| /* |
| * AArch64 translation |
| * |
| * Copyright (c) 2013 Alexander Graf <agraf@suse.de> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg-op.h" |
| #include "tcg/tcg-op-gvec.h" |
| #include "qemu/log.h" |
| #include "arm_ldst.h" |
| #include "translate.h" |
| #include "internals.h" |
| #include "qemu/host-utils.h" |
| |
| #include "hw/semihosting/semihost.h" |
| #include "exec/gen-icount.h" |
| |
| #include "exec/helper-proto.h" |
| #include "exec/helper-gen.h" |
| #include "exec/log.h" |
| |
| #include "trace-tcg.h" |
| #include "translate-a64.h" |
| #include "qemu/atomic128.h" |
| |
| static TCGv_i64 cpu_X[32]; |
| static TCGv_i64 cpu_pc; |
| |
| /* Load/store exclusive handling */ |
| static TCGv_i64 cpu_exclusive_high; |
| |
| static const char *regnames[] = { |
| "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", |
| "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", |
| "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", |
| "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" |
| }; |
| |
| enum a64_shift_type { |
| A64_SHIFT_TYPE_LSL = 0, |
| A64_SHIFT_TYPE_LSR = 1, |
| A64_SHIFT_TYPE_ASR = 2, |
| A64_SHIFT_TYPE_ROR = 3 |
| }; |
| |
| /* Table based decoder typedefs - used when the relevant bits for decode |
| * are too awkwardly scattered across the instruction (eg SIMD). |
| */ |
| typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); |
| |
| typedef struct AArch64DecodeTable { |
| uint32_t pattern; |
| uint32_t mask; |
| AArch64DecodeFn *disas_fn; |
| } AArch64DecodeTable; |
| |
| /* Function prototype for gen_ functions for calling Neon helpers */ |
| typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); |
| typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); |
| typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); |
| typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); |
| typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); |
| typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); |
| typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); |
| typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); |
| typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); |
| typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); |
| typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64); |
| typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr); |
| typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); |
| typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); |
| typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp); |
| |
| /* initialize TCG globals. */ |
| void a64_translate_init(void) |
| { |
| int i; |
| |
| cpu_pc = tcg_global_mem_new_i64(cpu_env, |
| offsetof(CPUARMState, pc), |
| "pc"); |
| for (i = 0; i < 32; i++) { |
| cpu_X[i] = tcg_global_mem_new_i64(cpu_env, |
| offsetof(CPUARMState, xregs[i]), |
| regnames[i]); |
| } |
| |
| cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, |
| offsetof(CPUARMState, exclusive_high), "exclusive_high"); |
| } |
| |
| /* |
| * Return the core mmu_idx to use for A64 "unprivileged load/store" insns |
| */ |
| static int get_a64_user_mem_index(DisasContext *s) |
| { |
| /* |
| * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, |
| * which is the usual mmu_idx for this cpu state. |
| */ |
| ARMMMUIdx useridx = s->mmu_idx; |
| |
| if (s->unpriv) { |
| /* |
| * We have pre-computed the condition for AccType_UNPRIV. |
| * Therefore we should never get here with a mmu_idx for |
| * which we do not know the corresponding user mmu_idx. |
| */ |
| switch (useridx) { |
| case ARMMMUIdx_E10_1: |
| case ARMMMUIdx_E10_1_PAN: |
| useridx = ARMMMUIdx_E10_0; |
| break; |
| case ARMMMUIdx_E20_2: |
| case ARMMMUIdx_E20_2_PAN: |
| useridx = ARMMMUIdx_E20_0; |
| break; |
| case ARMMMUIdx_SE10_1: |
| case ARMMMUIdx_SE10_1_PAN: |
| useridx = ARMMMUIdx_SE10_0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| return arm_to_core_mmu_idx(useridx); |
| } |
| |
| static void reset_btype(DisasContext *s) |
| { |
| if (s->btype != 0) { |
| TCGv_i32 zero = tcg_const_i32(0); |
| tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype)); |
| tcg_temp_free_i32(zero); |
| s->btype = 0; |
| } |
| } |
| |
| static void set_btype(DisasContext *s, int val) |
| { |
| TCGv_i32 tcg_val; |
| |
| /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ |
| tcg_debug_assert(val >= 1 && val <= 3); |
| |
| tcg_val = tcg_const_i32(val); |
| tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype)); |
| tcg_temp_free_i32(tcg_val); |
| s->btype = -1; |
| } |
| |
| void gen_a64_set_pc_im(uint64_t val) |
| { |
| tcg_gen_movi_i64(cpu_pc, val); |
| } |
| |
| /* |
| * Handle Top Byte Ignore (TBI) bits. |
| * |
| * If address tagging is enabled via the TCR TBI bits: |
| * + for EL2 and EL3 there is only one TBI bit, and if it is set |
| * then the address is zero-extended, clearing bits [63:56] |
| * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 |
| * and TBI1 controls addressses with bit 55 == 1. |
| * If the appropriate TBI bit is set for the address then |
| * the address is sign-extended from bit 55 into bits [63:56] |
| * |
| * Here We have concatenated TBI{1,0} into tbi. |
| */ |
| static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, |
| TCGv_i64 src, int tbi) |
| { |
| if (tbi == 0) { |
| /* Load unmodified address */ |
| tcg_gen_mov_i64(dst, src); |
| } else if (!regime_has_2_ranges(s->mmu_idx)) { |
| /* Force tag byte to all zero */ |
| tcg_gen_extract_i64(dst, src, 0, 56); |
| } else { |
| /* Sign-extend from bit 55. */ |
| tcg_gen_sextract_i64(dst, src, 0, 56); |
| |
| if (tbi != 3) { |
| TCGv_i64 tcg_zero = tcg_const_i64(0); |
| |
| /* |
| * The two TBI bits differ. |
| * If tbi0, then !tbi1: only use the extension if positive. |
| * if !tbi0, then tbi1: only use the extension if negative. |
| */ |
| tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT, |
| dst, dst, tcg_zero, dst, src); |
| tcg_temp_free_i64(tcg_zero); |
| } |
| } |
| } |
| |
| static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) |
| { |
| /* |
| * If address tagging is enabled for instructions via the TCR TBI bits, |
| * then loading an address into the PC will clear out any tag. |
| */ |
| gen_top_byte_ignore(s, cpu_pc, src, s->tbii); |
| } |
| |
| /* |
| * Return a "clean" address for ADDR according to TBID. |
| * This is always a fresh temporary, as we need to be able to |
| * increment this independently of a dirty write-back address. |
| */ |
| static TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) |
| { |
| TCGv_i64 clean = new_tmp_a64(s); |
| /* |
| * In order to get the correct value in the FAR_ELx register, |
| * we must present the memory subsystem with the "dirty" address |
| * including the TBI. In system mode we can make this work via |
| * the TLB, dropping the TBI during translation. But for user-only |
| * mode we don't have that option, and must remove the top byte now. |
| */ |
| #ifdef CONFIG_USER_ONLY |
| gen_top_byte_ignore(s, clean, addr, s->tbid); |
| #else |
| tcg_gen_mov_i64(clean, addr); |
| #endif |
| return clean; |
| } |
| |
| typedef struct DisasCompare64 { |
| TCGCond cond; |
| TCGv_i64 value; |
| } DisasCompare64; |
| |
| static void a64_test_cc(DisasCompare64 *c64, int cc) |
| { |
| DisasCompare c32; |
| |
| arm_test_cc(&c32, cc); |
| |
| /* Sign-extend the 32-bit value so that the GE/LT comparisons work |
| * properly. The NE/EQ comparisons are also fine with this choice. */ |
| c64->cond = c32.cond; |
| c64->value = tcg_temp_new_i64(); |
| tcg_gen_ext_i32_i64(c64->value, c32.value); |
| |
| arm_free_cc(&c32); |
| } |
| |
| static void a64_free_cc(DisasCompare64 *c64) |
| { |
| tcg_temp_free_i64(c64->value); |
| } |
| |
| static void gen_exception_internal(int excp) |
| { |
| TCGv_i32 tcg_excp = tcg_const_i32(excp); |
| |
| assert(excp_is_internal(excp)); |
| gen_helper_exception_internal(cpu_env, tcg_excp); |
| tcg_temp_free_i32(tcg_excp); |
| } |
| |
| static void gen_exception_internal_insn(DisasContext *s, uint64_t pc, int excp) |
| { |
| gen_a64_set_pc_im(pc); |
| gen_exception_internal(excp); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_exception_insn(DisasContext *s, uint64_t pc, int excp, |
| uint32_t syndrome, uint32_t target_el) |
| { |
| gen_a64_set_pc_im(pc); |
| gen_exception(excp, syndrome, target_el); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) |
| { |
| TCGv_i32 tcg_syn; |
| |
| gen_a64_set_pc_im(s->pc_curr); |
| tcg_syn = tcg_const_i32(syndrome); |
| gen_helper_exception_bkpt_insn(cpu_env, tcg_syn); |
| tcg_temp_free_i32(tcg_syn); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_step_complete_exception(DisasContext *s) |
| { |
| /* We just completed step of an insn. Move from Active-not-pending |
| * to Active-pending, and then also take the swstep exception. |
| * This corresponds to making the (IMPDEF) choice to prioritize |
| * swstep exceptions over asynchronous exceptions taken to an exception |
| * level where debug is disabled. This choice has the advantage that |
| * we do not need to maintain internal state corresponding to the |
| * ISV/EX syndrome bits between completion of the step and generation |
| * of the exception, and our syndrome information is always correct. |
| */ |
| gen_ss_advance(s); |
| gen_swstep_exception(s, 1, s->is_ldex); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest) |
| { |
| /* No direct tb linking with singlestep (either QEMU's or the ARM |
| * debug architecture kind) or deterministic io |
| */ |
| if (s->base.singlestep_enabled || s->ss_active || |
| (tb_cflags(s->base.tb) & CF_LAST_IO)) { |
| return false; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* Only link tbs from inside the same guest page */ |
| if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) { |
| return false; |
| } |
| #endif |
| |
| return true; |
| } |
| |
| static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest) |
| { |
| TranslationBlock *tb; |
| |
| tb = s->base.tb; |
| if (use_goto_tb(s, n, dest)) { |
| tcg_gen_goto_tb(n); |
| gen_a64_set_pc_im(dest); |
| tcg_gen_exit_tb(tb, n); |
| s->base.is_jmp = DISAS_NORETURN; |
| } else { |
| gen_a64_set_pc_im(dest); |
| if (s->ss_active) { |
| gen_step_complete_exception(s); |
| } else if (s->base.singlestep_enabled) { |
| gen_exception_internal(EXCP_DEBUG); |
| } else { |
| tcg_gen_lookup_and_goto_ptr(); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| } |
| } |
| |
| void unallocated_encoding(DisasContext *s) |
| { |
| /* Unallocated and reserved encodings are uncategorized */ |
| gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(), |
| default_exception_el(s)); |
| } |
| |
| static void init_tmp_a64_array(DisasContext *s) |
| { |
| #ifdef CONFIG_DEBUG_TCG |
| memset(s->tmp_a64, 0, sizeof(s->tmp_a64)); |
| #endif |
| s->tmp_a64_count = 0; |
| } |
| |
| static void free_tmp_a64(DisasContext *s) |
| { |
| int i; |
| for (i = 0; i < s->tmp_a64_count; i++) { |
| tcg_temp_free_i64(s->tmp_a64[i]); |
| } |
| init_tmp_a64_array(s); |
| } |
| |
| TCGv_i64 new_tmp_a64(DisasContext *s) |
| { |
| assert(s->tmp_a64_count < TMP_A64_MAX); |
| return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64(); |
| } |
| |
| TCGv_i64 new_tmp_a64_zero(DisasContext *s) |
| { |
| TCGv_i64 t = new_tmp_a64(s); |
| tcg_gen_movi_i64(t, 0); |
| return t; |
| } |
| |
| /* |
| * Register access functions |
| * |
| * These functions are used for directly accessing a register in where |
| * changes to the final register value are likely to be made. If you |
| * need to use a register for temporary calculation (e.g. index type |
| * operations) use the read_* form. |
| * |
| * B1.2.1 Register mappings |
| * |
| * In instruction register encoding 31 can refer to ZR (zero register) or |
| * the SP (stack pointer) depending on context. In QEMU's case we map SP |
| * to cpu_X[31] and ZR accesses to a temporary which can be discarded. |
| * This is the point of the _sp forms. |
| */ |
| TCGv_i64 cpu_reg(DisasContext *s, int reg) |
| { |
| if (reg == 31) { |
| return new_tmp_a64_zero(s); |
| } else { |
| return cpu_X[reg]; |
| } |
| } |
| |
| /* register access for when 31 == SP */ |
| TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) |
| { |
| return cpu_X[reg]; |
| } |
| |
| /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 |
| * representing the register contents. This TCGv is an auto-freed |
| * temporary so it need not be explicitly freed, and may be modified. |
| */ |
| TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) |
| { |
| TCGv_i64 v = new_tmp_a64(s); |
| if (reg != 31) { |
| if (sf) { |
| tcg_gen_mov_i64(v, cpu_X[reg]); |
| } else { |
| tcg_gen_ext32u_i64(v, cpu_X[reg]); |
| } |
| } else { |
| tcg_gen_movi_i64(v, 0); |
| } |
| return v; |
| } |
| |
| TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) |
| { |
| TCGv_i64 v = new_tmp_a64(s); |
| if (sf) { |
| tcg_gen_mov_i64(v, cpu_X[reg]); |
| } else { |
| tcg_gen_ext32u_i64(v, cpu_X[reg]); |
| } |
| return v; |
| } |
| |
| /* Return the offset into CPUARMState of a slice (from |
| * the least significant end) of FP register Qn (ie |
| * Dn, Sn, Hn or Bn). |
| * (Note that this is not the same mapping as for A32; see cpu.h) |
| */ |
| static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) |
| { |
| return vec_reg_offset(s, regno, 0, size); |
| } |
| |
| /* Offset of the high half of the 128 bit vector Qn */ |
| static inline int fp_reg_hi_offset(DisasContext *s, int regno) |
| { |
| return vec_reg_offset(s, regno, 1, MO_64); |
| } |
| |
| /* Convenience accessors for reading and writing single and double |
| * FP registers. Writing clears the upper parts of the associated |
| * 128 bit vector register, as required by the architecture. |
| * Note that unlike the GP register accessors, the values returned |
| * by the read functions must be manually freed. |
| */ |
| static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) |
| { |
| TCGv_i64 v = tcg_temp_new_i64(); |
| |
| tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); |
| return v; |
| } |
| |
| static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) |
| { |
| TCGv_i32 v = tcg_temp_new_i32(); |
| |
| tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); |
| return v; |
| } |
| |
| static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) |
| { |
| TCGv_i32 v = tcg_temp_new_i32(); |
| |
| tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); |
| return v; |
| } |
| |
| /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). |
| * If SVE is not enabled, then there are only 128 bits in the vector. |
| */ |
| static void clear_vec_high(DisasContext *s, bool is_q, int rd) |
| { |
| unsigned ofs = fp_reg_offset(s, rd, MO_64); |
| unsigned vsz = vec_full_reg_size(s); |
| |
| if (!is_q) { |
| TCGv_i64 tcg_zero = tcg_const_i64(0); |
| tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8); |
| tcg_temp_free_i64(tcg_zero); |
| } |
| if (vsz > 16) { |
| tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0); |
| } |
| } |
| |
| void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) |
| { |
| unsigned ofs = fp_reg_offset(s, reg, MO_64); |
| |
| tcg_gen_st_i64(v, cpu_env, ofs); |
| clear_vec_high(s, false, reg); |
| } |
| |
| static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) |
| { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_extu_i32_i64(tmp, v); |
| write_fp_dreg(s, reg, tmp); |
| tcg_temp_free_i64(tmp); |
| } |
| |
| TCGv_ptr get_fpstatus_ptr(bool is_f16) |
| { |
| TCGv_ptr statusptr = tcg_temp_new_ptr(); |
| int offset; |
| |
| /* In A64 all instructions (both FP and Neon) use the FPCR; there |
| * is no equivalent of the A32 Neon "standard FPSCR value". |
| * However half-precision operations operate under a different |
| * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status. |
| */ |
| if (is_f16) { |
| offset = offsetof(CPUARMState, vfp.fp_status_f16); |
| } else { |
| offset = offsetof(CPUARMState, vfp.fp_status); |
| } |
| tcg_gen_addi_ptr(statusptr, cpu_env, offset); |
| return statusptr; |
| } |
| |
| /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ |
| static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, |
| GVecGen2Fn *gvec_fn, int vece) |
| { |
| gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* Expand a 2-operand + immediate AdvSIMD vector operation using |
| * an expander function. |
| */ |
| static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, |
| int64_t imm, GVecGen2iFn *gvec_fn, int vece) |
| { |
| gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| imm, is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ |
| static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, |
| GVecGen3Fn *gvec_fn, int vece) |
| { |
| gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ |
| static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, |
| int rx, GVecGen4Fn *gvec_fn, int vece) |
| { |
| gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), |
| is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* Expand a 2-operand + immediate AdvSIMD vector operation using |
| * an op descriptor. |
| */ |
| static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd, |
| int rn, int64_t imm, const GVecGen2i *gvec_op) |
| { |
| tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op); |
| } |
| |
| /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */ |
| static void gen_gvec_op3(DisasContext *s, bool is_q, int rd, |
| int rn, int rm, const GVecGen3 *gvec_op) |
| { |
| tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), is_q ? 16 : 8, |
| vec_full_reg_size(s), gvec_op); |
| } |
| |
| /* Expand a 3-operand operation using an out-of-line helper. */ |
| static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, |
| int rn, int rm, int data, gen_helper_gvec_3 *fn) |
| { |
| tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), |
| vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), |
| is_q ? 16 : 8, vec_full_reg_size(s), data, fn); |
| } |
| |
| /* Expand a 3-operand + env pointer operation using |
| * an out-of-line helper. |
| */ |
| static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd, |
| int rn, int rm, gen_helper_gvec_3_ptr *fn) |
| { |
| tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), |
| vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), cpu_env, |
| is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); |
| } |
| |
| /* Expand a 3-operand + fpstatus pointer + simd data value operation using |
| * an out-of-line helper. |
| */ |
| static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, |
| int rm, bool is_fp16, int data, |
| gen_helper_gvec_3_ptr *fn) |
| { |
| TCGv_ptr fpst = get_fpstatus_ptr(is_fp16); |
| tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), |
| vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), fpst, |
| is_q ? 16 : 8, vec_full_reg_size(s), data, fn); |
| tcg_temp_free_ptr(fpst); |
| } |
| |
| /* Set ZF and NF based on a 64 bit result. This is alas fiddlier |
| * than the 32 bit equivalent. |
| */ |
| static inline void gen_set_NZ64(TCGv_i64 result) |
| { |
| tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); |
| tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); |
| } |
| |
| /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ |
| static inline void gen_logic_CC(int sf, TCGv_i64 result) |
| { |
| if (sf) { |
| gen_set_NZ64(result); |
| } else { |
| tcg_gen_extrl_i64_i32(cpu_ZF, result); |
| tcg_gen_mov_i32(cpu_NF, cpu_ZF); |
| } |
| tcg_gen_movi_i32(cpu_CF, 0); |
| tcg_gen_movi_i32(cpu_VF, 0); |
| } |
| |
| /* dest = T0 + T1; compute C, N, V and Z flags */ |
| static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| if (sf) { |
| TCGv_i64 result, flag, tmp; |
| result = tcg_temp_new_i64(); |
| flag = tcg_temp_new_i64(); |
| tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_movi_i64(tmp, 0); |
| tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); |
| |
| tcg_gen_extrl_i64_i32(cpu_CF, flag); |
| |
| gen_set_NZ64(result); |
| |
| tcg_gen_xor_i64(flag, result, t0); |
| tcg_gen_xor_i64(tmp, t0, t1); |
| tcg_gen_andc_i64(flag, flag, tmp); |
| tcg_temp_free_i64(tmp); |
| tcg_gen_extrh_i64_i32(cpu_VF, flag); |
| |
| tcg_gen_mov_i64(dest, result); |
| tcg_temp_free_i64(result); |
| tcg_temp_free_i64(flag); |
| } else { |
| /* 32 bit arithmetic */ |
| TCGv_i32 t0_32 = tcg_temp_new_i32(); |
| TCGv_i32 t1_32 = tcg_temp_new_i32(); |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| tcg_gen_movi_i32(tmp, 0); |
| tcg_gen_extrl_i64_i32(t0_32, t0); |
| tcg_gen_extrl_i64_i32(t1_32, t1); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); |
| tcg_gen_xor_i32(tmp, t0_32, t1_32); |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); |
| tcg_gen_extu_i32_i64(dest, cpu_NF); |
| |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i32(t0_32); |
| tcg_temp_free_i32(t1_32); |
| } |
| } |
| |
| /* dest = T0 - T1; compute C, N, V and Z flags */ |
| static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| if (sf) { |
| /* 64 bit arithmetic */ |
| TCGv_i64 result, flag, tmp; |
| |
| result = tcg_temp_new_i64(); |
| flag = tcg_temp_new_i64(); |
| tcg_gen_sub_i64(result, t0, t1); |
| |
| gen_set_NZ64(result); |
| |
| tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); |
| tcg_gen_extrl_i64_i32(cpu_CF, flag); |
| |
| tcg_gen_xor_i64(flag, result, t0); |
| tmp = tcg_temp_new_i64(); |
| tcg_gen_xor_i64(tmp, t0, t1); |
| tcg_gen_and_i64(flag, flag, tmp); |
| tcg_temp_free_i64(tmp); |
| tcg_gen_extrh_i64_i32(cpu_VF, flag); |
| tcg_gen_mov_i64(dest, result); |
| tcg_temp_free_i64(flag); |
| tcg_temp_free_i64(result); |
| } else { |
| /* 32 bit arithmetic */ |
| TCGv_i32 t0_32 = tcg_temp_new_i32(); |
| TCGv_i32 t1_32 = tcg_temp_new_i32(); |
| TCGv_i32 tmp; |
| |
| tcg_gen_extrl_i64_i32(t0_32, t0); |
| tcg_gen_extrl_i64_i32(t1_32, t1); |
| tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_xor_i32(tmp, t0_32, t1_32); |
| tcg_temp_free_i32(t0_32); |
| tcg_temp_free_i32(t1_32); |
| tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); |
| tcg_temp_free_i32(tmp); |
| tcg_gen_extu_i32_i64(dest, cpu_NF); |
| } |
| } |
| |
| /* dest = T0 + T1 + CF; do not compute flags. */ |
| static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| TCGv_i64 flag = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(flag, cpu_CF); |
| tcg_gen_add_i64(dest, t0, t1); |
| tcg_gen_add_i64(dest, dest, flag); |
| tcg_temp_free_i64(flag); |
| |
| if (!sf) { |
| tcg_gen_ext32u_i64(dest, dest); |
| } |
| } |
| |
| /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ |
| static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| if (sf) { |
| TCGv_i64 result, cf_64, vf_64, tmp; |
| result = tcg_temp_new_i64(); |
| cf_64 = tcg_temp_new_i64(); |
| vf_64 = tcg_temp_new_i64(); |
| tmp = tcg_const_i64(0); |
| |
| tcg_gen_extu_i32_i64(cf_64, cpu_CF); |
| tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp); |
| tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp); |
| tcg_gen_extrl_i64_i32(cpu_CF, cf_64); |
| gen_set_NZ64(result); |
| |
| tcg_gen_xor_i64(vf_64, result, t0); |
| tcg_gen_xor_i64(tmp, t0, t1); |
| tcg_gen_andc_i64(vf_64, vf_64, tmp); |
| tcg_gen_extrh_i64_i32(cpu_VF, vf_64); |
| |
| tcg_gen_mov_i64(dest, result); |
| |
| tcg_temp_free_i64(tmp); |
| tcg_temp_free_i64(vf_64); |
| tcg_temp_free_i64(cf_64); |
| tcg_temp_free_i64(result); |
| } else { |
| TCGv_i32 t0_32, t1_32, tmp; |
| t0_32 = tcg_temp_new_i32(); |
| t1_32 = tcg_temp_new_i32(); |
| tmp = tcg_const_i32(0); |
| |
| tcg_gen_extrl_i64_i32(t0_32, t0); |
| tcg_gen_extrl_i64_i32(t1_32, t1); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp); |
| |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); |
| tcg_gen_xor_i32(tmp, t0_32, t1_32); |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); |
| tcg_gen_extu_i32_i64(dest, cpu_NF); |
| |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i32(t1_32); |
| tcg_temp_free_i32(t0_32); |
| } |
| } |
| |
| /* |
| * Load/Store generators |
| */ |
| |
| /* |
| * Store from GPR register to memory. |
| */ |
| static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, |
| TCGv_i64 tcg_addr, int size, int memidx, |
| bool iss_valid, |
| unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| g_assert(size <= 3); |
| tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size); |
| |
| if (iss_valid) { |
| uint32_t syn; |
| |
| syn = syn_data_abort_with_iss(0, |
| size, |
| false, |
| iss_srt, |
| iss_sf, |
| iss_ar, |
| 0, 0, 0, 0, 0, false); |
| disas_set_insn_syndrome(s, syn); |
| } |
| } |
| |
| static void do_gpr_st(DisasContext *s, TCGv_i64 source, |
| TCGv_i64 tcg_addr, int size, |
| bool iss_valid, |
| unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s), |
| iss_valid, iss_srt, iss_sf, iss_ar); |
| } |
| |
| /* |
| * Load from memory to GPR register |
| */ |
| static void do_gpr_ld_memidx(DisasContext *s, |
| TCGv_i64 dest, TCGv_i64 tcg_addr, |
| int size, bool is_signed, |
| bool extend, int memidx, |
| bool iss_valid, unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| MemOp memop = s->be_data + size; |
| |
| g_assert(size <= 3); |
| |
| if (is_signed) { |
| memop += MO_SIGN; |
| } |
| |
| tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); |
| |
| if (extend && is_signed) { |
| g_assert(size < 3); |
| tcg_gen_ext32u_i64(dest, dest); |
| } |
| |
| if (iss_valid) { |
| uint32_t syn; |
| |
| syn = syn_data_abort_with_iss(0, |
| size, |
| is_signed, |
| iss_srt, |
| iss_sf, |
| iss_ar, |
| 0, 0, 0, 0, 0, false); |
| disas_set_insn_syndrome(s, syn); |
| } |
| } |
| |
| static void do_gpr_ld(DisasContext *s, |
| TCGv_i64 dest, TCGv_i64 tcg_addr, |
| int size, bool is_signed, bool extend, |
| bool iss_valid, unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend, |
| get_mem_index(s), |
| iss_valid, iss_srt, iss_sf, iss_ar); |
| } |
| |
| /* |
| * Store from FP register to memory |
| */ |
| static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) |
| { |
| /* This writes the bottom N bits of a 128 bit wide vector to memory */ |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64)); |
| if (size < 4) { |
| tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), |
| s->be_data + size); |
| } else { |
| bool be = s->be_data == MO_BE; |
| TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); |
| |
| tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); |
| tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s), |
| s->be_data | MO_Q); |
| tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx)); |
| tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s), |
| s->be_data | MO_Q); |
| tcg_temp_free_i64(tcg_hiaddr); |
| } |
| |
| tcg_temp_free_i64(tmp); |
| } |
| |
| /* |
| * Load from memory to FP register |
| */ |
| static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) |
| { |
| /* This always zero-extends and writes to a full 128 bit wide vector */ |
| TCGv_i64 tmplo = tcg_temp_new_i64(); |
| TCGv_i64 tmphi; |
| |
| if (size < 4) { |
| MemOp memop = s->be_data + size; |
| tmphi = tcg_const_i64(0); |
| tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop); |
| } else { |
| bool be = s->be_data == MO_BE; |
| TCGv_i64 tcg_hiaddr; |
| |
| tmphi = tcg_temp_new_i64(); |
| tcg_hiaddr = tcg_temp_new_i64(); |
| |
| tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); |
| tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s), |
| s->be_data | MO_Q); |
| tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s), |
| s->be_data | MO_Q); |
| tcg_temp_free_i64(tcg_hiaddr); |
| } |
| |
| tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); |
| tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); |
| |
| tcg_temp_free_i64(tmplo); |
| tcg_temp_free_i64(tmphi); |
| |
| clear_vec_high(s, true, destidx); |
| } |
| |
| /* |
| * Vector load/store helpers. |
| * |
| * The principal difference between this and a FP load is that we don't |
| * zero extend as we are filling a partial chunk of the vector register. |
| * These functions don't support 128 bit loads/stores, which would be |
| * normal load/store operations. |
| * |
| * The _i32 versions are useful when operating on 32 bit quantities |
| * (eg for floating point single or using Neon helper functions). |
| */ |
| |
| /* Get value of an element within a vector register */ |
| static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, |
| int element, MemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); |
| switch (memop) { |
| case MO_8: |
| tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_32: |
| tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_8|MO_SIGN: |
| tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_16|MO_SIGN: |
| tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_32|MO_SIGN: |
| tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_64: |
| case MO_64|MO_SIGN: |
| tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, |
| int element, MemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); |
| switch (memop) { |
| case MO_8: |
| tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_8|MO_SIGN: |
| tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_16|MO_SIGN: |
| tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_32: |
| case MO_32|MO_SIGN: |
| tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Set value of an element within a vector register */ |
| static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, |
| int element, MemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); |
| switch (memop) { |
| case MO_8: |
| tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); |
| break; |
| case MO_32: |
| tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); |
| break; |
| case MO_64: |
| tcg_gen_st_i64(tcg_src, cpu_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, |
| int destidx, int element, MemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); |
| switch (memop) { |
| case MO_8: |
| tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); |
| break; |
| case MO_32: |
| tcg_gen_st_i32(tcg_src, cpu_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Store from vector register to memory */ |
| static void do_vec_st(DisasContext *s, int srcidx, int element, |
| TCGv_i64 tcg_addr, int size, MemOp endian) |
| { |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_tmp, srcidx, element, size); |
| tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size); |
| |
| tcg_temp_free_i64(tcg_tmp); |
| } |
| |
| /* Load from memory to vector register */ |
| static void do_vec_ld(DisasContext *s, int destidx, int element, |
| TCGv_i64 tcg_addr, int size, MemOp endian) |
| { |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size); |
| write_vec_element(s, tcg_tmp, destidx, element, size); |
| |
| tcg_temp_free_i64(tcg_tmp); |
| } |
| |
| /* Check that FP/Neon access is enabled. If it is, return |
| * true. If not, emit code to generate an appropriate exception, |
| * and return false; the caller should not emit any code for |
| * the instruction. Note that this check must happen after all |
| * unallocated-encoding checks (otherwise the syndrome information |
| * for the resulting exception will be incorrect). |
| */ |
| static inline bool fp_access_check(DisasContext *s) |
| { |
| assert(!s->fp_access_checked); |
| s->fp_access_checked = true; |
| |
| if (!s->fp_excp_el) { |
| return true; |
| } |
| |
| gen_exception_insn(s, s->pc_curr, EXCP_UDEF, |
| syn_fp_access_trap(1, 0xe, false), s->fp_excp_el); |
| return false; |
| } |
| |
| /* Check that SVE access is enabled. If it is, return true. |
| * If not, emit code to generate an appropriate exception and return false. |
| */ |
| bool sve_access_check(DisasContext *s) |
| { |
| if (s->sve_excp_el) { |
| gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_sve_access_trap(), |
| s->sve_excp_el); |
| return false; |
| } |
| return fp_access_check(s); |
| } |
| |
| /* |
| * This utility function is for doing register extension with an |
| * optional shift. You will likely want to pass a temporary for the |
| * destination register. See DecodeRegExtend() in the ARM ARM. |
| */ |
| static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, |
| int option, unsigned int shift) |
| { |
| int extsize = extract32(option, 0, 2); |
| bool is_signed = extract32(option, 2, 1); |
| |
| if (is_signed) { |
| switch (extsize) { |
| case 0: |
| tcg_gen_ext8s_i64(tcg_out, tcg_in); |
| break; |
| case 1: |
| tcg_gen_ext16s_i64(tcg_out, tcg_in); |
| break; |
| case 2: |
| tcg_gen_ext32s_i64(tcg_out, tcg_in); |
| break; |
| case 3: |
| tcg_gen_mov_i64(tcg_out, tcg_in); |
| break; |
| } |
| } else { |
| switch (extsize) { |
| case 0: |
| tcg_gen_ext8u_i64(tcg_out, tcg_in); |
| break; |
| case 1: |
| tcg_gen_ext16u_i64(tcg_out, tcg_in); |
| break; |
| case 2: |
| tcg_gen_ext32u_i64(tcg_out, tcg_in); |
| break; |
| case 3: |
| tcg_gen_mov_i64(tcg_out, tcg_in); |
| break; |
| } |
| } |
| |
| if (shift) { |
| tcg_gen_shli_i64(tcg_out, tcg_out, shift); |
| } |
| } |
| |
| static inline void gen_check_sp_alignment(DisasContext *s) |
| { |
| /* The AArch64 architecture mandates that (if enabled via PSTATE |
| * or SCTLR bits) there is a check that SP is 16-aligned on every |
| * SP-relative load or store (with an exception generated if it is not). |
| * In line with general QEMU practice regarding misaligned accesses, |
| * we omit these checks for the sake of guest program performance. |
| * This function is provided as a hook so we can more easily add these |
| * checks in future (possibly as a "favour catching guest program bugs |
| * over speed" user selectable option). |
| */ |
| } |
| |
| /* |
| * This provides a simple table based table lookup decoder. It is |
| * intended to be used when the relevant bits for decode are too |
| * awkwardly placed and switch/if based logic would be confusing and |
| * deeply nested. Since it's a linear search through the table, tables |
| * should be kept small. |
| * |
| * It returns the first handler where insn & mask == pattern, or |
| * NULL if there is no match. |
| * The table is terminated by an empty mask (i.e. 0) |
| */ |
| static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, |
| uint32_t insn) |
| { |
| const AArch64DecodeTable *tptr = table; |
| |
| while (tptr->mask) { |
| if ((insn & tptr->mask) == tptr->pattern) { |
| return tptr->disas_fn; |
| } |
| tptr++; |
| } |
| return NULL; |
| } |
| |
| /* |
| * The instruction disassembly implemented here matches |
| * the instruction encoding classifications in chapter C4 |
| * of the ARM Architecture Reference Manual (DDI0487B_a); |
| * classification names and decode diagrams here should generally |
| * match up with those in the manual. |
| */ |
| |
| /* Unconditional branch (immediate) |
| * 31 30 26 25 0 |
| * +----+-----------+-------------------------------------+ |
| * | op | 0 0 1 0 1 | imm26 | |
| * +----+-----------+-------------------------------------+ |
| */ |
| static void disas_uncond_b_imm(DisasContext *s, uint32_t insn) |
| { |
| uint64_t addr = s->pc_curr + sextract32(insn, 0, 26) * 4; |
| |
| if (insn & (1U << 31)) { |
| /* BL Branch with link */ |
| tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next); |
| } |
| |
| /* B Branch / BL Branch with link */ |
| reset_btype(s); |
| gen_goto_tb(s, 0, addr); |
| } |
| |
| /* Compare and branch (immediate) |
| * 31 30 25 24 23 5 4 0 |
| * +----+-------------+----+---------------------+--------+ |
| * | sf | 0 1 1 0 1 0 | op | imm19 | Rt | |
| * +----+-------------+----+---------------------+--------+ |
| */ |
| static void disas_comp_b_imm(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, op, rt; |
| uint64_t addr; |
| TCGLabel *label_match; |
| TCGv_i64 tcg_cmp; |
| |
| sf = extract32(insn, 31, 1); |
| op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */ |
| rt = extract32(insn, 0, 5); |
| addr = s->pc_curr + sextract32(insn, 5, 19) * 4; |
| |
| tcg_cmp = read_cpu_reg(s, rt, sf); |
| label_match = gen_new_label(); |
| |
| reset_btype(s); |
| tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, |
| tcg_cmp, 0, label_match); |
| |
| gen_goto_tb(s, 0, s->base.pc_next); |
| gen_set_label(label_match); |
| gen_goto_tb(s, 1, addr); |
| } |
| |
| /* Test and branch (immediate) |
| * 31 30 25 24 23 19 18 5 4 0 |
| * +----+-------------+----+-------+-------------+------+ |
| * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt | |
| * +----+-------------+----+-------+-------------+------+ |
| */ |
| static void disas_test_b_imm(DisasContext *s, uint32_t insn) |
| { |
| unsigned int bit_pos, op, rt; |
| uint64_t addr; |
| TCGLabel *label_match; |
| TCGv_i64 tcg_cmp; |
| |
| bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5); |
| op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */ |
| addr = s->pc_curr + sextract32(insn, 5, 14) * 4; |
| rt = extract32(insn, 0, 5); |
| |
| tcg_cmp = tcg_temp_new_i64(); |
| tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos)); |
| label_match = gen_new_label(); |
| |
| reset_btype(s); |
| tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, |
| tcg_cmp, 0, label_match); |
| tcg_temp_free_i64(tcg_cmp); |
| gen_goto_tb(s, 0, s->base.pc_next); |
| gen_set_label(label_match); |
| gen_goto_tb(s, 1, addr); |
| } |
| |
| /* Conditional branch (immediate) |
| * 31 25 24 23 5 4 3 0 |
| * +---------------+----+---------------------+----+------+ |
| * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond | |
| * +---------------+----+---------------------+----+------+ |
| */ |
| static void disas_cond_b_imm(DisasContext *s, uint32_t insn) |
| { |
| unsigned int cond; |
| uint64_t addr; |
| |
| if ((insn & (1 << 4)) || (insn & (1 << 24))) { |
| unallocated_encoding(s); |
| return; |
| } |
| addr = s->pc_curr + sextract32(insn, 5, 19) * 4; |
| cond = extract32(insn, 0, 4); |
| |
| reset_btype(s); |
| if (cond < 0x0e) { |
| /* genuinely conditional branches */ |
| TCGLabel *label_match = gen_new_label(); |
| arm_gen_test_cc(cond, label_match); |
| gen_goto_tb(s, 0, s->base.pc_next); |
| gen_set_label(label_match); |
| gen_goto_tb(s, 1, addr); |
| } else { |
| /* 0xe and 0xf are both "always" conditions */ |
| gen_goto_tb(s, 0, addr); |
| } |
| } |
| |
| /* HINT instruction group, including various allocated HINTs */ |
| static void handle_hint(DisasContext *s, uint32_t insn, |
| unsigned int op1, unsigned int op2, unsigned int crm) |
| { |
| unsigned int selector = crm << 3 | op2; |
| |
| if (op1 != 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (selector) { |
| case 0b00000: /* NOP */ |
| break; |
| case 0b00011: /* WFI */ |
| s->base.is_jmp = DISAS_WFI; |
| break; |
| case 0b00001: /* YIELD */ |
| /* When running in MTTCG we don't generate jumps to the yield and |
| * WFE helpers as it won't affect the scheduling of other vCPUs. |
| * If we wanted to more completely model WFE/SEV so we don't busy |
| * spin unnecessarily we would need to do something more involved. |
| */ |
| if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { |
| s->base.is_jmp = DISAS_YIELD; |
| } |
| break; |
| case 0b00010: /* WFE */ |
| if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { |
| s->base.is_jmp = DISAS_WFE; |
| } |
| break; |
| case 0b00100: /* SEV */ |
| case 0b00101: /* SEVL */ |
| /* we treat all as NOP at least for now */ |
| break; |
| case 0b00111: /* XPACLRI */ |
| if (s->pauth_active) { |
| gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); |
| } |
| break; |
| case 0b01000: /* PACIA1716 */ |
| if (s->pauth_active) { |
| gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); |
| } |
| break; |
| case 0b01010: /* PACIB1716 */ |
| if (s->pauth_active) { |
| gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); |
| } |
| break; |
| case 0b01100: /* AUTIA1716 */ |
| if (s->pauth_active) { |
| gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); |
| } |
| break; |
| case 0b01110: /* AUTIB1716 */ |
| if (s->pauth_active) { |
| gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); |
| } |
| break; |
| case 0b11000: /* PACIAZ */ |
| if (s->pauth_active) { |
| gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], |
| new_tmp_a64_zero(s)); |
| } |
| break; |
| case 0b11001: /* PACIASP */ |
| if (s->pauth_active) { |
| gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); |
| } |
| break; |
| case 0b11010: /* PACIBZ */ |
| if (s->pauth_active) { |
| gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], |
| new_tmp_a64_zero(s)); |
| } |
| break; |
| case 0b11011: /* PACIBSP */ |
| if (s->pauth_active) { |
| gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); |
| } |
| break; |
| case 0b11100: /* AUTIAZ */ |
| if (s->pauth_active) { |
| gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], |
| new_tmp_a64_zero(s)); |
| } |
| break; |
| case 0b11101: /* AUTIASP */ |
| if (s->pauth_active) { |
| gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); |
| } |
| break; |
| case 0b11110: /* AUTIBZ */ |
| if (s->pauth_active) { |
| gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], |
| new_tmp_a64_zero(s)); |
| } |
| break; |
| case 0b11111: /* AUTIBSP */ |
| if (s->pauth_active) { |
| gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); |
| } |
| break; |
| default: |
| /* default specified as NOP equivalent */ |
| break; |
| } |
| } |
| |
| static void gen_clrex(DisasContext *s, uint32_t insn) |
| { |
| tcg_gen_movi_i64(cpu_exclusive_addr, -1); |
| } |
| |
| /* CLREX, DSB, DMB, ISB */ |
| static void handle_sync(DisasContext *s, uint32_t insn, |
| unsigned int op1, unsigned int op2, unsigned int crm) |
| { |
| TCGBar bar; |
| |
| if (op1 != 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (op2) { |
| case 2: /* CLREX */ |
| gen_clrex(s, insn); |
| return; |
| case 4: /* DSB */ |
| case 5: /* DMB */ |
| switch (crm & 3) { |
| case 1: /* MBReqTypes_Reads */ |
| bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; |
| break; |
| case 2: /* MBReqTypes_Writes */ |
| bar = TCG_BAR_SC | TCG_MO_ST_ST; |
| break; |
| default: /* MBReqTypes_All */ |
| bar = TCG_BAR_SC | TCG_MO_ALL; |
| break; |
| } |
| tcg_gen_mb(bar); |
| return; |
| case 6: /* ISB */ |
| /* We need to break the TB after this insn to execute |
| * a self-modified code correctly and also to take |
| * any pending interrupts immediately. |
| */ |
| reset_btype(s); |
| gen_goto_tb(s, 0, s->base.pc_next); |
| return; |
| |
| case 7: /* SB */ |
| if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { |
| goto do_unallocated; |
| } |
| /* |
| * TODO: There is no speculation barrier opcode for TCG; |
| * MB and end the TB instead. |
| */ |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); |
| gen_goto_tb(s, 0, s->base.pc_next); |
| return; |
| |
| default: |
| do_unallocated: |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| static void gen_xaflag(void) |
| { |
| TCGv_i32 z = tcg_temp_new_i32(); |
| |
| tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); |
| |
| /* |
| * (!C & !Z) << 31 |
| * (!(C | Z)) << 31 |
| * ~((C | Z) << 31) |
| * ~-(C | Z) |
| * (C | Z) - 1 |
| */ |
| tcg_gen_or_i32(cpu_NF, cpu_CF, z); |
| tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); |
| |
| /* !(Z & C) */ |
| tcg_gen_and_i32(cpu_ZF, z, cpu_CF); |
| tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); |
| |
| /* (!C & Z) << 31 -> -(Z & ~C) */ |
| tcg_gen_andc_i32(cpu_VF, z, cpu_CF); |
| tcg_gen_neg_i32(cpu_VF, cpu_VF); |
| |
| /* C | Z */ |
| tcg_gen_or_i32(cpu_CF, cpu_CF, z); |
| |
| tcg_temp_free_i32(z); |
| } |
| |
| static void gen_axflag(void) |
| { |
| tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ |
| tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ |
| |
| /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ |
| tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); |
| |
| tcg_gen_movi_i32(cpu_NF, 0); |
| tcg_gen_movi_i32(cpu_VF, 0); |
| } |
| |
| /* MSR (immediate) - move immediate to processor state field */ |
| static void handle_msr_i(DisasContext *s, uint32_t insn, |
| unsigned int op1, unsigned int op2, unsigned int crm) |
| { |
| TCGv_i32 t1; |
| int op = op1 << 3 | op2; |
| |
| /* End the TB by default, chaining is ok. */ |
| s->base.is_jmp = DISAS_TOO_MANY; |
| |
| switch (op) { |
| case 0x00: /* CFINV */ |
| if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { |
| goto do_unallocated; |
| } |
| tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); |
| s->base.is_jmp = DISAS_NEXT; |
| break; |
| |
| case 0x01: /* XAFlag */ |
| if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { |
| goto do_unallocated; |
| } |
| gen_xaflag(); |
| s->base.is_jmp = DISAS_NEXT; |
| break; |
| |
| case 0x02: /* AXFlag */ |
| if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { |
| goto do_unallocated; |
| } |
| gen_axflag(); |
| s->base.is_jmp = DISAS_NEXT; |
| break; |
| |
| case 0x03: /* UAO */ |
| if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { |
| goto do_unallocated; |
| } |
| if (crm & 1) { |
| set_pstate_bits(PSTATE_UAO); |
| } else { |
| clear_pstate_bits(PSTATE_UAO); |
| } |
| t1 = tcg_const_i32(s->current_el); |
| gen_helper_rebuild_hflags_a64(cpu_env, t1); |
| tcg_temp_free_i32(t1); |
| break; |
| |
| case 0x04: /* PAN */ |
| if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { |
| goto do_unallocated; |
| } |
| if (crm & 1) { |
| set_pstate_bits(PSTATE_PAN); |
| } else { |
| clear_pstate_bits(PSTATE_PAN); |
| } |
| t1 = tcg_const_i32(s->current_el); |
| gen_helper_rebuild_hflags_a64(cpu_env, t1); |
| tcg_temp_free_i32(t1); |
| break; |
| |
| case 0x05: /* SPSel */ |
| if (s->current_el == 0) { |
| goto do_unallocated; |
| } |
| t1 = tcg_const_i32(crm & PSTATE_SP); |
| gen_helper_msr_i_spsel(cpu_env, t1); |
| tcg_temp_free_i32(t1); |
| break; |
| |
| case 0x1e: /* DAIFSet */ |
| t1 = tcg_const_i32(crm); |
| gen_helper_msr_i_daifset(cpu_env, t1); |
| tcg_temp_free_i32(t1); |
| break; |
| |
| case 0x1f: /* DAIFClear */ |
| t1 = tcg_const_i32(crm); |
| gen_helper_msr_i_daifclear(cpu_env, t1); |
| tcg_temp_free_i32(t1); |
| /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ |
| s->base.is_jmp = DISAS_UPDATE; |
| break; |
| |
| default: |
| do_unallocated: |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| static void gen_get_nzcv(TCGv_i64 tcg_rt) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| TCGv_i32 nzcv = tcg_temp_new_i32(); |
| |
| /* build bit 31, N */ |
| tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); |
| /* build bit 30, Z */ |
| tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); |
| tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); |
| /* build bit 29, C */ |
| tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); |
| /* build bit 28, V */ |
| tcg_gen_shri_i32(tmp, cpu_VF, 31); |
| tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); |
| /* generate result */ |
| tcg_gen_extu_i32_i64(tcg_rt, nzcv); |
| |
| tcg_temp_free_i32(nzcv); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static void gen_set_nzcv(TCGv_i64 tcg_rt) |
| { |
| TCGv_i32 nzcv = tcg_temp_new_i32(); |
| |
| /* take NZCV from R[t] */ |
| tcg_gen_extrl_i64_i32(nzcv, tcg_rt); |
| |
| /* bit 31, N */ |
| tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); |
| /* bit 30, Z */ |
| tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); |
| tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); |
| /* bit 29, C */ |
| tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); |
| tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); |
| /* bit 28, V */ |
| tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); |
| tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); |
| tcg_temp_free_i32(nzcv); |
| } |
| |
| /* MRS - move from system register |
| * MSR (register) - move to system register |
| * SYS |
| * SYSL |
| * These are all essentially the same insn in 'read' and 'write' |
| * versions, with varying op0 fields. |
| */ |
| static void handle_sys(DisasContext *s, uint32_t insn, bool isread, |
| unsigned int op0, unsigned int op1, unsigned int op2, |
| unsigned int crn, unsigned int crm, unsigned int rt) |
| { |
| const ARMCPRegInfo *ri; |
| TCGv_i64 tcg_rt; |
| |
| ri = get_arm_cp_reginfo(s->cp_regs, |
| ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, |
| crn, crm, op0, op1, op2)); |
| |
| if (!ri) { |
| /* Unknown register; this might be a guest error or a QEMU |
| * unimplemented feature. |
| */ |
| qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " |
| "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", |
| isread ? "read" : "write", op0, op1, crn, crm, op2); |
| unallocated_encoding(s); |
| return; |
| } |
| |
| /* Check access permissions */ |
| if (!cp_access_ok(s->current_el, ri, isread)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (ri->accessfn) { |
| /* Emit code to perform further access permissions checks at |
| * runtime; this may result in an exception. |
| */ |
| TCGv_ptr tmpptr; |
| TCGv_i32 tcg_syn, tcg_isread; |
| uint32_t syndrome; |
| |
| gen_a64_set_pc_im(s->pc_curr); |
| tmpptr = tcg_const_ptr(ri); |
| syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); |
| tcg_syn = tcg_const_i32(syndrome); |
| tcg_isread = tcg_const_i32(isread); |
| gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread); |
| tcg_temp_free_ptr(tmpptr); |
| tcg_temp_free_i32(tcg_syn); |
| tcg_temp_free_i32(tcg_isread); |
| } else if (ri->type & ARM_CP_RAISES_EXC) { |
| /* |
| * The readfn or writefn might raise an exception; |
| * synchronize the CPU state in case it does. |
| */ |
| gen_a64_set_pc_im(s->pc_curr); |
| } |
| |
| /* Handle special cases first */ |
| switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) { |
| case ARM_CP_NOP: |
| return; |
| case ARM_CP_NZCV: |
| tcg_rt = cpu_reg(s, rt); |
| if (isread) { |
| gen_get_nzcv(tcg_rt); |
| } else { |
| gen_set_nzcv(tcg_rt); |
| } |
| return; |
| case ARM_CP_CURRENTEL: |
| /* Reads as current EL value from pstate, which is |
| * guaranteed to be constant by the tb flags. |
| */ |
| tcg_rt = cpu_reg(s, rt); |
| tcg_gen_movi_i64(tcg_rt, s->current_el << 2); |
| return; |
| case ARM_CP_DC_ZVA: |
| /* Writes clear the aligned block of memory which rt points into. */ |
| tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); |
| gen_helper_dc_zva(cpu_env, tcg_rt); |
| return; |
| default: |
| break; |
| } |
| if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) { |
| return; |
| } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { |
| return; |
| } |
| |
| if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { |
| gen_io_start(); |
| } |
| |
| tcg_rt = cpu_reg(s, rt); |
| |
| if (isread) { |
| if (ri->type & ARM_CP_CONST) { |
| tcg_gen_movi_i64(tcg_rt, ri->resetvalue); |
| } else if (ri->readfn) { |
| TCGv_ptr tmpptr; |
| tmpptr = tcg_const_ptr(ri); |
| gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr); |
| tcg_temp_free_ptr(tmpptr); |
| } else { |
| tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); |
| } |
| } else { |
| if (ri->type & ARM_CP_CONST) { |
| /* If not forbidden by access permissions, treat as WI */ |
| return; |
| } else if (ri->writefn) { |
| TCGv_ptr tmpptr; |
| tmpptr = tcg_const_ptr(ri); |
| gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt); |
| tcg_temp_free_ptr(tmpptr); |
| } else { |
| tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); |
| } |
| } |
| |
| if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { |
| /* I/O operations must end the TB here (whether read or write) */ |
| s->base.is_jmp = DISAS_UPDATE; |
| } |
| if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { |
| /* |
| * A write to any coprocessor regiser that ends a TB |
| * must rebuild the hflags for the next TB. |
| */ |
| TCGv_i32 tcg_el = tcg_const_i32(s->current_el); |
| gen_helper_rebuild_hflags_a64(cpu_env, tcg_el); |
| tcg_temp_free_i32(tcg_el); |
| /* |
| * We default to ending the TB on a coprocessor register write, |
| * but allow this to be suppressed by the register definition |
| * (usually only necessary to work around guest bugs). |
| */ |
| s->base.is_jmp = DISAS_UPDATE; |
| } |
| } |
| |
| /* System |
| * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 |
| * +---------------------+---+-----+-----+-------+-------+-----+------+ |
| * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | |
| * +---------------------+---+-----+-----+-------+-------+-----+------+ |
| */ |
| static void disas_system(DisasContext *s, uint32_t insn) |
| { |
| unsigned int l, op0, op1, crn, crm, op2, rt; |
| l = extract32(insn, 21, 1); |
| op0 = extract32(insn, 19, 2); |
| op1 = extract32(insn, 16, 3); |
| crn = extract32(insn, 12, 4); |
| crm = extract32(insn, 8, 4); |
| op2 = extract32(insn, 5, 3); |
| rt = extract32(insn, 0, 5); |
| |
| if (op0 == 0) { |
| if (l || rt != 31) { |
| unallocated_encoding(s); |
| return; |
| } |
| switch (crn) { |
| case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ |
| handle_hint(s, insn, op1, op2, crm); |
| break; |
| case 3: /* CLREX, DSB, DMB, ISB */ |
| handle_sync(s, insn, op1, op2, crm); |
| break; |
| case 4: /* MSR (immediate) */ |
| handle_msr_i(s, insn, op1, op2, crm); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| return; |
| } |
| handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); |
| } |
| |
| /* Exception generation |
| * |
| * 31 24 23 21 20 5 4 2 1 0 |
| * +-----------------+-----+------------------------+-----+----+ |
| * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | |
| * +-----------------------+------------------------+----------+ |
| */ |
| static void disas_exc(DisasContext *s, uint32_t insn) |
| { |
| int opc = extract32(insn, 21, 3); |
| int op2_ll = extract32(insn, 0, 5); |
| int imm16 = extract32(insn, 5, 16); |
| TCGv_i32 tmp; |
| |
| switch (opc) { |
| case 0: |
| /* For SVC, HVC and SMC we advance the single-step state |
| * machine before taking the exception. This is architecturally |
| * mandated, to ensure that single-stepping a system call |
| * instruction works properly. |
| */ |
| switch (op2_ll) { |
| case 1: /* SVC */ |
| gen_ss_advance(s); |
| gen_exception_insn(s, s->base.pc_next, EXCP_SWI, |
| syn_aa64_svc(imm16), default_exception_el(s)); |
| break; |
| case 2: /* HVC */ |
| if (s->current_el == 0) { |
| unallocated_encoding(s); |
| break; |
| } |
| /* The pre HVC helper handles cases when HVC gets trapped |
| * as an undefined insn by runtime configuration. |
| */ |
| gen_a64_set_pc_im(s->pc_curr); |
| gen_helper_pre_hvc(cpu_env); |
| gen_ss_advance(s); |
| gen_exception_insn(s, s->base.pc_next, EXCP_HVC, |
| syn_aa64_hvc(imm16), 2); |
| break; |
| case 3: /* SMC */ |
| if (s->current_el == 0) { |
| unallocated_encoding(s); |
| break; |
| } |
| gen_a64_set_pc_im(s->pc_curr); |
| tmp = tcg_const_i32(syn_aa64_smc(imm16)); |
| gen_helper_pre_smc(cpu_env, tmp); |
| tcg_temp_free_i32(tmp); |
| gen_ss_advance(s); |
| gen_exception_insn(s, s->base.pc_next, EXCP_SMC, |
| syn_aa64_smc(imm16), 3); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| break; |
| case 1: |
| if (op2_ll != 0) { |
| unallocated_encoding(s); |
| break; |
| } |
| /* BRK */ |
| gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); |
| break; |
| case 2: |
| if (op2_ll != 0) { |
| unallocated_encoding(s); |
| break; |
| } |
| /* HLT. This has two purposes. |
| * Architecturally, it is an external halting debug instruction. |
| * Since QEMU doesn't implement external debug, we treat this as |
| * it is required for halting debug disabled: it will UNDEF. |
| * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. |
| */ |
| if (semihosting_enabled() && imm16 == 0xf000) { |
| #ifndef CONFIG_USER_ONLY |
| /* In system mode, don't allow userspace access to semihosting, |
| * to provide some semblance of security (and for consistency |
| * with our 32-bit semihosting). |
| */ |
| if (s->current_el == 0) { |
| unsupported_encoding(s, insn); |
| break; |
| } |
| #endif |
| gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST); |
| } else { |
| unsupported_encoding(s, insn); |
| } |
| break; |
| case 5: |
| if (op2_ll < 1 || op2_ll > 3) { |
| unallocated_encoding(s); |
| break; |
| } |
| /* DCPS1, DCPS2, DCPS3 */ |
| unsupported_encoding(s, insn); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* Unconditional branch (register) |
| * 31 25 24 21 20 16 15 10 9 5 4 0 |
| * +---------------+-------+-------+-------+------+-------+ |
| * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 | |
| * +---------------+-------+-------+-------+------+-------+ |
| */ |
| static void disas_uncond_b_reg(DisasContext *s, uint32_t insn) |
| { |
| unsigned int opc, op2, op3, rn, op4; |
| unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */ |
| TCGv_i64 dst; |
| TCGv_i64 modifier; |
| |
| opc = extract32(insn, 21, 4); |
| op2 = extract32(insn, 16, 5); |
| op3 = extract32(insn, 10, 6); |
| rn = extract32(insn, 5, 5); |
| op4 = extract32(insn, 0, 5); |
| |
| if (op2 != 0x1f) { |
| goto do_unallocated; |
| } |
| |
| switch (opc) { |
| case 0: /* BR */ |
| case 1: /* BLR */ |
| case 2: /* RET */ |
| btype_mod = opc; |
| switch (op3) { |
| case 0: |
| /* BR, BLR, RET */ |
| if (op4 != 0) { |
| goto do_unallocated; |
| } |
| dst = cpu_reg(s, rn); |
| break; |
| |
| case 2: |
| case 3: |
| if (!dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| if (opc == 2) { |
| /* RETAA, RETAB */ |
| if (rn != 0x1f || op4 != 0x1f) { |
| goto do_unallocated; |
| } |
| rn = 30; |
| modifier = cpu_X[31]; |
| } else { |
| /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */ |
| if (op4 != 0x1f) { |
| goto do_unallocated; |
| } |
| modifier = new_tmp_a64_zero(s); |
| } |
| if (s->pauth_active) { |
| dst = new_tmp_a64(s); |
| if (op3 == 2) { |
| gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); |
| } else { |
| gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); |
| } |
| } else { |
| dst = cpu_reg(s, rn); |
| } |
| break; |
| |
| default: |
| goto do_unallocated; |
| } |
| gen_a64_set_pc(s, dst); |
| /* BLR also needs to load return address */ |
| if (opc == 1) { |
| tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next); |
| } |
| break; |
| |
| case 8: /* BRAA */ |
| case 9: /* BLRAA */ |
| if (!dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| if ((op3 & ~1) != 2) { |
| goto do_unallocated; |
| } |
| btype_mod = opc & 1; |
| if (s->pauth_active) { |
| dst = new_tmp_a64(s); |
| modifier = cpu_reg_sp(s, op4); |
| if (op3 == 2) { |
| gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); |
| } else { |
| gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); |
| } |
| } else { |
| dst = cpu_reg(s, rn); |
| } |
| gen_a64_set_pc(s, dst); |
| /* BLRAA also needs to load return address */ |
| if (opc == 9) { |
| tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next); |
| } |
| break; |
| |
| case 4: /* ERET */ |
| if (s->current_el == 0) { |
| goto do_unallocated; |
| } |
| switch (op3) { |
| case 0: /* ERET */ |
| if (op4 != 0) { |
| goto do_unallocated; |
| } |
| dst = tcg_temp_new_i64(); |
| tcg_gen_ld_i64(dst, cpu_env, |
| offsetof(CPUARMState, elr_el[s->current_el])); |
| break; |
| |
| case 2: /* ERETAA */ |
| case 3: /* ERETAB */ |
| if (!dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| if (rn != 0x1f || op4 != 0x1f) { |
| goto do_unallocated; |
| } |
| dst = tcg_temp_new_i64(); |
| tcg_gen_ld_i64(dst, cpu_env, |
| offsetof(CPUARMState, elr_el[s->current_el])); |
| if (s->pauth_active) { |
| modifier = cpu_X[31]; |
| if (op3 == 2) { |
| gen_helper_autia(dst, cpu_env, dst, modifier); |
| } else { |
| gen_helper_autib(dst, cpu_env, dst, modifier); |
| } |
| } |
| break; |
| |
| default: |
| goto do_unallocated; |
| } |
| if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { |
| gen_io_start(); |
| } |
| |
| gen_helper_exception_return(cpu_env, dst); |
| tcg_temp_free_i64(dst); |
| /* Must exit loop to check un-masked IRQs */ |
| s->base.is_jmp = DISAS_EXIT; |
| return; |
| |
| case 5: /* DRPS */ |
| if (op3 != 0 || op4 != 0 || rn != 0x1f) { |
| goto do_unallocated; |
| } else { |
| unsupported_encoding(s, insn); |
| } |
| return; |
| |
| default: |
| do_unallocated: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (btype_mod) { |
| case 0: /* BR */ |
| if (dc_isar_feature(aa64_bti, s)) { |
| /* BR to {x16,x17} or !guard -> 1, else 3. */ |
| set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); |
| } |
| break; |
| |
| case 1: /* BLR */ |
| if (dc_isar_feature(aa64_bti, s)) { |
| /* BLR sets BTYPE to 2, regardless of source guarded page. */ |
| set_btype(s, 2); |
| } |
| break; |
| |
| default: /* RET or none of the above. */ |
| /* BTYPE will be set to 0 by normal end-of-insn processing. */ |
| break; |
| } |
| |
| s->base.is_jmp = DISAS_JUMP; |
| } |
| |
| /* Branches, exception generating and system instructions */ |
| static void disas_b_exc_sys(DisasContext *s, uint32_t insn) |
| { |
| switch (extract32(insn, 25, 7)) { |
| case 0x0a: case 0x0b: |
| case 0x4a: case 0x4b: /* Unconditional branch (immediate) */ |
| disas_uncond_b_imm(s, insn); |
| break; |
| case 0x1a: case 0x5a: /* Compare & branch (immediate) */ |
| disas_comp_b_imm(s, insn); |
| break; |
| case 0x1b: case 0x5b: /* Test & branch (immediate) */ |
| disas_test_b_imm(s, insn); |
| break; |
| case 0x2a: /* Conditional branch (immediate) */ |
| disas_cond_b_imm(s, insn); |
| break; |
| case 0x6a: /* Exception generation / System */ |
| if (insn & (1 << 24)) { |
| if (extract32(insn, 22, 2) == 0) { |
| disas_system(s, insn); |
| } else { |
| unallocated_encoding(s); |
| } |
| } else { |
| disas_exc(s, insn); |
| } |
| break; |
| case 0x6b: /* Unconditional branch (register) */ |
| disas_uncond_b_reg(s, insn); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* |
| * Load/Store exclusive instructions are implemented by remembering |
| * the value/address loaded, and seeing if these are the same |
| * when the store is performed. This is not actually the architecturally |
| * mandated semantics, but it works for typical guest code sequences |
| * and avoids having to monitor regular stores. |
| * |
| * The store exclusive uses the atomic cmpxchg primitives to avoid |
| * races in multi-threaded linux-user and when MTTCG softmmu is |
| * enabled. |
| */ |
| static void gen_load_exclusive(DisasContext *s, int rt, int rt2, |
| TCGv_i64 addr, int size, bool is_pair) |
| { |
| int idx = get_mem_index(s); |
| MemOp memop = s->be_data; |
| |
| g_assert(size <= 3); |
| if (is_pair) { |
| g_assert(size >= 2); |
| if (size == 2) { |
| /* The pair must be single-copy atomic for the doubleword. */ |
| memop |= MO_64 | MO_ALIGN; |
| tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); |
| if (s->be_data == MO_LE) { |
| tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); |
| tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); |
| } else { |
| tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); |
| tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); |
| } |
| } else { |
| /* The pair must be single-copy atomic for *each* doubleword, not |
| the entire quadword, however it must be quadword aligned. */ |
| memop |= MO_64; |
| tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, |
| memop | MO_ALIGN_16); |
| |
| TCGv_i64 addr2 = tcg_temp_new_i64(); |
| tcg_gen_addi_i64(addr2, addr, 8); |
| tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop); |
| tcg_temp_free_i64(addr2); |
| |
| tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); |
| tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); |
| } |
| } else { |
| memop |= size | MO_ALIGN; |
| tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); |
| tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); |
| } |
| tcg_gen_mov_i64(cpu_exclusive_addr, addr); |
| } |
| |
| static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, |
| TCGv_i64 addr, int size, int is_pair) |
| { |
| /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] |
| * && (!is_pair || env->exclusive_high == [addr + datasize])) { |
| * [addr] = {Rt}; |
| * if (is_pair) { |
| * [addr + datasize] = {Rt2}; |
| * } |
| * {Rd} = 0; |
| * } else { |
| * {Rd} = 1; |
| * } |
| * env->exclusive_addr = -1; |
| */ |
| TCGLabel *fail_label = gen_new_label(); |
| TCGLabel *done_label = gen_new_label(); |
| TCGv_i64 tmp; |
| |
| tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); |
| |
| tmp = tcg_temp_new_i64(); |
| if (is_pair) { |
| if (size == 2) { |
| if (s->be_data == MO_LE) { |
| tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); |
| } else { |
| tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); |
| } |
| tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, |
| cpu_exclusive_val, tmp, |
| get_mem_index(s), |
| MO_64 | MO_ALIGN | s->be_data); |
| tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); |
| } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { |
| if (!HAVE_CMPXCHG128) { |
| gen_helper_exit_atomic(cpu_env); |
| s->base.is_jmp = DISAS_NORETURN; |
| } else if (s->be_data == MO_LE) { |
| gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env, |
| cpu_exclusive_addr, |
| cpu_reg(s, rt), |
| cpu_reg(s, rt2)); |
| } else { |
| gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env, |
| cpu_exclusive_addr, |
| cpu_reg(s, rt), |
| cpu_reg(s, rt2)); |
| } |
| } else if (s->be_data == MO_LE) { |
| gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr, |
| cpu_reg(s, rt), cpu_reg(s, rt2)); |
| } else { |
| gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr, |
| cpu_reg(s, rt), cpu_reg(s, rt2)); |
| } |
| } else { |
| tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, |
| cpu_reg(s, rt), get_mem_index(s), |
| size | MO_ALIGN | s->be_data); |
| tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); |
| } |
| tcg_gen_mov_i64(cpu_reg(s, rd), tmp); |
| tcg_temp_free_i64(tmp); |
| tcg_gen_br(done_label); |
| |
| gen_set_label(fail_label); |
| tcg_gen_movi_i64(cpu_reg(s, rd), 1); |
| gen_set_label(done_label); |
| tcg_gen_movi_i64(cpu_exclusive_addr, -1); |
| } |
| |
| static void gen_compare_and_swap(DisasContext *s, int rs, int rt, |
| int rn, int size) |
| { |
| TCGv_i64 tcg_rs = cpu_reg(s, rs); |
| TCGv_i64 tcg_rt = cpu_reg(s, rt); |
| int memidx = get_mem_index(s); |
| TCGv_i64 clean_addr; |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); |
| tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, |
| size | MO_ALIGN | s->be_data); |
| } |
| |
| static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, |
| int rn, int size) |
| { |
| TCGv_i64 s1 = cpu_reg(s, rs); |
| TCGv_i64 s2 = cpu_reg(s, rs + 1); |
| TCGv_i64 t1 = cpu_reg(s, rt); |
| TCGv_i64 t2 = cpu_reg(s, rt + 1); |
| TCGv_i64 clean_addr; |
| int memidx = get_mem_index(s); |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); |
| |
| if (size == 2) { |
| TCGv_i64 cmp = tcg_temp_new_i64(); |
| TCGv_i64 val = tcg_temp_new_i64(); |
| |
| if (s->be_data == MO_LE) { |
| tcg_gen_concat32_i64(val, t1, t2); |
| tcg_gen_concat32_i64(cmp, s1, s2); |
| } else { |
| tcg_gen_concat32_i64(val, t2, t1); |
| tcg_gen_concat32_i64(cmp, s2, s1); |
| } |
| |
| tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, |
| MO_64 | MO_ALIGN | s->be_data); |
| tcg_temp_free_i64(val); |
| |
| if (s->be_data == MO_LE) { |
| tcg_gen_extr32_i64(s1, s2, cmp); |
| } else { |
| tcg_gen_extr32_i64(s2, s1, cmp); |
| } |
| tcg_temp_free_i64(cmp); |
| } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { |
| if (HAVE_CMPXCHG128) { |
| TCGv_i32 tcg_rs = tcg_const_i32(rs); |
| if (s->be_data == MO_LE) { |
| gen_helper_casp_le_parallel(cpu_env, tcg_rs, |
| clean_addr, t1, t2); |
| } else { |
| gen_helper_casp_be_parallel(cpu_env, tcg_rs, |
| clean_addr, t1, t2); |
| } |
| tcg_temp_free_i32(tcg_rs); |
| } else { |
| gen_helper_exit_atomic(cpu_env); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| } else { |
| TCGv_i64 d1 = tcg_temp_new_i64(); |
| TCGv_i64 d2 = tcg_temp_new_i64(); |
| TCGv_i64 a2 = tcg_temp_new_i64(); |
| TCGv_i64 c1 = tcg_temp_new_i64(); |
| TCGv_i64 c2 = tcg_temp_new_i64(); |
| TCGv_i64 zero = tcg_const_i64(0); |
| |
| /* Load the two words, in memory order. */ |
| tcg_gen_qemu_ld_i64(d1, clean_addr, memidx, |
| MO_64 | MO_ALIGN_16 | s->be_data); |
| tcg_gen_addi_i64(a2, clean_addr, 8); |
| tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data); |
| |
| /* Compare the two words, also in memory order. */ |
| tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1); |
| tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2); |
| tcg_gen_and_i64(c2, c2, c1); |
| |
| /* If compare equal, write back new data, else write back old data. */ |
| tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1); |
| tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2); |
| tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data); |
| tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data); |
| tcg_temp_free_i64(a2); |
| tcg_temp_free_i64(c1); |
| tcg_temp_free_i64(c2); |
| tcg_temp_free_i64(zero); |
| |
| /* Write back the data from memory to Rs. */ |
| tcg_gen_mov_i64(s1, d1); |
| tcg_gen_mov_i64(s2, d2); |
| tcg_temp_free_i64(d1); |
| tcg_temp_free_i64(d2); |
| } |
| } |
| |
| /* Update the Sixty-Four bit (SF) registersize. This logic is derived |
| * from the ARMv8 specs for LDR (Shared decode for all encodings). |
| */ |
| static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) |
| { |
| int opc0 = extract32(opc, 0, 1); |
| int regsize; |
| |
| if (is_signed) { |
| regsize = opc0 ? 32 : 64; |
| } else { |
| regsize = size == 3 ? 64 : 32; |
| } |
| return regsize == 64; |
| } |
| |
| /* Load/store exclusive |
| * |
| * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 |
| * +-----+-------------+----+---+----+------+----+-------+------+------+ |
| * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | |
| * +-----+-------------+----+---+----+------+----+-------+------+------+ |
| * |
| * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit |
| * L: 0 -> store, 1 -> load |
| * o2: 0 -> exclusive, 1 -> not |
| * o1: 0 -> single register, 1 -> register pair |
| * o0: 1 -> load-acquire/store-release, 0 -> not |
| */ |
| static void disas_ldst_excl(DisasContext *s, uint32_t insn) |
| { |
| int rt = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int rt2 = extract32(insn, 10, 5); |
| int rs = extract32(insn, 16, 5); |
| int is_lasr = extract32(insn, 15, 1); |
| int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; |
| int size = extract32(insn, 30, 2); |
| TCGv_i64 clean_addr; |
| |
| switch (o2_L_o1_o0) { |
| case 0x0: /* STXR */ |
| case 0x1: /* STLXR */ |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| if (is_lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| } |
| clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); |
| gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false); |
| return; |
| |
| case 0x4: /* LDXR */ |
| case 0x5: /* LDAXR */ |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); |
| s->is_ldex = true; |
| gen_load_exclusive(s, rt, rt2, clean_addr, size, false); |
| if (is_lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| } |
| return; |
| |
| case 0x8: /* STLLR */ |
| if (!dc_isar_feature(aa64_lor, s)) { |
| break; |
| } |
| /* StoreLORelease is the same as Store-Release for QEMU. */ |
| /* fall through */ |
| case 0x9: /* STLR */ |
| /* Generate ISS for non-exclusive accesses including LASR. */ |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); |
| do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt, |
| disas_ldst_compute_iss_sf(size, false, 0), is_lasr); |
| return; |
| |
| case 0xc: /* LDLAR */ |
| if (!dc_isar_feature(aa64_lor, s)) { |
| break; |
| } |
| /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ |
| /* fall through */ |
| case 0xd: /* LDAR */ |
| /* Generate ISS for non-exclusive accesses including LASR. */ |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); |
| do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false, true, rt, |
| disas_ldst_compute_iss_sf(size, false, 0), is_lasr); |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| return; |
| |
| case 0x2: case 0x3: /* CASP / STXP */ |
| if (size & 2) { /* STXP / STLXP */ |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| if (is_lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| } |
| clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); |
| gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true); |
| return; |
| } |
| if (rt2 == 31 |
| && ((rt | rs) & 1) == 0 |
| && dc_isar_feature(aa64_atomics, s)) { |
| /* CASP / CASPL */ |
| gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); |
| return; |
| } |
| break; |
| |
| case 0x6: case 0x7: /* CASPA / LDXP */ |
| if (size & 2) { /* LDXP / LDAXP */ |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); |
| s->is_ldex = true; |
| gen_load_exclusive(s, rt, rt2, clean_addr, size, true); |
| if (is_lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| } |
| return; |
| } |
| if (rt2 == 31 |
| && ((rt | rs) & 1) == 0 |
| && dc_isar_feature(aa64_atomics, s)) { |
| /* CASPA / CASPAL */ |
| gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); |
| return; |
| } |
| break; |
| |
| case 0xa: /* CAS */ |
| case 0xb: /* CASL */ |
| case 0xe: /* CASA */ |
| case 0xf: /* CASAL */ |
| if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { |
| gen_compare_and_swap(s, rs, rt, rn, size); |
| return; |
| } |
| break; |
| } |
| unallocated_encoding(s); |
| } |
| |
| /* |
| * Load register (literal) |
| * |
| * 31 30 29 27 26 25 24 23 5 4 0 |
| * +-----+-------+---+-----+-------------------+-------+ |
| * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | |
| * +-----+-------+---+-----+-------------------+-------+ |
| * |
| * V: 1 -> vector (simd/fp) |
| * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, |
| * 10-> 32 bit signed, 11 -> prefetch |
| * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) |
| */ |
| static void disas_ld_lit(DisasContext *s, uint32_t insn) |
| { |
| int rt = extract32(insn, 0, 5); |
| int64_t imm = sextract32(insn, 5, 19) << 2; |
| bool is_vector = extract32(insn, 26, 1); |
| int opc = extract32(insn, 30, 2); |
| bool is_signed = false; |
| int size = 2; |
| TCGv_i64 tcg_rt, clean_addr; |
| |
| if (is_vector) { |
| if (opc == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| size = 2 + opc; |
| if (!fp_access_check(s)) { |
| return; |
| } |
| } else { |
| if (opc == 3) { |
| /* PRFM (literal) : prefetch */ |
| return; |
| } |
| size = 2 + extract32(opc, 0, 1); |
| is_signed = extract32(opc, 1, 1); |
| } |
| |
| tcg_rt = cpu_reg(s, rt); |
| |
| clean_addr = tcg_const_i64(s->pc_curr + imm); |
| if (is_vector) { |
| do_fp_ld(s, rt, clean_addr, size); |
| } else { |
| /* Only unsigned 32bit loads target 32bit registers. */ |
| bool iss_sf = opc != 0; |
| |
| do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, false, |
| true, rt, iss_sf, false); |
| } |
| tcg_temp_free_i64(clean_addr); |
| } |
| |
| /* |
| * LDNP (Load Pair - non-temporal hint) |
| * LDP (Load Pair - non vector) |
| * LDPSW (Load Pair Signed Word - non vector) |
| * STNP (Store Pair - non-temporal hint) |
| * STP (Store Pair - non vector) |
| * LDNP (Load Pair of SIMD&FP - non-temporal hint) |
| * LDP (Load Pair of SIMD&FP) |
| * STNP (Store Pair of SIMD&FP - non-temporal hint) |
| * STP (Store Pair of SIMD&FP) |
| * |
| * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 |
| * +-----+-------+---+---+-------+---+-----------------------------+ |
| * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | |
| * +-----+-------+---+---+-------+---+-------+-------+------+------+ |
| * |
| * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit |
| * LDPSW 01 |
| * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit |
| * V: 0 -> GPR, 1 -> Vector |
| * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, |
| * 10 -> signed offset, 11 -> pre-index |
| * L: 0 -> Store 1 -> Load |
| * |
| * Rt, Rt2 = GPR or SIMD registers to be stored |
| * Rn = general purpose register containing address |
| * imm7 = signed offset (multiple of 4 or 8 depending on size) |
| */ |
| static void disas_ldst_pair(DisasContext *s, uint32_t insn) |
| { |
| int rt = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int rt2 = extract32(insn, 10, 5); |
| uint64_t offset = sextract64(insn, 15, 7); |
| int index = extract32(insn, 23, 2); |
| bool is_vector = extract32(insn, 26, 1); |
| bool is_load = extract32(insn, 22, 1); |
| int opc = extract32(insn, 30, 2); |
| |
| bool is_signed = false; |
| bool postindex = false; |
| bool wback = false; |
| |
| TCGv_i64 clean_addr, dirty_addr; |
| |
| int size; |
| |
| if (opc == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (is_vector) { |
| size = 2 + opc; |
| } else { |
| size = 2 + extract32(opc, 1, 1); |
| is_signed = extract32(opc, 0, 1); |
| if (!is_load && is_signed) { |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| switch (index) { |
| case 1: /* post-index */ |
| postindex = true; |
| wback = true; |
| break; |
| case 0: |
| /* signed offset with "non-temporal" hint. Since we don't emulate |
| * caches we don't care about hints to the cache system about |
| * data access patterns, and handle this identically to plain |
| * signed offset. |
| */ |
| if (is_signed) { |
| /* There is no non-temporal-hint version of LDPSW */ |
| unallocated_encoding(s); |
| return; |
| } |
| postindex = false; |
| break; |
| case 2: /* signed offset, rn not updated */ |
| postindex = false; |
| break; |
| case 3: /* pre-index */ |
| postindex = false; |
| wback = true; |
| break; |
| } |
| |
| if (is_vector && !fp_access_check(s)) { |
| return; |
| } |
| |
| offset <<= size; |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| dirty_addr = read_cpu_reg_sp(s, rn, 1); |
| if (!postindex) { |
| tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); |
| } |
| clean_addr = clean_data_tbi(s, dirty_addr); |
| |
| if (is_vector) { |
| if (is_load) { |
| do_fp_ld(s, rt, clean_addr, size); |
| } else { |
| do_fp_st(s, rt, clean_addr, size); |
| } |
| tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); |
| if (is_load) { |
| do_fp_ld(s, rt2, clean_addr, size); |
| } else { |
| do_fp_st(s, rt2, clean_addr, size); |
| } |
| } else { |
| TCGv_i64 tcg_rt = cpu_reg(s, rt); |
| TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); |
| |
| if (is_load) { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| |
| /* Do not modify tcg_rt before recognizing any exception |
| * from the second load. |
| */ |
| do_gpr_ld(s, tmp, clean_addr, size, is_signed, false, |
| false, 0, false, false); |
| tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); |
| do_gpr_ld(s, tcg_rt2, clean_addr, size, is_signed, false, |
| false, 0, false, false); |
| |
| tcg_gen_mov_i64(tcg_rt, tmp); |
| tcg_temp_free_i64(tmp); |
| } else { |
| do_gpr_st(s, tcg_rt, clean_addr, size, |
| false, 0, false, false); |
| tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); |
| do_gpr_st(s, tcg_rt2, clean_addr, size, |
| false, 0, false, false); |
| } |
| } |
| |
| if (wback) { |
| if (postindex) { |
| tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); |
| } |
| tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); |
| } |
| } |
| |
| /* |
| * Load/store (immediate post-indexed) |
| * Load/store (immediate pre-indexed) |
| * Load/store (unscaled immediate) |
| * |
| * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 |
| * +----+-------+---+-----+-----+---+--------+-----+------+------+ |
| * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | |
| * +----+-------+---+-----+-----+---+--------+-----+------+------+ |
| * |
| * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) |
| 10 -> unprivileged |
| * V = 0 -> non-vector |
| * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit |
| * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 |
| */ |
| static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, |
| int opc, |
| int size, |
| int rt, |
| bool is_vector) |
| { |
| int rn = extract32(insn, 5, 5); |
| int imm9 = sextract32(insn, 12, 9); |
| int idx = extract32(insn, 10, 2); |
| bool is_signed = false; |
| bool is_store = false; |
| bool is_extended = false; |
| bool is_unpriv = (idx == 2); |
| bool iss_valid = !is_vector; |
| bool post_index; |
| bool writeback; |
| |
| TCGv_i64 clean_addr, dirty_addr; |
| |
| if (is_vector) { |
| size |= (opc & 2) << 1; |
| if (size > 4 || is_unpriv) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_store = ((opc & 1) == 0); |
| if (!fp_access_check(s)) { |
| return; |
| } |
| } else { |
| if (size == 3 && opc == 2) { |
| /* PRFM - prefetch */ |
| if (idx != 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| return; |
| } |
| if (opc == 3 && size > 1) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_store = (opc == 0); |
| is_signed = extract32(opc, 1, 1); |
| is_extended = (size < 3) && extract32(opc, 0, 1); |
| } |
| |
| switch (idx) { |
| case 0: |
| case 2: |
| post_index = false; |
| writeback = false; |
| break; |
| case 1: |
| post_index = true; |
| writeback = true; |
| break; |
| case 3: |
| post_index = false; |
| writeback = true; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| dirty_addr = read_cpu_reg_sp(s, rn, 1); |
| if (!post_index) { |
| tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); |
| } |
| clean_addr = clean_data_tbi(s, dirty_addr); |
| |
| if (is_vector) { |
| if (is_store) { |
| do_fp_st(s, rt, clean_addr, size); |
| } else { |
| do_fp_ld(s, rt, clean_addr, size); |
| } |
| } else { |
| TCGv_i64 tcg_rt = cpu_reg(s, rt); |
| int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); |
| bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); |
| |
| if (is_store) { |
| do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, |
| iss_valid, rt, iss_sf, false); |
| } else { |
| do_gpr_ld_memidx(s, tcg_rt, clean_addr, size, |
| is_signed, is_extended, memidx, |
| iss_valid, rt, iss_sf, false); |
| } |
| } |
| |
| if (writeback) { |
| TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); |
| if (post_index) { |
| tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); |
| } |
| tcg_gen_mov_i64(tcg_rn, dirty_addr); |
| } |
| } |
| |
| /* |
| * Load/store (register offset) |
| * |
| * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 |
| * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ |
| * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | |
| * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ |
| * |
| * For non-vector: |
| * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit |
| * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 |
| * For vector: |
| * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated |
| * opc<0>: 0 -> store, 1 -> load |
| * V: 1 -> vector/simd |
| * opt: extend encoding (see DecodeRegExtend) |
| * S: if S=1 then scale (essentially index by sizeof(size)) |
| * Rt: register to transfer into/out of |
| * Rn: address register or SP for base |
| * Rm: offset register or ZR for offset |
| */ |
| static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, |
| int opc, |
| int size, |
| int rt, |
| bool is_vector |