 bit is RES0.
*/
FIELD(HDFGWTR_EL2, DBGBCRN_EL1, 0, 1)
FIELD(HDFGWTR_EL2, DBGBVRN_EL1, 1, 1)
FIELD(HDFGWTR_EL2, DBGWCRN_EL1, 2, 1)
FIELD(HDFGWTR_EL2, DBGWVRN_EL1, 3, 1)
FIELD(HDFGWTR_EL2, MDSCR_EL1, 4, 1)
FIELD(HDFGWTR_EL2, DBGCLAIM, 5, 1)
FIELD(HDFGWTR_EL2, DBGPRCR_EL1, 7, 1)
FIELD(HDFGWTR_EL2, OSLAR_EL1, 8, 1)
FIELD(HDFGWTR_EL2, OSLSR_EL1, 9, 1)
FIELD(HDFGWTR_EL2, OSECCR_EL1, 10, 1)
FIELD(HDFGWTR_EL2, OSDLR_EL1, 11, 1)
FIELD(HDFGWTR_EL2, PMEVCNTRN_EL0, 12, 1)
FIELD(HDFGWTR_EL2, PMEVTYPERN_EL0, 13, 1)
FIELD(HDFGWTR_EL2, PMCCFILTR_EL0, 14, 1)
FIELD(HDFGWTR_EL2, PMCCNTR_EL0, 15, 1)
FIELD(HDFGWTR_EL2, PMCNTEN, 16, 1)
FIELD(HDFGWTR_EL2, PMINTEN, 17, 1)
FIELD(HDFGWTR_EL2, PMOVS, 18, 1)
FIELD(HDFGWTR_EL2, PMSELR_EL0, 19, 1)
FIELD(HDFGWTR_EL2, PMSWINC_EL0, 20, 1)
FIELD(HDFGWTR_EL2, PMCR_EL0, 21, 1)
FIELD(HDFGWTR_EL2, PMBLIMITR_EL1, 23, 1)
FIELD(HDFGWTR_EL2, PMBPTR_EL1, 24, 1)
FIELD(HDFGWTR_EL2, PMBSR_EL1, 25, 1)
FIELD(HDFGWTR_EL2, PMSCR_EL1, 26, 1)
FIELD(HDFGWTR_EL2, PMSEVFR_EL1, 27, 1)
FIELD(HDFGWTR_EL2, PMSFCR_EL1, 28, 1)
FIELD(HDFGWTR_EL2, PMSICR_EL1, 29, 1)
FIELD(HDFGWTR_EL2, PMSIRR_EL1, 31, 1)
FIELD(HDFGWTR_EL2, PMSLATFR_EL1, 32, 1)
FIELD(HDFGWTR_EL2, TRC, 33, 1)
FIELD(HDFGWTR_EL2, TRCAUXCTLR, 35, 1)
FIELD(HDFGWTR_EL2, TRCCLAIM, 36, 1)
FIELD(HDFGWTR_EL2, TRCCNTVRn, 37, 1)
FIELD(HDFGWTR_EL2, TRCIMSPECN, 41, 1)
FIELD(HDFGWTR_EL2, TRCOSLAR, 42, 1)
FIELD(HDFGWTR_EL2, TRCPRGCTLR, 44, 1)
FIELD(HDFGWTR_EL2, TRCSEQSTR, 45, 1)
FIELD(HDFGWTR_EL2, TRCSSCSRN, 46, 1)
FIELD(HDFGWTR_EL2, TRCVICTLR, 48, 1)
FIELD(HDFGWTR_EL2, TRFCR_EL1, 49, 1)
FIELD(HDFGWTR_EL2, TRBBASER_EL1, 50, 1)
FIELD(HDFGWTR_EL2, TRBLIMITR_EL1, 52, 1)
FIELD(HDFGWTR_EL2, TRBMAR_EL1, 53, 1)
FIELD(HDFGWTR_EL2, TRBPTR_EL1, 54, 1)
FIELD(HDFGWTR_EL2, TRBSR_EL1, 55, 1)
FIELD(HDFGWTR_EL2, TRBTRG_EL1, 56, 1)
FIELD(HDFGWTR_EL2, PMUSERENR_EL0, 57, 1)
FIELD(HDFGWTR_EL2, NBRBCTL, 60, 1)
FIELD(HDFGWTR_EL2, NBRBDATA, 61, 1)
FIELD(HDFGWTR_EL2, NPMSNEVFR_EL1, 62, 1)
/* Which fine-grained trap bit register to check, if any */
FIELD(FGT, TYPE, 10, 3)
FIELD(FGT, REV, 9, 1) /* Is bit sense reversed? */
FIELD(FGT, IDX, 6, 3) /* Index within a uint64_t[] array */
FIELD(FGT, BITPOS, 0, 6) /* Bit position within the uint64_t */
/*
* Macros to define FGT_##bitname enum constants to use in ARMCPRegInfo::fgt
* fields. We assume for brevity's sake that there are no duplicated
* bit names across the various FGT registers.
*/
#define DO_BIT(REG, BITNAME) \
FGT_##BITNAME = FGT_##REG | R_##REG##_EL2_##BITNAME##_SHIFT
/* Some bits have reversed sense, so 0 means trap and 1 means not */
#define DO_REV_BIT(REG, BITNAME) \
FGT_##BITNAME = FGT_##REG | FGT_REV | R_##REG##_EL2_##BITNAME##_SHIFT
typedef enum FGTBit {
/*
* These bits tell us which register arrays to use:
* if FGT_R is set then reads are checked against fgt_read[];
* if FGT_W is set then writes are checked against fgt_write[];
* if FGT_EXEC is set then all accesses are checked against fgt_exec[].
*
* For almost all bits in the R/W register pairs, the bit exists in
* both registers for a RW register, in HFGRTR/HDFGRTR for a RO register
* with the corresponding HFGWTR/HDFGTWTR bit being RES0, and vice-versa
* for a WO register. There are unfortunately a couple of exceptions
* (PMCR_EL0, TRFCR_EL1) where the register being trapped is RW but
* the FGT system only allows trapping of writes, not reads.
*
* Note that we arrange these bits so that a 0 FGTBit means "no trap".
*/
FGT_R = 1 << R_FGT_TYPE_SHIFT,
FGT_W = 2 << R_FGT_TYPE_SHIFT,
FGT_EXEC = 4 << R_FGT_TYPE_SHIFT,
FGT_RW = FGT_R | FGT_W,
/* Bit to identify whether trap bit is reversed sense */
FGT_REV = R_FGT_REV_MASK,
/*
* If a bit exists in HFGRTR/HDFGRTR then either the register being
* trapped is RO or the bit also exists in HFGWTR/HDFGWTR, so we either
* want to trap for both reads and writes or else it's harmless to mark
* it as trap-on-writes.
* If a bit exists only in HFGWTR/HDFGWTR then either the register being
* trapped is WO, or else it is one of the two oddball special cases
* which are RW but have only a write trap. We mark these as only
* FGT_W so we get the right behaviour for those special cases.
* (If a bit was added in future that provided only a read trap for an
* RW register we'd need to do something special to get the FGT_R bit
* only. But this seems unlikely to happen.)
*
* So for the DO_BIT/DO_REV_BIT macros: use FGT_HFGRTR/FGT_HDFGRTR if
* the bit exists in that register. Otherwise use FGT_HFGWTR/FGT_HDFGWTR.
*/
FGT_HFGRTR = FGT_RW | (FGTREG_HFGRTR << R_FGT_IDX_SHIFT),
FGT_HFGWTR = FGT_W | (FGTREG_HFGWTR << R_FGT_IDX_SHIFT),
FGT_HDFGRTR = FGT_RW | (FGTREG_HDFGRTR << R_FGT_IDX_SHIFT),
FGT_HDFGWTR = FGT_W | (FGTREG_HDFGWTR << R_FGT_IDX_SHIFT),
FGT_HFGITR = FGT_EXEC | (FGTREG_HFGITR << R_FGT_IDX_SHIFT),
/* Trap bits in HFGRTR_EL2 / HFGWTR_EL2, starting from bit 0. */
DO_BIT(HFGRTR, AFSR0_EL1),
DO_BIT(HFGRTR, AFSR1_EL1),
DO_BIT(HFGRTR, AIDR_EL1),
DO_BIT(HFGRTR, AMAIR_EL1),
DO_BIT(HFGRTR, APDAKEY),
DO_BIT(HFGRTR, APDBKEY),
DO_BIT(HFGRTR, APGAKEY),
DO_BIT(HFGRTR, APIAKEY),
DO_BIT(HFGRTR, APIBKEY),
DO_BIT(HFGRTR, CCSIDR_EL1),
DO_BIT(HFGRTR, CLIDR_EL1),
DO_BIT(HFGRTR, CONTEXTIDR_EL1),
DO_BIT(HFGRTR, CPACR_EL1),
DO_BIT(HFGRTR, CSSELR_EL1),
DO_BIT(HFGRTR, CTR_EL0),
DO_BIT(HFGRTR, DCZID_EL0),
DO_BIT(HFGRTR, ESR_EL1),
DO_BIT(HFGRTR, FAR_EL1),
DO_BIT(HFGRTR, ISR_EL1),
DO_BIT(HFGRTR, LORC_EL1),
DO_BIT(HFGRTR, LOREA_EL1),
DO_BIT(HFGRTR, LORID_EL1),
DO_BIT(HFGRTR, LORN_EL1),
DO_BIT(HFGRTR, LORSA_EL1),
DO_BIT(HFGRTR, MAIR_EL1),
DO_BIT(HFGRTR, MIDR_EL1),
DO_BIT(HFGRTR, MPIDR_EL1),
DO_BIT(HFGRTR, PAR_EL1),
DO_BIT(HFGRTR, REVIDR_EL1),
DO_BIT(HFGRTR, SCTLR_EL1),
DO_BIT(HFGRTR, SCXTNUM_EL1),
DO_BIT(HFGRTR, SCXTNUM_EL0),
DO_BIT(HFGRTR, TCR_EL1),
DO_BIT(HFGRTR, TPIDR_EL1),
DO_BIT(HFGRTR, TPIDRRO_EL0),
DO_BIT(HFGRTR, TPIDR_EL0),
DO_BIT(HFGRTR, TTBR0_EL1),
DO_BIT(HFGRTR, TTBR1_EL1),
DO_BIT(HFGRTR, VBAR_EL1),
DO_BIT(HFGRTR, ICC_IGRPENN_EL1),
DO_BIT(HFGRTR, ERRIDR_EL1),
DO_REV_BIT(HFGRTR, NSMPRI_EL1),
DO_REV_BIT(HFGRTR, NTPIDR2_EL0),
/* Trap bits in HDFGRTR_EL2 / HDFGWTR_EL2, starting from bit 0. */
DO_BIT(HDFGRTR, DBGBCRN_EL1),
DO_BIT(HDFGRTR, DBGBVRN_EL1),
DO_BIT(HDFGRTR, DBGWCRN_EL1),
DO_BIT(HDFGRTR, DBGWVRN_EL1),
DO_BIT(HDFGRTR, MDSCR_EL1),
DO_BIT(HDFGRTR, DBGCLAIM),
DO_BIT(HDFGWTR, OSLAR_EL1),
DO_BIT(HDFGRTR, OSLSR_EL1),
DO_BIT(HDFGRTR, OSECCR_EL1),
DO_BIT(HDFGRTR, OSDLR_EL1),
DO_BIT(HDFGRTR, PMEVCNTRN_EL0),
DO_BIT(HDFGRTR, PMEVTYPERN_EL0),
DO_BIT(HDFGRTR, PMCCFILTR_EL0),
DO_BIT(HDFGRTR, PMCCNTR_EL0),
DO_BIT(HDFGRTR, PMCNTEN),
DO_BIT(HDFGRTR, PMINTEN),
DO_BIT(HDFGRTR, PMOVS),
DO_BIT(HDFGRTR, PMSELR_EL0),
DO_BIT(HDFGWTR, PMSWINC_EL0),
DO_BIT(HDFGWTR, PMCR_EL0),
DO_BIT(HDFGRTR, PMMIR_EL1),
DO_BIT(HDFGRTR, PMCEIDN_EL0),
/* Trap bits in HFGITR_EL2, starting from bit 0 */
DO_BIT(HFGITR, ICIALLUIS),
DO_BIT(HFGITR, ICIALLU),
DO_BIT(HFGITR, ICIVAU),
DO_BIT(HFGITR, DCIVAC),
DO_BIT(HFGITR, DCISW),
DO_BIT(HFGITR, DCCSW),
DO_BIT(HFGITR, DCCISW),
DO_BIT(HFGITR, DCCVAU),
DO_BIT(HFGITR, DCCVAP),
DO_BIT(HFGITR, DCCVADP),
DO_BIT(HFGITR, DCCIVAC),
DO_BIT(HFGITR, DCZVA),
DO_BIT(HFGITR, ATS1E1R),
DO_BIT(HFGITR, ATS1E1W),
DO_BIT(HFGITR, ATS1E0R),
DO_BIT(HFGITR, ATS1E0W),
DO_BIT(HFGITR, ATS1E1RP),
DO_BIT(HFGITR, ATS1E1WP),
DO_BIT(HFGITR, TLBIVMALLE1OS),
DO_BIT(HFGITR, TLBIVAE1OS),
DO_BIT(HFGITR, TLBIASIDE1OS),
DO_BIT(HFGITR, TLBIVAAE1OS),
DO_BIT(HFGITR, TLBIVALE1OS),
DO_BIT(HFGITR, TLBIVAALE1OS),
DO_BIT(HFGITR, TLBIRVAE1OS),
DO_BIT(HFGITR, TLBIRVAAE1OS),
DO_BIT(HFGITR, TLBIRVALE1OS),
DO_BIT(HFGITR, TLBIRVAALE1OS),
DO_BIT(HFGITR, TLBIVMALLE1IS),
DO_BIT(HFGITR, TLBIVAE1IS),
DO_BIT(HFGITR, TLBIASIDE1IS),
DO_BIT(HFGITR, TLBIVAAE1IS),
DO_BIT(HFGITR, TLBIVALE1IS),
DO_BIT(HFGITR, TLBIVAALE1IS),
DO_BIT(HFGITR, TLBIRVAE1IS),
DO_BIT(HFGITR, TLBIRVAAE1IS),
DO_BIT(HFGITR, TLBIRVALE1IS),
DO_BIT(HFGITR, TLBIRVAALE1IS),
DO_BIT(HFGITR, TLBIRVAE1),
DO_BIT(HFGITR, TLBIRVAAE1),
DO_BIT(HFGITR, TLBIRVALE1),
DO_BIT(HFGITR, TLBIRVAALE1),
DO_BIT(HFGITR, TLBIVMALLE1),
DO_BIT(HFGITR, TLBIVAE1),
DO_BIT(HFGITR, TLBIASIDE1),
DO_BIT(HFGITR, TLBIVAAE1),
DO_BIT(HFGITR, TLBIVALE1),
DO_BIT(HFGITR, TLBIVAALE1),
DO_BIT(HFGITR, CFPRCTX),
DO_BIT(HFGITR, DVPRCTX),
DO_BIT(HFGITR, CPPRCTX),
DO_BIT(HFGITR, DCCVAC),
} FGTBit;
#undef DO_BIT
#undef DO_REV_BIT
typedef struct ARMCPRegInfo ARMCPRegInfo;
/*
* Access functions for coprocessor registers. These cannot fail and
* may not raise exceptions.
*/
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
uint64_t value);
/* Access permission check functions for coprocessor registers. */
typedef CPAccessResult CPAccessFn(CPUARMState *env,
const ARMCPRegInfo *opaque,
bool isread);
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
#define CP_ANY 0xff
/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
/* Name of register (useful mainly for debugging, need not be unique) */
const char *name;
/*
* Location of register: coprocessor number and (crn,crm,opc1,opc2)
* tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
* 'wildcard' field -- any value of that field in the MRC/MCR insn
* will be decoded to this register. The register read and write
* callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
* used by the program, so it is possible to register a wildcard and
* then behave differently on read/write if necessary.
* For 64 bit registers, only crm and opc1 are relevant; crn and opc2
* must both be zero.
* For AArch64-visible registers, opc0 is also used.
* Since there are no "coprocessors" in AArch64, cp is purely used as a
* way to distinguish (for KVM's benefit) guest-visible system registers
* from demuxed ones provided to preserve the "no side effects on
* KVM register read/write from QEMU" semantics. cp==0x13 is guest
* visible (to match KVM's encoding); cp==0 will be converted to
* cp==0x13 when the ARMCPRegInfo is registered, for convenience.
*/
uint8_t cp;
uint8_t crn;
uint8_t crm;
uint8_t opc0;
uint8_t opc1;
uint8_t opc2;
/* Execution state in which this register is visible: ARM_CP_STATE_* */
CPState state;
/* Register type: ARM_CP_* bits/values */
int type;
/* Access rights: PL*_[RW] */
CPAccessRights access;
/* Security state: ARM_CP_SECSTATE_* bits/values */
CPSecureState secure;
/*
* Which fine-grained trap register bit to check, if any. This
* value encodes both the trap register and bit within it.
*/
FGTBit fgt;
/*
* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
* this register was defined: can be used to hand data through to the
* register read/write functions, since they are passed the ARMCPRegInfo*.
*/
void *opaque;
/*
* Value of this register, if it is ARM_CP_CONST. Otherwise, if
* fieldoffset is non-zero, the reset value of the register.
*/
uint64_t resetvalue;
/*
* Offset of the field in CPUARMState for this register.
* This is not needed if either:
* 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
* 2. both readfn and writefn are specified
*/
ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
/*
* Offsets of the secure and non-secure fields in CPUARMState for the
* register if it is banked. These fields are only used during the static
* registration of a register. During hashing the bank associated
* with a given security state is copied to fieldoffset which is used from
* there on out.
*
* It is expected that register definitions use either fieldoffset or
* bank_fieldoffsets in the definition but not both. It is also expected
* that both bank offsets are set when defining a banked register. This
* use indicates that a register is banked.
*/
ptrdiff_t bank_fieldoffsets[2];
/*
* Function for making any access checks for this register in addition to
* those specified by the 'access' permissions bits. If NULL, no extra
* checks required. The access check is performed at runtime, not at
* translate time.
*/
CPAccessFn *accessfn;
/*
* Function for handling reads of this register. If NULL, then reads
* will be done by loading from the offset into CPUARMState specified
* by fieldoffset.
*/
CPReadFn *readfn;
/*
* Function for handling writes of this register. If NULL, then writes
* will be done by writing to the offset into CPUARMState specified
* by fieldoffset.
*/
CPWriteFn *writefn;
/*
* Function for doing a "raw" read; used when we need to copy
* coprocessor state to the kernel for KVM or out for
* migration. This only needs to be provided if there is also a
* readfn and it has side effects (for instance clear-on-read bits).
*/
CPReadFn *raw_readfn;
/*
* Function for doing a "raw" write; used when we need to copy KVM
* kernel coprocessor state into userspace, or for inbound
* migration. This only needs to be provided if there is also a
* writefn and it masks out "unwritable" bits or has write-one-to-clear
* or similar behaviour.
*/
CPWriteFn *raw_writefn;
/*
* Function for resetting the register. If NULL, then reset will be done
* by writing resetvalue to the field specified in fieldoffset. If
* fieldoffset is 0 then no reset will be done.
*/
CPResetFn *resetfn;
/*
* "Original" writefn and readfn.
* For ARMv8.1-VHE register aliases, we overwrite the read/write
* accessor functions of various EL1/EL0 to perform the runtime
* check for which sysreg should actually be modified, and then
* forwards the operation. Before overwriting the accessors,
* the original function is copied here, so that accesses that
* really do go to the EL1/EL0 version proceed normally.
* (The corresponding EL2 register is linked via opaque.)
*/
CPReadFn *orig_readfn;
CPWriteFn *orig_writefn;
};
/*
* Macros which are lvalues for the field in CPUARMState for the
* ARMCPRegInfo *ri.
*/
#define CPREG_FIELD32(env, ri) \
(*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
(*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *reg,
void *opaque);
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
}
void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
void *opaque, size_t len);
#define define_arm_cp_regs_with_opaque(CPU, REGS, OPAQUE) \
do { \
QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0); \
define_arm_cp_regs_with_opaque_len(CPU, REGS, OPAQUE, \
ARRAY_SIZE(REGS)); \
} while (0)
#define define_arm_cp_regs(CPU, REGS) \
define_arm_cp_regs_with_opaque(CPU, REGS, NULL)
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
/*
* Definition of an ARM co-processor register as viewed from
* userspace. This is used for presenting sanitised versions of
* registers to userspace when emulating the Linux AArch64 CPU
* ID/feature ABI (advertised as HWCAP_CPUID).
*/
typedef struct ARMCPRegUserSpaceInfo {
/* Name of register */
const char *name;
/* Is the name actually a glob pattern */
bool is_glob;
/* Only some bits are exported to user space */
uint64_t exported_bits;
/* Fixed bits are applied after the mask */
uint64_t fixed_bits;
} ARMCPRegUserSpaceInfo;
void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
const ARMCPRegUserSpaceInfo *mods,
size_t mods_len);
#define modify_arm_cp_regs(REGS, MODS) \
do { \
QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0); \
QEMU_BUILD_BUG_ON(ARRAY_SIZE(MODS) == 0); \
modify_arm_cp_regs_with_len(REGS, ARRAY_SIZE(REGS), \
MODS, ARRAY_SIZE(MODS)); \
} while (0)
/* CPWriteFn that can be used to implement writes-ignored behaviour */
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value);
/* CPReadFn that can be used for read-as-zero behaviour */
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
/* CPWriteFn that just writes the value to ri->fieldoffset */
void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value);
/*
* CPResetFn that does nothing, for use if no reset is required even
* if fieldoffset is non zero.
*/
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
/*
* Return true if this reginfo struct's field in the cpu state struct
* is 64 bits wide.
*/
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}
static inline bool cp_access_ok(int current_el,
const ARMCPRegInfo *ri, int isread)
{
return (ri->access >> ((current_el * 2) + isread)) & 1;
}
/* Raw read of a coprocessor register (as needed for migration, etc) */
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
/*
* Return true if the cp register encoding is in the "feature ID space" as
* defined by FEAT_IDST (and thus should be reported with ER_ELx.EC
* as EC_SYSTEMREGISTERTRAP rather than EC_UNCATEGORIZED).
*/
static inline bool arm_cpreg_encoding_in_idspace(uint8_t opc0, uint8_t opc1,
uint8_t opc2,
uint8_t crn, uint8_t crm)
{
return opc0 == 3 && (opc1 == 0 || opc1 == 1 || opc1 == 3) &&
crn == 0 && crm < 8;
}
/*
* As arm_cpreg_encoding_in_idspace(), but take the encoding from an
* ARMCPRegInfo.
*/
static inline bool arm_cpreg_in_idspace(const ARMCPRegInfo *ri)
{
return ri->state == ARM_CP_STATE_AA64 &&
arm_cpreg_encoding_in_idspace(ri->opc0, ri->opc1, ri->opc2,
ri->crn, ri->crm);
}
#ifdef CONFIG_USER_ONLY
static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
#else
void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
#endif
CPAccessResult access_tvm_trvm(CPUARMState *, const ARMCPRegInfo *, bool);
#endif /* TARGET_ARM_CPREGS_H */