| #ifndef BSWAP_H |
| #define BSWAP_H |
| |
| #include "fpu/softfloat-types.h" |
| |
| #ifdef CONFIG_MACHINE_BSWAP_H |
| # include <sys/endian.h> |
| # include <machine/bswap.h> |
| #elif defined(__FreeBSD__) |
| # include <sys/endian.h> |
| #elif defined(CONFIG_BYTESWAP_H) |
| # include <byteswap.h> |
| |
| static inline uint16_t bswap16(uint16_t x) |
| { |
| return bswap_16(x); |
| } |
| |
| static inline uint32_t bswap32(uint32_t x) |
| { |
| return bswap_32(x); |
| } |
| |
| static inline uint64_t bswap64(uint64_t x) |
| { |
| return bswap_64(x); |
| } |
| # else |
| static inline uint16_t bswap16(uint16_t x) |
| { |
| return (((x & 0x00ff) << 8) | |
| ((x & 0xff00) >> 8)); |
| } |
| |
| static inline uint32_t bswap32(uint32_t x) |
| { |
| return (((x & 0x000000ffU) << 24) | |
| ((x & 0x0000ff00U) << 8) | |
| ((x & 0x00ff0000U) >> 8) | |
| ((x & 0xff000000U) >> 24)); |
| } |
| |
| static inline uint64_t bswap64(uint64_t x) |
| { |
| return (((x & 0x00000000000000ffULL) << 56) | |
| ((x & 0x000000000000ff00ULL) << 40) | |
| ((x & 0x0000000000ff0000ULL) << 24) | |
| ((x & 0x00000000ff000000ULL) << 8) | |
| ((x & 0x000000ff00000000ULL) >> 8) | |
| ((x & 0x0000ff0000000000ULL) >> 24) | |
| ((x & 0x00ff000000000000ULL) >> 40) | |
| ((x & 0xff00000000000000ULL) >> 56)); |
| } |
| #endif /* ! CONFIG_MACHINE_BSWAP_H */ |
| |
| static inline void bswap16s(uint16_t *s) |
| { |
| *s = bswap16(*s); |
| } |
| |
| static inline void bswap32s(uint32_t *s) |
| { |
| *s = bswap32(*s); |
| } |
| |
| static inline void bswap64s(uint64_t *s) |
| { |
| *s = bswap64(*s); |
| } |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define be_bswap(v, size) (v) |
| #define le_bswap(v, size) glue(bswap, size)(v) |
| #define be_bswaps(v, size) |
| #define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0) |
| #else |
| #define le_bswap(v, size) (v) |
| #define be_bswap(v, size) glue(bswap, size)(v) |
| #define le_bswaps(v, size) |
| #define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0) |
| #endif |
| |
| /** |
| * Endianness conversion functions between host cpu and specified endianness. |
| * (We list the complete set of prototypes produced by the macros below |
| * to assist people who search the headers to find their definitions.) |
| * |
| * uint16_t le16_to_cpu(uint16_t v); |
| * uint32_t le32_to_cpu(uint32_t v); |
| * uint64_t le64_to_cpu(uint64_t v); |
| * uint16_t be16_to_cpu(uint16_t v); |
| * uint32_t be32_to_cpu(uint32_t v); |
| * uint64_t be64_to_cpu(uint64_t v); |
| * |
| * Convert the value @v from the specified format to the native |
| * endianness of the host CPU by byteswapping if necessary, and |
| * return the converted value. |
| * |
| * uint16_t cpu_to_le16(uint16_t v); |
| * uint32_t cpu_to_le32(uint32_t v); |
| * uint64_t cpu_to_le64(uint64_t v); |
| * uint16_t cpu_to_be16(uint16_t v); |
| * uint32_t cpu_to_be32(uint32_t v); |
| * uint64_t cpu_to_be64(uint64_t v); |
| * |
| * Convert the value @v from the native endianness of the host CPU to |
| * the specified format by byteswapping if necessary, and return |
| * the converted value. |
| * |
| * void le16_to_cpus(uint16_t *v); |
| * void le32_to_cpus(uint32_t *v); |
| * void le64_to_cpus(uint64_t *v); |
| * void be16_to_cpus(uint16_t *v); |
| * void be32_to_cpus(uint32_t *v); |
| * void be64_to_cpus(uint64_t *v); |
| * |
| * Do an in-place conversion of the value pointed to by @v from the |
| * specified format to the native endianness of the host CPU. |
| * |
| * void cpu_to_le16s(uint16_t *v); |
| * void cpu_to_le32s(uint32_t *v); |
| * void cpu_to_le64s(uint64_t *v); |
| * void cpu_to_be16s(uint16_t *v); |
| * void cpu_to_be32s(uint32_t *v); |
| * void cpu_to_be64s(uint64_t *v); |
| * |
| * Do an in-place conversion of the value pointed to by @v from the |
| * native endianness of the host CPU to the specified format. |
| * |
| * Both X_to_cpu() and cpu_to_X() perform the same operation; you |
| * should use whichever one is better documenting of the function your |
| * code is performing. |
| * |
| * Do not use these functions for conversion of values which are in guest |
| * memory, since the data may not be sufficiently aligned for the host CPU's |
| * load and store instructions. Instead you should use the ld*_p() and |
| * st*_p() functions, which perform loads and stores of data of any |
| * required size and endianness and handle possible misalignment. |
| */ |
| |
| #define CPU_CONVERT(endian, size, type)\ |
| static inline type endian ## size ## _to_cpu(type v)\ |
| {\ |
| return glue(endian, _bswap)(v, size);\ |
| }\ |
| \ |
| static inline type cpu_to_ ## endian ## size(type v)\ |
| {\ |
| return glue(endian, _bswap)(v, size);\ |
| }\ |
| \ |
| static inline void endian ## size ## _to_cpus(type *p)\ |
| {\ |
| glue(endian, _bswaps)(p, size);\ |
| }\ |
| \ |
| static inline void cpu_to_ ## endian ## size ## s(type *p)\ |
| {\ |
| glue(endian, _bswaps)(p, size);\ |
| } |
| |
| CPU_CONVERT(be, 16, uint16_t) |
| CPU_CONVERT(be, 32, uint32_t) |
| CPU_CONVERT(be, 64, uint64_t) |
| |
| CPU_CONVERT(le, 16, uint16_t) |
| CPU_CONVERT(le, 32, uint32_t) |
| CPU_CONVERT(le, 64, uint64_t) |
| |
| /* len must be one of 1, 2, 4 */ |
| static inline uint32_t qemu_bswap_len(uint32_t value, int len) |
| { |
| return bswap32(value) >> (32 - 8 * len); |
| } |
| |
| /* |
| * Same as cpu_to_le{16,32}, except that gcc will figure the result is |
| * a compile-time constant if you pass in a constant. So this can be |
| * used to initialize static variables. |
| */ |
| #if defined(HOST_WORDS_BIGENDIAN) |
| # define const_le32(_x) \ |
| ((((_x) & 0x000000ffU) << 24) | \ |
| (((_x) & 0x0000ff00U) << 8) | \ |
| (((_x) & 0x00ff0000U) >> 8) | \ |
| (((_x) & 0xff000000U) >> 24)) |
| # define const_le16(_x) \ |
| ((((_x) & 0x00ff) << 8) | \ |
| (((_x) & 0xff00) >> 8)) |
| #else |
| # define const_le32(_x) (_x) |
| # define const_le16(_x) (_x) |
| #endif |
| |
| /* Unions for reinterpreting between floats and integers. */ |
| |
| typedef union { |
| float32 f; |
| uint32_t l; |
| } CPU_FloatU; |
| |
| typedef union { |
| float64 d; |
| #if defined(HOST_WORDS_BIGENDIAN) |
| struct { |
| uint32_t upper; |
| uint32_t lower; |
| } l; |
| #else |
| struct { |
| uint32_t lower; |
| uint32_t upper; |
| } l; |
| #endif |
| uint64_t ll; |
| } CPU_DoubleU; |
| |
| typedef union { |
| floatx80 d; |
| struct { |
| uint64_t lower; |
| uint16_t upper; |
| } l; |
| } CPU_LDoubleU; |
| |
| typedef union { |
| float128 q; |
| #if defined(HOST_WORDS_BIGENDIAN) |
| struct { |
| uint32_t upmost; |
| uint32_t upper; |
| uint32_t lower; |
| uint32_t lowest; |
| } l; |
| struct { |
| uint64_t upper; |
| uint64_t lower; |
| } ll; |
| #else |
| struct { |
| uint32_t lowest; |
| uint32_t lower; |
| uint32_t upper; |
| uint32_t upmost; |
| } l; |
| struct { |
| uint64_t lower; |
| uint64_t upper; |
| } ll; |
| #endif |
| } CPU_QuadU; |
| |
| /* unaligned/endian-independent pointer access */ |
| |
| /* |
| * the generic syntax is: |
| * |
| * load: ld{type}{sign}{size}_{endian}_p(ptr) |
| * |
| * store: st{type}{size}_{endian}_p(ptr, val) |
| * |
| * Note there are small differences with the softmmu access API! |
| * |
| * type is: |
| * (empty): integer access |
| * f : float access |
| * |
| * sign is: |
| * (empty): for 32 or 64 bit sizes (including floats and doubles) |
| * u : unsigned |
| * s : signed |
| * |
| * size is: |
| * b: 8 bits |
| * w: 16 bits |
| * l: 32 bits |
| * q: 64 bits |
| * |
| * endian is: |
| * he : host endian |
| * be : big endian |
| * le : little endian |
| * te : target endian |
| * (except for byte accesses, which have no endian infix). |
| * |
| * The target endian accessors are obviously only available to source |
| * files which are built per-target; they are defined in cpu-all.h. |
| * |
| * In all cases these functions take a host pointer. |
| * For accessors that take a guest address rather than a |
| * host address, see the cpu_{ld,st}_* accessors defined in |
| * cpu_ldst.h. |
| * |
| * For cases where the size to be used is not fixed at compile time, |
| * there are |
| * stn_{endian}_p(ptr, sz, val) |
| * which stores @val to @ptr as an @endian-order number @sz bytes in size |
| * and |
| * ldn_{endian}_p(ptr, sz) |
| * which loads @sz bytes from @ptr as an unsigned @endian-order number |
| * and returns it in a uint64_t. |
| */ |
| |
| static inline int ldub_p(const void *ptr) |
| { |
| return *(uint8_t *)ptr; |
| } |
| |
| static inline int ldsb_p(const void *ptr) |
| { |
| return *(int8_t *)ptr; |
| } |
| |
| static inline void stb_p(void *ptr, uint8_t v) |
| { |
| *(uint8_t *)ptr = v; |
| } |
| |
| /* |
| * Any compiler worth its salt will turn these memcpy into native unaligned |
| * operations. Thus we don't need to play games with packed attributes, or |
| * inline byte-by-byte stores. |
| * Some compilation environments (eg some fortify-source implementations) |
| * may intercept memcpy() in a way that defeats the compiler optimization, |
| * though, so we use __builtin_memcpy() to give ourselves the best chance |
| * of good performance. |
| */ |
| |
| static inline int lduw_he_p(const void *ptr) |
| { |
| uint16_t r; |
| __builtin_memcpy(&r, ptr, sizeof(r)); |
| return r; |
| } |
| |
| static inline int ldsw_he_p(const void *ptr) |
| { |
| int16_t r; |
| __builtin_memcpy(&r, ptr, sizeof(r)); |
| return r; |
| } |
| |
| static inline void stw_he_p(void *ptr, uint16_t v) |
| { |
| __builtin_memcpy(ptr, &v, sizeof(v)); |
| } |
| |
| static inline int ldl_he_p(const void *ptr) |
| { |
| int32_t r; |
| __builtin_memcpy(&r, ptr, sizeof(r)); |
| return r; |
| } |
| |
| static inline void stl_he_p(void *ptr, uint32_t v) |
| { |
| __builtin_memcpy(ptr, &v, sizeof(v)); |
| } |
| |
| static inline uint64_t ldq_he_p(const void *ptr) |
| { |
| uint64_t r; |
| __builtin_memcpy(&r, ptr, sizeof(r)); |
| return r; |
| } |
| |
| static inline void stq_he_p(void *ptr, uint64_t v) |
| { |
| __builtin_memcpy(ptr, &v, sizeof(v)); |
| } |
| |
| static inline int lduw_le_p(const void *ptr) |
| { |
| return (uint16_t)le_bswap(lduw_he_p(ptr), 16); |
| } |
| |
| static inline int ldsw_le_p(const void *ptr) |
| { |
| return (int16_t)le_bswap(lduw_he_p(ptr), 16); |
| } |
| |
| static inline int ldl_le_p(const void *ptr) |
| { |
| return le_bswap(ldl_he_p(ptr), 32); |
| } |
| |
| static inline uint64_t ldq_le_p(const void *ptr) |
| { |
| return le_bswap(ldq_he_p(ptr), 64); |
| } |
| |
| static inline void stw_le_p(void *ptr, uint16_t v) |
| { |
| stw_he_p(ptr, le_bswap(v, 16)); |
| } |
| |
| static inline void stl_le_p(void *ptr, uint32_t v) |
| { |
| stl_he_p(ptr, le_bswap(v, 32)); |
| } |
| |
| static inline void stq_le_p(void *ptr, uint64_t v) |
| { |
| stq_he_p(ptr, le_bswap(v, 64)); |
| } |
| |
| /* float access */ |
| |
| static inline float32 ldfl_le_p(const void *ptr) |
| { |
| CPU_FloatU u; |
| u.l = ldl_le_p(ptr); |
| return u.f; |
| } |
| |
| static inline void stfl_le_p(void *ptr, float32 v) |
| { |
| CPU_FloatU u; |
| u.f = v; |
| stl_le_p(ptr, u.l); |
| } |
| |
| static inline float64 ldfq_le_p(const void *ptr) |
| { |
| CPU_DoubleU u; |
| u.ll = ldq_le_p(ptr); |
| return u.d; |
| } |
| |
| static inline void stfq_le_p(void *ptr, float64 v) |
| { |
| CPU_DoubleU u; |
| u.d = v; |
| stq_le_p(ptr, u.ll); |
| } |
| |
| static inline int lduw_be_p(const void *ptr) |
| { |
| return (uint16_t)be_bswap(lduw_he_p(ptr), 16); |
| } |
| |
| static inline int ldsw_be_p(const void *ptr) |
| { |
| return (int16_t)be_bswap(lduw_he_p(ptr), 16); |
| } |
| |
| static inline int ldl_be_p(const void *ptr) |
| { |
| return be_bswap(ldl_he_p(ptr), 32); |
| } |
| |
| static inline uint64_t ldq_be_p(const void *ptr) |
| { |
| return be_bswap(ldq_he_p(ptr), 64); |
| } |
| |
| static inline void stw_be_p(void *ptr, uint16_t v) |
| { |
| stw_he_p(ptr, be_bswap(v, 16)); |
| } |
| |
| static inline void stl_be_p(void *ptr, uint32_t v) |
| { |
| stl_he_p(ptr, be_bswap(v, 32)); |
| } |
| |
| static inline void stq_be_p(void *ptr, uint64_t v) |
| { |
| stq_he_p(ptr, be_bswap(v, 64)); |
| } |
| |
| /* float access */ |
| |
| static inline float32 ldfl_be_p(const void *ptr) |
| { |
| CPU_FloatU u; |
| u.l = ldl_be_p(ptr); |
| return u.f; |
| } |
| |
| static inline void stfl_be_p(void *ptr, float32 v) |
| { |
| CPU_FloatU u; |
| u.f = v; |
| stl_be_p(ptr, u.l); |
| } |
| |
| static inline float64 ldfq_be_p(const void *ptr) |
| { |
| CPU_DoubleU u; |
| u.ll = ldq_be_p(ptr); |
| return u.d; |
| } |
| |
| static inline void stfq_be_p(void *ptr, float64 v) |
| { |
| CPU_DoubleU u; |
| u.d = v; |
| stq_be_p(ptr, u.ll); |
| } |
| |
| static inline unsigned long leul_to_cpu(unsigned long v) |
| { |
| #if HOST_LONG_BITS == 32 |
| return le_bswap(v, 32); |
| #elif HOST_LONG_BITS == 64 |
| return le_bswap(v, 64); |
| #else |
| # error Unknown sizeof long |
| #endif |
| } |
| |
| /* Store v to p as a sz byte value in host order */ |
| #define DO_STN_LDN_P(END) \ |
| static inline void stn_## END ## _p(void *ptr, int sz, uint64_t v) \ |
| { \ |
| switch (sz) { \ |
| case 1: \ |
| stb_p(ptr, v); \ |
| break; \ |
| case 2: \ |
| stw_ ## END ## _p(ptr, v); \ |
| break; \ |
| case 4: \ |
| stl_ ## END ## _p(ptr, v); \ |
| break; \ |
| case 8: \ |
| stq_ ## END ## _p(ptr, v); \ |
| break; \ |
| default: \ |
| g_assert_not_reached(); \ |
| } \ |
| } \ |
| static inline uint64_t ldn_## END ## _p(const void *ptr, int sz) \ |
| { \ |
| switch (sz) { \ |
| case 1: \ |
| return ldub_p(ptr); \ |
| case 2: \ |
| return lduw_ ## END ## _p(ptr); \ |
| case 4: \ |
| return (uint32_t)ldl_ ## END ## _p(ptr); \ |
| case 8: \ |
| return ldq_ ## END ## _p(ptr); \ |
| default: \ |
| g_assert_not_reached(); \ |
| } \ |
| } |
| |
| DO_STN_LDN_P(he) |
| DO_STN_LDN_P(le) |
| DO_STN_LDN_P(be) |
| |
| #undef DO_STN_LDN_P |
| |
| #undef le_bswap |
| #undef be_bswap |
| #undef le_bswaps |
| #undef be_bswaps |
| |
| #endif /* BSWAP_H */ |