blob: c06db69cd3c15d9ce8607e96b096be4376868fcb [file] [log] [blame]
// qcms
// Copyright (C) 2009 Mozilla Foundation
// Copyright (C) 2015 Intel Corporation
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <emmintrin.h>
#include "qcmsint.h"
/* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequence */
#define FLOATSCALE (float)(PRECACHE_OUTPUT_SIZE - 1)
#define CLAMPMAXVAL 1.0f
static const ALIGN float floatScaleX4[4] =
{ FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE};
static const ALIGN float clampMaxValueX4[4] =
{ CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL};
void qcms_transform_data_rgb_out_lut_sse2(qcms_transform *transform,
unsigned char *src,
unsigned char *dest,
size_t length,
qcms_format_type output_format)
{
unsigned int i;
float (*mat)[4] = transform->matrix;
char input_back[32];
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
* because they don't work on stack variables. gcc 4.4 does do the right thing
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
/* share input and output locations to save having to keep the
* locations in separate registers */
uint32_t const * output = (uint32_t*)input;
/* deref *transform now to avoid it in loop */
const float *igtbl_r = transform->input_gamma_table_r;
const float *igtbl_g = transform->input_gamma_table_g;
const float *igtbl_b = transform->input_gamma_table_b;
/* deref *transform now to avoid it in loop */
const uint8_t *otdata_r = &transform->output_table_r->data[0];
const uint8_t *otdata_g = &transform->output_table_g->data[0];
const uint8_t *otdata_b = &transform->output_table_b->data[0];
/* input matrix values never change */
const __m128 mat0 = _mm_load_ps(mat[0]);
const __m128 mat1 = _mm_load_ps(mat[1]);
const __m128 mat2 = _mm_load_ps(mat[2]);
/* these values don't change, either */
const __m128 max = _mm_load_ps(clampMaxValueX4);
const __m128 min = _mm_setzero_ps();
const __m128 scale = _mm_load_ps(floatScaleX4);
/* working variables */
__m128 vec_r, vec_g, vec_b, result;
const int r_out = output_format.r;
const int b_out = output_format.b;
/* CYA */
if (!length)
return;
/* one pixel is handled outside of the loop */
length--;
/* setup for transforming 1st pixel */
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
src += 3;
/* transform all but final pixel */
for (i=0; i<length; i++)
{
/* position values from gamma tables */
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
/* gamma * matrix */
vec_r = _mm_mul_ps(vec_r, mat0);
vec_g = _mm_mul_ps(vec_g, mat1);
vec_b = _mm_mul_ps(vec_b, mat2);
/* crunch, crunch, crunch */
vec_r = _mm_add_ps(vec_g, _mm_add_ps(vec_r, vec_b));
vec_r = _mm_max_ps(min, vec_r);
vec_r = _mm_min_ps(max, vec_r);
result = _mm_mul_ps(vec_r, scale);
/* store calc'd output tables indices */
_mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result));
/* load for next loop while store completes */
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
src += 3;
/* use calc'd indices to output RGB values */
dest[r_out] = otdata_r[output[0]];
dest[1] = otdata_g[output[1]];
dest[b_out] = otdata_b[output[2]];
dest += 3;
}
/* handle final (maybe only) pixel */
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
vec_r = _mm_mul_ps(vec_r, mat0);
vec_g = _mm_mul_ps(vec_g, mat1);
vec_b = _mm_mul_ps(vec_b, mat2);
vec_r = _mm_add_ps(vec_g, _mm_add_ps(vec_r, vec_b));
vec_r = _mm_max_ps(min, vec_r);
vec_r = _mm_min_ps(max, vec_r);
result = _mm_mul_ps(vec_r, scale);
_mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result));
dest[r_out] = otdata_r[output[0]];
dest[1] = otdata_g[output[1]];
dest[b_out] = otdata_b[output[2]];
}
void qcms_transform_data_rgba_out_lut_sse2(qcms_transform *transform,
unsigned char *src,
unsigned char *dest,
size_t length,
qcms_format_type output_format)
{
unsigned int i;
float (*mat)[4] = transform->matrix;
char input_back[32];
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
* because they don't work on stack variables. gcc 4.4 does do the right thing
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
/* share input and output locations to save having to keep the
* locations in separate registers */
uint32_t const * output = (uint32_t*)input;
/* deref *transform now to avoid it in loop */
const float *igtbl_r = transform->input_gamma_table_r;
const float *igtbl_g = transform->input_gamma_table_g;
const float *igtbl_b = transform->input_gamma_table_b;
/* deref *transform now to avoid it in loop */
const uint8_t *otdata_r = &transform->output_table_r->data[0];
const uint8_t *otdata_g = &transform->output_table_g->data[0];
const uint8_t *otdata_b = &transform->output_table_b->data[0];
/* input matrix values never change */
const __m128 mat0 = _mm_load_ps(mat[0]);
const __m128 mat1 = _mm_load_ps(mat[1]);
const __m128 mat2 = _mm_load_ps(mat[2]);
/* these values don't change, either */
const __m128 max = _mm_load_ps(clampMaxValueX4);
const __m128 min = _mm_setzero_ps();
const __m128 scale = _mm_load_ps(floatScaleX4);
/* working variables */
__m128 vec_r, vec_g, vec_b, result;
const int r_out = output_format.r;
const int b_out = output_format.b;
unsigned char alpha;
/* CYA */
if (!length)
return;
/* one pixel is handled outside of the loop */
length--;
/* setup for transforming 1st pixel */
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
alpha = src[3];
src += 4;
/* transform all but final pixel */
for (i=0; i<length; i++)
{
/* position values from gamma tables */
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
/* gamma * matrix */
vec_r = _mm_mul_ps(vec_r, mat0);
vec_g = _mm_mul_ps(vec_g, mat1);
vec_b = _mm_mul_ps(vec_b, mat2);
/* store alpha for this pixel; load alpha for next */
dest[3] = alpha;
alpha = src[3];
/* crunch, crunch, crunch */
vec_r = _mm_add_ps(vec_g, _mm_add_ps(vec_r, vec_b));
vec_r = _mm_max_ps(min, vec_r);
vec_r = _mm_min_ps(max, vec_r);
result = _mm_mul_ps(vec_r, scale);
/* store calc'd output tables indices */
_mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result));
/* load gamma values for next loop while store completes */
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
src += 4;
/* use calc'd indices to output RGB values */
dest[r_out] = otdata_r[output[0]];
dest[1] = otdata_g[output[1]];
dest[b_out] = otdata_b[output[2]];
dest += 4;
}
/* handle final (maybe only) pixel */
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
vec_r = _mm_mul_ps(vec_r, mat0);
vec_g = _mm_mul_ps(vec_g, mat1);
vec_b = _mm_mul_ps(vec_b, mat2);
dest[3] = alpha;
vec_r = _mm_add_ps(vec_g, _mm_add_ps(vec_r, vec_b));
vec_r = _mm_max_ps(min, vec_r);
vec_r = _mm_min_ps(max, vec_r);
result = _mm_mul_ps(vec_r, scale);
_mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result));
dest[r_out] = otdata_r[output[0]];
dest[1] = otdata_g[output[1]];
dest[b_out] = otdata_b[output[2]];
}
static inline __m128i __mm_swizzle_epi32(__m128i value, int bgra)
{
return bgra ? _mm_shuffle_epi32(value, _MM_SHUFFLE(0, 1, 2, 3)) :
_mm_shuffle_epi32(value, _MM_SHUFFLE(0, 3, 2, 1)) ;
}
void qcms_transform_data_tetra_clut_rgba_sse2(qcms_transform *transform,
unsigned char *src,
unsigned char *dest,
size_t length,
qcms_format_type output_format)
{
const int bgra = output_format.r;
size_t i;
const int xy_len_3 = 3 * 1;
const int x_len_3 = 3 * transform->grid_size;
const int len_3 = x_len_3 * transform->grid_size;
const __m128 __255 = _mm_set1_ps(255.0f);
const __m128 __one = _mm_set1_ps(1.0f);
const __m128 __000 = _mm_setzero_ps();
const float* r_table = transform->r_clut;
const float* g_table = transform->g_clut;
const float* b_table = transform->b_clut;
int i3, i2, i1, i0;
__m128 c3;
__m128 c2;
__m128 c1;
__m128 c0;
if (!(transform->transform_flags & TRANSFORM_FLAG_CLUT_CACHE))
qcms_transform_build_clut_cache(transform);
for (i = 0; i < length; ++i) {
unsigned char in_r = *src++;
unsigned char in_g = *src++;
unsigned char in_b = *src++;
// initialize the output result with the alpha channel only
__m128i result = _mm_setr_epi32(*src++, 0, 0, 0);
// get the input point r.xyz relative to the subcube origin
float rx = transform->r_cache[in_r];
float ry = transform->r_cache[in_g];
float rz = transform->r_cache[in_b];
// load and LUT scale the subcube maximum vertex
int xn = transform->ceil_cache[in_r] * len_3;
int yn = transform->ceil_cache[in_g] * x_len_3;
int zn = transform->ceil_cache[in_b] * xy_len_3;
// load and LUT scale the subcube origin vertex
int x0 = transform->floor_cache[in_r] * len_3;
int y0 = transform->floor_cache[in_g] * x_len_3;
int z0 = transform->floor_cache[in_b] * xy_len_3;
// tetrahedral interpolate the input color r.xyz
#define TETRA_LOOKUP_CLUT(i3, i2, i1, i0) \
c0 = _mm_set_ps(b_table[i0], g_table[i0], r_table[i0], 0.f), \
c1 = _mm_set_ps(b_table[i1], g_table[i1], r_table[i1], 0.f), \
c2 = _mm_set_ps(b_table[i2], g_table[i2], r_table[i2], 0.f), \
c3 = _mm_set_ps(b_table[i3], g_table[i3], r_table[i3], 0.f)
i0 = x0 + y0 + z0;
if (rx >= ry) {
if (ry >= rz) { // rx >= ry && ry >= rz
i3 = yn + (i1 = xn);
i1 += i0 - x0;
i2 = i3 + z0;
i3 += zn;
TETRA_LOOKUP_CLUT(i3, i2, i1, i0);
c3 = _mm_sub_ps(c3, c2);
c2 = _mm_sub_ps(c2, c1);
c1 = _mm_sub_ps(c1, c0);
} else if (rx >= rz) { // rx >= rz && rz >= ry
i3 = zn + (i1 = xn);
i1 += i0 - x0;
i2 = i3 + yn;
i3 += y0;
TETRA_LOOKUP_CLUT(i3, i2, i1, i0);
c2 = _mm_sub_ps(c2, c3);
c3 = _mm_sub_ps(c3, c1);
c1 = _mm_sub_ps(c1, c0);
} else { // rz > rx && rx >= ry
i2 = xn + (i3 = zn);
i3 += i0 - z0;
i1 = i2 + y0;
i2 += yn;
TETRA_LOOKUP_CLUT(i3, i2, i1, i0);
c2 = _mm_sub_ps(c2, c1);
c1 = _mm_sub_ps(c1, c3);
c3 = _mm_sub_ps(c3, c0);
}
} else {
if (rx >= rz) { // ry > rx && rx >= rz
i3 = xn + (i2 = yn);
i2 += i0 - y0;
i1 = i3 + z0;
i3 += zn;
TETRA_LOOKUP_CLUT(i3, i2, i1, i0);
c3 = _mm_sub_ps(c3, c1);
c1 = _mm_sub_ps(c1, c2);
c2 = _mm_sub_ps(c2, c0);
} else if (ry >= rz) { // ry >= rz && rz > rx
i3 = zn + (i2 = yn);
i2 += i0 - y0;
i1 = i3 + xn;
i3 += x0;
TETRA_LOOKUP_CLUT(i3, i2, i1, i0);
c1 = _mm_sub_ps(c1, c3);
c3 = _mm_sub_ps(c3, c2);
c2 = _mm_sub_ps(c2, c0);
} else { // rz > ry && ry > rx
i2 = yn + (i3 = zn);
i3 += i0 - z0;
i1 = i2 + xn;
i2 += x0;
TETRA_LOOKUP_CLUT(i3, i2, i1, i0);
c1 = _mm_sub_ps(c1, c2);
c2 = _mm_sub_ps(c2, c3);
c3 = _mm_sub_ps(c3, c0);
}
}
// output.xyz = column_matrix(c1, c2, c3) x r.xyz + c0.xyz
c0 = _mm_add_ps(c0, _mm_mul_ps(c1, _mm_set1_ps(rx)));
c0 = _mm_add_ps(c0, _mm_mul_ps(c2, _mm_set1_ps(ry)));
c0 = _mm_add_ps(c0, _mm_mul_ps(c3, _mm_set1_ps(rz)));
// clamp to [0.0..1.0], then scale by 255
c0 = _mm_max_ps(c0, __000);
c0 = _mm_min_ps(c0, __one);
c0 = _mm_mul_ps(c0, __255);
// int(c0) with float rounding, add alpha
result = _mm_add_epi32(result, _mm_cvtps_epi32(c0));
// swizzle and repack in result low bytes
result = __mm_swizzle_epi32(result, bgra);
result = _mm_packus_epi16(result, result);
result = _mm_packus_epi16(result, result);
// store into uint32_t* pixel destination
*(uint32_t *)dest = _mm_cvtsi128_si32(result);
dest += 4;
}
}