blob: 722481b1b28d883411ff5456b994aab0503d071c [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef GOOGLE_PROTOBUF_MAP_ENTRY_LITE_H__
#define GOOGLE_PROTOBUF_MAP_ENTRY_LITE_H__
#include <assert.h>
#include <string>
#include <google/protobuf/stubs/casts.h>
#include <google/protobuf/parse_context.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/arenastring.h>
#include <google/protobuf/generated_message_util.h>
#include <google/protobuf/map.h>
#include <google/protobuf/map_type_handler.h>
#include <google/protobuf/port.h>
#include <google/protobuf/wire_format_lite.h>
#include <google/protobuf/port_def.inc>
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
namespace internal {
template <typename Derived, typename Key, typename Value,
WireFormatLite::FieldType kKeyFieldType,
WireFormatLite::FieldType kValueFieldType>
class MapEntry;
template <typename Derived, typename Key, typename Value,
WireFormatLite::FieldType kKeyFieldType,
WireFormatLite::FieldType kValueFieldType>
class MapFieldLite;
} // namespace internal
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace internal {
// MoveHelper::Move is used to set *dest. It copies *src, or moves it (in
// the C++11 sense), or swaps it. *src is left in a sane state for
// subsequent destruction, but shouldn't be used for anything.
template <bool is_enum, bool is_message, bool is_stringlike, typename T>
struct MoveHelper { // primitives
static void Move(T* src, T* dest) { *dest = *src; }
};
template <bool is_message, bool is_stringlike, typename T>
struct MoveHelper<true, is_message, is_stringlike, T> { // enums
static void Move(T* src, T* dest) { *dest = *src; }
// T is an enum here, so allow conversions to and from int.
static void Move(T* src, int* dest) { *dest = static_cast<int>(*src); }
static void Move(int* src, T* dest) { *dest = static_cast<T>(*src); }
};
template <bool is_stringlike, typename T>
struct MoveHelper<false, true, is_stringlike, T> { // messages
static void Move(T* src, T* dest) { dest->Swap(src); }
};
template <typename T>
struct MoveHelper<false, false, true, T> { // strings and similar
static void Move(T* src, T* dest) {
*dest = std::move(*src);
}
};
// Functions for operating on a map entry. Does not contain any representation
// (this class is not intended to be instantiated).
template <typename Key, typename Value, WireFormatLite::FieldType kKeyFieldType,
WireFormatLite::FieldType kValueFieldType>
struct MapEntryFuncs {
typedef MapTypeHandler<kKeyFieldType, Key> KeyTypeHandler;
typedef MapTypeHandler<kValueFieldType, Value> ValueTypeHandler;
static const int kKeyFieldNumber = 1;
static const int kValueFieldNumber = 2;
static uint8* InternalSerialize(int field_number, const Key& key,
const Value& value, uint8* ptr,
io::EpsCopyOutputStream* stream) {
ptr = stream->EnsureSpace(ptr);
ptr = WireFormatLite::WriteTagToArray(
field_number, WireFormatLite::WIRETYPE_LENGTH_DELIMITED, ptr);
ptr = io::CodedOutputStream::WriteVarint32ToArray(GetCachedSize(key, value),
ptr);
ptr = KeyTypeHandler::Write(kKeyFieldNumber, key, ptr, stream);
return ValueTypeHandler::Write(kValueFieldNumber, value, ptr, stream);
}
static size_t ByteSizeLong(const Key& key, const Value& value) {
// Tags for key and value will both be one byte (field numbers 1 and 2).
size_t inner_length =
2 + KeyTypeHandler::ByteSize(key) + ValueTypeHandler::ByteSize(value);
return inner_length + io::CodedOutputStream::VarintSize32(
static_cast<uint32>(inner_length));
}
static int GetCachedSize(const Key& key, const Value& value) {
// Tags for key and value will both be one byte (field numbers 1 and 2).
return 2 + KeyTypeHandler::GetCachedSize(key) +
ValueTypeHandler::GetCachedSize(value);
}
};
// MapEntryImpl is used to implement parsing and serialization of map entries.
// It uses Curious Recursive Template Pattern (CRTP) to provide the type of
// the eventual code to the template code.
template <typename Derived, typename Base, typename Key, typename Value,
WireFormatLite::FieldType kKeyFieldType,
WireFormatLite::FieldType kValueFieldType>
class MapEntryImpl : public Base {
public:
typedef MapEntryFuncs<Key, Value, kKeyFieldType, kValueFieldType> Funcs;
protected:
// Provide utilities to parse/serialize key/value. Provide utilities to
// manipulate internal stored type.
typedef MapTypeHandler<kKeyFieldType, Key> KeyTypeHandler;
typedef MapTypeHandler<kValueFieldType, Value> ValueTypeHandler;
// Define internal memory layout. Strings and messages are stored as
// pointers, while other types are stored as values.
typedef typename KeyTypeHandler::TypeOnMemory KeyOnMemory;
typedef typename ValueTypeHandler::TypeOnMemory ValueOnMemory;
// Enum type cannot be used for MapTypeHandler::Read. Define a type
// which will replace Enum with int.
typedef typename KeyTypeHandler::MapEntryAccessorType KeyMapEntryAccessorType;
typedef
typename ValueTypeHandler::MapEntryAccessorType ValueMapEntryAccessorType;
// Constants for field number.
static const int kKeyFieldNumber = 1;
static const int kValueFieldNumber = 2;
// Constants for field tag.
static const uint8 kKeyTag =
GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kKeyFieldNumber, KeyTypeHandler::kWireType);
static const uint8 kValueTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
kValueFieldNumber, ValueTypeHandler::kWireType);
static const size_t kTagSize = 1;
public:
// Work-around for a compiler bug (see repeated_field.h).
typedef void MapEntryHasMergeTypeTrait;
typedef Derived EntryType;
typedef Key EntryKeyType;
typedef Value EntryValueType;
static const WireFormatLite::FieldType kEntryKeyFieldType = kKeyFieldType;
static const WireFormatLite::FieldType kEntryValueFieldType = kValueFieldType;
constexpr MapEntryImpl()
: key_(KeyTypeHandler::Constinit()),
value_(ValueTypeHandler::Constinit()),
_has_bits_{} {}
explicit MapEntryImpl(Arena* arena)
: Base(arena),
key_(KeyTypeHandler::Constinit()),
value_(ValueTypeHandler::Constinit()),
_has_bits_{} {}
~MapEntryImpl() {
if (Base::GetArenaForAllocation() != NULL) return;
KeyTypeHandler::DeleteNoArena(key_);
ValueTypeHandler::DeleteNoArena(value_);
}
// accessors ======================================================
virtual inline const KeyMapEntryAccessorType& key() const {
return KeyTypeHandler::GetExternalReference(key_);
}
virtual inline const ValueMapEntryAccessorType& value() const {
return ValueTypeHandler::DefaultIfNotInitialized(value_);
}
inline KeyMapEntryAccessorType* mutable_key() {
set_has_key();
return KeyTypeHandler::EnsureMutable(&key_, Base::GetArenaForAllocation());
}
inline ValueMapEntryAccessorType* mutable_value() {
set_has_value();
return ValueTypeHandler::EnsureMutable(&value_,
Base::GetArenaForAllocation());
}
// implements MessageLite =========================================
// MapEntryImpl is for implementation only and this function isn't called
// anywhere. Just provide a fake implementation here for MessageLite.
std::string GetTypeName() const override { return ""; }
void CheckTypeAndMergeFrom(const MessageLite& other) override {
MergeFromInternal(*::google::protobuf::internal::DownCast<const Derived*>(&other));
}
const char* _InternalParse(const char* ptr, ParseContext* ctx) final {
while (!ctx->Done(&ptr)) {
uint32 tag;
ptr = ReadTag(ptr, &tag);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
if (tag == kKeyTag) {
set_has_key();
KeyMapEntryAccessorType* key = mutable_key();
ptr = KeyTypeHandler::Read(ptr, ctx, key);
if (!Derived::ValidateKey(key)) return nullptr;
} else if (tag == kValueTag) {
set_has_value();
ValueMapEntryAccessorType* value = mutable_value();
ptr = ValueTypeHandler::Read(ptr, ctx, value);
if (!Derived::ValidateValue(value)) return nullptr;
} else {
if (tag == 0 || WireFormatLite::GetTagWireType(tag) ==
WireFormatLite::WIRETYPE_END_GROUP) {
ctx->SetLastTag(tag);
return ptr;
}
ptr = UnknownFieldParse(tag, static_cast<std::string*>(nullptr), ptr,
ctx);
}
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
}
return ptr;
}
size_t ByteSizeLong() const override {
size_t size = 0;
size += kTagSize + static_cast<size_t>(KeyTypeHandler::ByteSize(key()));
size += kTagSize + static_cast<size_t>(ValueTypeHandler::ByteSize(value()));
return size;
}
::google::protobuf::uint8* _InternalSerialize(::google::protobuf::uint8* ptr,
io::EpsCopyOutputStream* stream) const override {
ptr = KeyTypeHandler::Write(kKeyFieldNumber, key(), ptr, stream);
return ValueTypeHandler::Write(kValueFieldNumber, value(), ptr, stream);
}
// Don't override SerializeWithCachedSizesToArray. Use MessageLite's.
int GetCachedSize() const override {
int size = 0;
size += has_key() ? static_cast<int>(kTagSize) +
KeyTypeHandler::GetCachedSize(key())
: 0;
size += has_value() ? static_cast<int>(kTagSize) +
ValueTypeHandler::GetCachedSize(value())
: 0;
return size;
}
bool IsInitialized() const override {
return ValueTypeHandler::IsInitialized(value_);
}
Base* New() const override {
Derived* entry = new Derived;
return entry;
}
Base* New(Arena* arena) const override {
Derived* entry = Arena::CreateMessage<Derived>(arena);
return entry;
}
protected:
// We can't declare this function directly here as it would hide the other
// overload (const Message&).
void MergeFromInternal(const MapEntryImpl& from) {
if (from._has_bits_[0]) {
if (from.has_key()) {
KeyTypeHandler::EnsureMutable(&key_, Base::GetArenaForAllocation());
KeyTypeHandler::Merge(from.key(), &key_, Base::GetArenaForAllocation());
set_has_key();
}
if (from.has_value()) {
ValueTypeHandler::EnsureMutable(&value_, Base::GetArenaForAllocation());
ValueTypeHandler::Merge(from.value(), &value_,
Base::GetArenaForAllocation());
set_has_value();
}
}
}
public:
void Clear() override {
KeyTypeHandler::Clear(&key_, Base::GetArenaForAllocation());
ValueTypeHandler::Clear(&value_, Base::GetArenaForAllocation());
clear_has_key();
clear_has_value();
}
// Parsing using MergePartialFromCodedStream, above, is not as
// efficient as it could be. This helper class provides a speedier way.
template <typename MapField, typename Map>
class Parser {
public:
explicit Parser(MapField* mf) : mf_(mf), map_(mf->MutableMap()) {}
~Parser() {
if (entry_ != nullptr && entry_->GetArenaForAllocation() == nullptr)
delete entry_;
}
// This does what the typical MergePartialFromCodedStream() is expected to
// do, with the additional side-effect that if successful (i.e., if true is
// going to be its return value) it inserts the key-value pair into map_.
bool MergePartialFromCodedStream(io::CodedInputStream* input) {
// Look for the expected thing: a key and then a value. If it fails,
// invoke the enclosing class's MergePartialFromCodedStream, or return
// false if that would be pointless.
if (input->ExpectTag(kKeyTag)) {
if (!KeyTypeHandler::Read(input, &key_)) {
return false;
}
// Peek at the next byte to see if it is kValueTag. If not, bail out.
const void* data;
int size;
input->GetDirectBufferPointerInline(&data, &size);
// We could use memcmp here, but we don't bother. The tag is one byte.
static_assert(kTagSize == 1, "tag size must be 1");
if (size > 0 && *reinterpret_cast<const char*>(data) == kValueTag) {
typename Map::size_type map_size = map_->size();
value_ptr_ = &(*map_)[key_];
if (PROTOBUF_PREDICT_TRUE(map_size != map_->size())) {
// We created a new key-value pair. Fill in the value.
typedef
typename MapIf<ValueTypeHandler::kIsEnum, int*, Value*>::type T;
input->Skip(kTagSize); // Skip kValueTag.
if (!ValueTypeHandler::Read(input,
reinterpret_cast<T>(value_ptr_))) {
map_->erase(key_); // Failure! Undo insertion.
return false;
}
if (input->ExpectAtEnd()) return true;
return ReadBeyondKeyValuePair(input);
}
}
} else {
key_ = Key();
}
NewEntry();
*entry_->mutable_key() = key_;
const bool result = entry_->MergePartialFromCodedStream(input);
if (result) UseKeyAndValueFromEntry();
return result;
}
const char* _InternalParse(const char* ptr, ParseContext* ctx) {
if (PROTOBUF_PREDICT_TRUE(!ctx->Done(&ptr) && *ptr == kKeyTag)) {
ptr = KeyTypeHandler::Read(ptr + 1, ctx, &key_);
if (PROTOBUF_PREDICT_FALSE(!ptr || !Derived::ValidateKey(&key_))) {
return nullptr;
}
if (PROTOBUF_PREDICT_TRUE(!ctx->Done(&ptr) && *ptr == kValueTag)) {
typename Map::size_type map_size = map_->size();
value_ptr_ = &(*map_)[key_];
if (PROTOBUF_PREDICT_TRUE(map_size != map_->size())) {
using T =
typename MapIf<ValueTypeHandler::kIsEnum, int*, Value*>::type;
ptr = ValueTypeHandler::Read(ptr + 1, ctx,
reinterpret_cast<T>(value_ptr_));
if (PROTOBUF_PREDICT_FALSE(!ptr ||
!Derived::ValidateValue(value_ptr_))) {
map_->erase(key_); // Failure! Undo insertion.
return nullptr;
}
if (PROTOBUF_PREDICT_TRUE(ctx->Done(&ptr))) return ptr;
if (!ptr) return nullptr;
NewEntry();
ValueMover::Move(value_ptr_, entry_->mutable_value());
map_->erase(key_);
goto move_key;
}
} else {
if (!ptr) return nullptr;
}
NewEntry();
move_key:
KeyMover::Move(&key_, entry_->mutable_key());
} else {
if (!ptr) return nullptr;
NewEntry();
}
ptr = entry_->_InternalParse(ptr, ctx);
if (ptr) UseKeyAndValueFromEntry();
return ptr;
}
template <typename UnknownType>
const char* ParseWithEnumValidation(const char* ptr, ParseContext* ctx,
bool (*is_valid)(int), uint32 field_num,
InternalMetadata* metadata) {
auto entry = NewEntry();
ptr = entry->_InternalParse(ptr, ctx);
if (!ptr) return nullptr;
if (is_valid(entry->value())) {
UseKeyAndValueFromEntry();
} else {
WriteLengthDelimited(field_num, entry->SerializeAsString(),
metadata->mutable_unknown_fields<UnknownType>());
}
return ptr;
}
MapEntryImpl* NewEntry() { return entry_ = mf_->NewEntry(); }
const Key& key() const { return key_; }
const Value& value() const { return *value_ptr_; }
const Key& entry_key() const { return entry_->key(); }
const Value& entry_value() const { return entry_->value(); }
private:
void UseKeyAndValueFromEntry() {
// Update key_ in case we need it later (because key() is called).
// This is potentially inefficient, especially if the key is
// expensive to copy (e.g., a long string), but this is a cold
// path, so it's not a big deal.
key_ = entry_->key();
value_ptr_ = &(*map_)[key_];
ValueMover::Move(entry_->mutable_value(), value_ptr_);
}
// After reading a key and value successfully, and inserting that data
// into map_, we are not at the end of the input. This is unusual, but
// allowed by the spec.
bool ReadBeyondKeyValuePair(io::CodedInputStream* input) PROTOBUF_COLD {
NewEntry();
ValueMover::Move(value_ptr_, entry_->mutable_value());
map_->erase(key_);
KeyMover::Move(&key_, entry_->mutable_key());
const bool result = entry_->MergePartialFromCodedStream(input);
if (result) UseKeyAndValueFromEntry();
return result;
}
typedef MoveHelper<KeyTypeHandler::kIsEnum, KeyTypeHandler::kIsMessage,
KeyTypeHandler::kWireType ==
WireFormatLite::WIRETYPE_LENGTH_DELIMITED,
Key>
KeyMover;
typedef MoveHelper<ValueTypeHandler::kIsEnum, ValueTypeHandler::kIsMessage,
ValueTypeHandler::kWireType ==
WireFormatLite::WIRETYPE_LENGTH_DELIMITED,
Value>
ValueMover;
MapField* const mf_;
Map* const map_;
Key key_;
Value* value_ptr_;
MapEntryImpl* entry_ = nullptr;
};
protected:
void set_has_key() { _has_bits_[0] |= 0x00000001u; }
bool has_key() const { return (_has_bits_[0] & 0x00000001u) != 0; }
void clear_has_key() { _has_bits_[0] &= ~0x00000001u; }
void set_has_value() { _has_bits_[0] |= 0x00000002u; }
bool has_value() const { return (_has_bits_[0] & 0x00000002u) != 0; }
void clear_has_value() { _has_bits_[0] &= ~0x00000002u; }
public:
inline Arena* GetArena() const { return Base::GetArena(); }
public: // Needed for constructing tables
KeyOnMemory key_;
ValueOnMemory value_;
uint32 _has_bits_[1];
private:
friend class ::PROTOBUF_NAMESPACE_ID::Arena;
typedef void InternalArenaConstructable_;
typedef void DestructorSkippable_;
template <typename C, typename K, typename V, WireFormatLite::FieldType,
WireFormatLite::FieldType>
friend class internal::MapEntry;
template <typename C, typename K, typename V, WireFormatLite::FieldType,
WireFormatLite::FieldType>
friend class internal::MapFieldLite;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MapEntryImpl);
};
template <typename T, typename Key, typename Value,
WireFormatLite::FieldType kKeyFieldType,
WireFormatLite::FieldType kValueFieldType>
class MapEntryLite : public MapEntryImpl<T, MessageLite, Key, Value,
kKeyFieldType, kValueFieldType> {
public:
typedef MapEntryImpl<T, MessageLite, Key, Value, kKeyFieldType,
kValueFieldType>
SuperType;
constexpr MapEntryLite() {}
explicit MapEntryLite(Arena* arena) : SuperType(arena) {}
~MapEntryLite() { MessageLite::_internal_metadata_.Delete<std::string>(); }
void MergeFrom(const MapEntryLite& other) { MergeFromInternal(other); }
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MapEntryLite);
};
// The completely unprincipled and unwieldy use of template parameters in
// the map code necessitates wrappers to make the code a little bit more
// manageable.
template <typename Derived>
struct DeconstructMapEntry;
template <typename T, typename K, typename V, WireFormatLite::FieldType key,
WireFormatLite::FieldType value>
struct DeconstructMapEntry<MapEntryLite<T, K, V, key, value> > {
typedef K Key;
typedef V Value;
static const WireFormatLite::FieldType kKeyFieldType = key;
static const WireFormatLite::FieldType kValueFieldType = value;
};
// Helpers for deterministic serialization =============================
// This struct can be used with any generic sorting algorithm. If the Key
// type is relatively small and easy to copy then copying Keys into an
// array of SortItems can be beneficial. Then all the data the sorting
// algorithm needs to touch is in that one array.
template <typename Key, typename PtrToKeyValuePair>
struct SortItem {
SortItem() {}
explicit SortItem(PtrToKeyValuePair p) : first(p->first), second(p) {}
Key first;
PtrToKeyValuePair second;
};
template <typename T>
struct CompareByFirstField {
bool operator()(const T& a, const T& b) const { return a.first < b.first; }
};
template <typename T>
struct CompareByDerefFirst {
bool operator()(const T& a, const T& b) const { return a->first < b->first; }
};
// Helper for table driven serialization
template <WireFormatLite::FieldType FieldType>
struct FromHelper {
template <typename T>
static const T& From(const T& x) {
return x;
}
};
template <>
struct FromHelper<WireFormatLite::TYPE_STRING> {
static ArenaStringPtr From(const std::string& x) {
ArenaStringPtr res;
TaggedPtr<std::string> ptr;
ptr.Set(const_cast<std::string*>(&x));
res.UnsafeSetTaggedPointer(ptr);
return res;
}
};
template <>
struct FromHelper<WireFormatLite::TYPE_BYTES> {
static ArenaStringPtr From(const std::string& x) {
ArenaStringPtr res;
TaggedPtr<std::string> ptr;
ptr.Set(const_cast<std::string*>(&x));
res.UnsafeSetTaggedPointer(ptr);
return res;
}
};
template <>
struct FromHelper<WireFormatLite::TYPE_MESSAGE> {
template <typename T>
static T* From(const T& x) {
return const_cast<T*>(&x);
}
};
template <typename MapEntryType>
struct MapEntryHelper;
template <typename T, typename Key, typename Value,
WireFormatLite::FieldType kKeyFieldType,
WireFormatLite::FieldType kValueFieldType>
struct MapEntryHelper<
MapEntryLite<T, Key, Value, kKeyFieldType, kValueFieldType> > {
// Provide utilities to parse/serialize key/value. Provide utilities to
// manipulate internal stored type.
typedef MapTypeHandler<kKeyFieldType, Key> KeyTypeHandler;
typedef MapTypeHandler<kValueFieldType, Value> ValueTypeHandler;
// Define internal memory layout. Strings and messages are stored as
// pointers, while other types are stored as values.
typedef typename KeyTypeHandler::TypeOnMemory KeyOnMemory;
typedef typename ValueTypeHandler::TypeOnMemory ValueOnMemory;
explicit MapEntryHelper(const MapPair<Key, Value>& map_pair)
: _has_bits_(3),
_cached_size_(2 + KeyTypeHandler::GetCachedSize(map_pair.first) +
ValueTypeHandler::GetCachedSize(map_pair.second)),
key_(FromHelper<kKeyFieldType>::From(map_pair.first)),
value_(FromHelper<kValueFieldType>::From(map_pair.second)) {}
// Purposely not following the style guide naming. These are the names
// the proto compiler would generate given the map entry descriptor.
// The proto compiler generates the offsets in this struct as if this was
// a regular message. This way the table driven code barely notices it's
// dealing with a map field.
uint32 _has_bits_; // NOLINT
uint32 _cached_size_; // NOLINT
KeyOnMemory key_; // NOLINT
ValueOnMemory value_; // NOLINT
};
} // namespace internal
} // namespace protobuf
} // namespace google
#include <google/protobuf/port_undef.inc>
#endif // GOOGLE_PROTOBUF_MAP_ENTRY_LITE_H__