blob: 95767f664709037e08a8c13eea1e610bc091ec91 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2022 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This file defines the internal class SerialArena
#ifndef GOOGLE_PROTOBUF_SERIAL_ARENA_H__
#define GOOGLE_PROTOBUF_SERIAL_ARENA_H__
#include <algorithm>
#include <atomic>
#include <string>
#include <type_traits>
#include <typeinfo>
#include <utility>
#include "google/protobuf/stubs/common.h"
#include "absl/base/attributes.h"
#include "absl/log/absl_check.h"
#include "absl/numeric/bits.h"
#include "google/protobuf/arena_align.h"
#include "google/protobuf/arena_cleanup.h"
#include "google/protobuf/arena_config.h"
#include "google/protobuf/arenaz_sampler.h"
#include "google/protobuf/port.h"
#include "google/protobuf/string_block.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
namespace google {
namespace protobuf {
namespace internal {
// Arena blocks are variable length malloc-ed objects. The following structure
// describes the common header for all blocks.
struct ArenaBlock {
// For the sentry block with zero-size where ptr_, limit_, cleanup_nodes all
// point to "this".
constexpr ArenaBlock()
: next(nullptr), cleanup_nodes(this), size(0) {}
ArenaBlock(ArenaBlock* next, size_t size)
: next(next), cleanup_nodes(nullptr), size(size) {
ABSL_DCHECK_GT(size, sizeof(ArenaBlock));
}
char* Pointer(size_t n) {
ABSL_DCHECK_LE(n, size);
return reinterpret_cast<char*>(this) + n;
}
char* Limit() { return Pointer(size & static_cast<size_t>(-8)); }
bool IsSentry() const { return size == 0; }
ArenaBlock* const next;
void* cleanup_nodes;
const size_t size;
// data follows
};
enum class AllocationClient { kDefault, kArray };
class ThreadSafeArena;
// Tag type used to invoke the constructor of the first SerialArena.
struct FirstSerialArena {
explicit FirstSerialArena() = default;
};
// A simple arena allocator. Calls to allocate functions must be properly
// serialized by the caller, hence this class cannot be used as a general
// purpose allocator in a multi-threaded program. It serves as a building block
// for ThreadSafeArena, which provides a thread-safe arena allocator.
//
// This class manages
// 1) Arena bump allocation + owning memory blocks.
// 2) Maintaining a cleanup list.
// It delegates the actual memory allocation back to ThreadSafeArena, which
// contains the information on block growth policy and backing memory allocation
// used.
class PROTOBUF_EXPORT SerialArena {
public:
void CleanupList();
size_t FreeStringBlocks() {
// On the active block delete all strings skipping the unused instances.
size_t unused_bytes = string_block_unused_.load(std::memory_order_relaxed);
if (string_block_ != nullptr) {
return FreeStringBlocks(string_block_, unused_bytes);
}
return 0;
}
uint64_t SpaceAllocated() const {
return space_allocated_.load(std::memory_order_relaxed);
}
uint64_t SpaceUsed() const;
bool HasSpace(size_t n) const {
return n <= static_cast<size_t>(limit_ - ptr());
}
// See comments on `cached_blocks_` member for details.
PROTOBUF_ALWAYS_INLINE void* TryAllocateFromCachedBlock(size_t size) {
if (PROTOBUF_PREDICT_FALSE(size < 16)) return nullptr;
// We round up to the next larger block in case the memory doesn't match
// the pattern we are looking for.
const size_t index = absl::bit_width(size - 1) - 4;
if (index >= cached_block_length_) return nullptr;
auto& cached_head = cached_blocks_[index];
if (cached_head == nullptr) return nullptr;
void* ret = cached_head;
PROTOBUF_UNPOISON_MEMORY_REGION(ret, size);
cached_head = cached_head->next;
return ret;
}
// In kArray mode we look through cached blocks.
// We do not do this by default because most non-array allocations will not
// have the right size and will fail to find an appropriate cached block.
//
// TODO(sbenza): Evaluate if we should use cached blocks for message types of
// the right size. We can statically know if the allocation size can benefit
// from it.
template <AllocationClient alloc_client = AllocationClient::kDefault>
void* AllocateAligned(size_t n) {
ABSL_DCHECK(internal::ArenaAlignDefault::IsAligned(n));
ABSL_DCHECK_GE(limit_, ptr());
if (alloc_client == AllocationClient::kArray) {
if (void* res = TryAllocateFromCachedBlock(n)) {
return res;
}
}
if (PROTOBUF_PREDICT_FALSE(!HasSpace(n))) {
return AllocateAlignedFallback(n);
}
return AllocateFromExisting(n);
}
private:
static inline PROTOBUF_ALWAYS_INLINE constexpr size_t AlignUpTo(size_t n,
size_t a) {
// We are wasting space by over allocating align - 8 bytes. Compared to a
// dedicated function that takes current alignment in consideration. Such a
// scheme would only waste (align - 8)/2 bytes on average, but requires a
// dedicated function in the outline arena allocation functions. Possibly
// re-evaluate tradeoffs later.
return a <= 8 ? ArenaAlignDefault::Ceil(n) : ArenaAlignAs(a).Padded(n);
}
static inline PROTOBUF_ALWAYS_INLINE void* AlignTo(void* p, size_t a) {
return (a <= ArenaAlignDefault::align)
? ArenaAlignDefault::CeilDefaultAligned(p)
: ArenaAlignAs(a).CeilDefaultAligned(p);
}
void* AllocateFromExisting(size_t n) {
PROTOBUF_UNPOISON_MEMORY_REGION(ptr(), n);
void* ret = ptr();
set_ptr(static_cast<char*>(ret) + n);
return ret;
}
// See comments on `cached_blocks_` member for details.
void ReturnArrayMemory(void* p, size_t size) {
// We only need to check for 32-bit platforms.
// In 64-bit platforms the minimum allocation size from Repeated*Field will
// be 16 guaranteed.
if (sizeof(void*) < 8) {
if (PROTOBUF_PREDICT_FALSE(size < 16)) return;
} else {
PROTOBUF_ASSUME(size >= 16);
}
// We round down to the next smaller block in case the memory doesn't match
// the pattern we are looking for. eg, someone might have called Reserve()
// on the repeated field.
const size_t index = absl::bit_width(size) - 5;
if (PROTOBUF_PREDICT_FALSE(index >= cached_block_length_)) {
// We can't put this object on the freelist so make this object the
// freelist. It is guaranteed it is larger than the one we have, and
// large enough to hold another allocation of `size`.
CachedBlock** new_list = static_cast<CachedBlock**>(p);
size_t new_size = size / sizeof(CachedBlock*);
std::copy(cached_blocks_, cached_blocks_ + cached_block_length_,
new_list);
// We need to unpoison this memory before filling it in case it has been
// poisoned by another santizer client.
PROTOBUF_UNPOISON_MEMORY_REGION(
new_list + cached_block_length_,
(new_size - cached_block_length_) * sizeof(CachedBlock*));
std::fill(new_list + cached_block_length_, new_list + new_size, nullptr);
cached_blocks_ = new_list;
// Make the size fit in uint8_t. This is the power of two, so we don't
// need anything larger.
cached_block_length_ =
static_cast<uint8_t>(std::min(size_t{64}, new_size));
return;
}
auto& cached_head = cached_blocks_[index];
auto* new_node = static_cast<CachedBlock*>(p);
new_node->next = cached_head;
cached_head = new_node;
PROTOBUF_POISON_MEMORY_REGION(p, size);
}
public:
// Allocate space if the current region provides enough space.
bool MaybeAllocateAligned(size_t n, void** out) {
ABSL_DCHECK(internal::ArenaAlignDefault::IsAligned(n));
ABSL_DCHECK_GE(limit_, ptr());
if (PROTOBUF_PREDICT_FALSE(!HasSpace(n))) return false;
*out = AllocateFromExisting(n);
return true;
}
// If there is enough space in the current block, allocate space for one `T`
// object and register for destruction. The object has not been constructed
// and the memory returned is uninitialized.
template <typename T>
PROTOBUF_ALWAYS_INLINE void* MaybeAllocateWithCleanup() {
ABSL_DCHECK_GE(limit_, ptr());
static_assert(!std::is_trivially_destructible<T>::value,
"This function is only for non-trivial types.");
constexpr int aligned_size = ArenaAlignDefault::Ceil(sizeof(T));
constexpr auto destructor = cleanup::arena_destruct_object<T>;
size_t required = aligned_size + cleanup::Size(destructor);
if (PROTOBUF_PREDICT_FALSE(!HasSpace(required))) {
return nullptr;
}
void* ptr = AllocateFromExistingWithCleanupFallback(aligned_size,
alignof(T), destructor);
PROTOBUF_ASSUME(ptr != nullptr);
return ptr;
}
PROTOBUF_ALWAYS_INLINE
void* AllocateAlignedWithCleanup(size_t n, size_t align,
void (*destructor)(void*)) {
size_t required = AlignUpTo(n, align) + cleanup::Size(destructor);
if (PROTOBUF_PREDICT_FALSE(!HasSpace(required))) {
return AllocateAlignedWithCleanupFallback(n, align, destructor);
}
return AllocateFromExistingWithCleanupFallback(n, align, destructor);
}
PROTOBUF_ALWAYS_INLINE
void AddCleanup(void* elem, void (*destructor)(void*)) {
size_t required = cleanup::Size(destructor);
if (PROTOBUF_PREDICT_FALSE(!HasSpace(required))) {
return AddCleanupFallback(elem, destructor);
}
AddCleanupFromExisting(elem, destructor);
}
ABSL_ATTRIBUTE_RETURNS_NONNULL void* AllocateFromStringBlock();
private:
bool MaybeAllocateString(void*& p);
ABSL_ATTRIBUTE_RETURNS_NONNULL void* AllocateFromStringBlockFallback();
void* AllocateFromExistingWithCleanupFallback(size_t n, size_t align,
void (*destructor)(void*)) {
n = AlignUpTo(n, align);
PROTOBUF_UNPOISON_MEMORY_REGION(ptr(), n);
void* ret = ArenaAlignAs(align).CeilDefaultAligned(ptr());
set_ptr(ptr() + n);
ABSL_DCHECK_GE(limit_, ptr());
AddCleanupFromExisting(ret, destructor);
return ret;
}
PROTOBUF_ALWAYS_INLINE
void AddCleanupFromExisting(void* elem, void (*destructor)(void*)) {
cleanup::Tag tag = cleanup::Type(destructor);
size_t n = cleanup::Size(tag);
PROTOBUF_UNPOISON_MEMORY_REGION(limit_ - n, n);
limit_ -= n;
ABSL_DCHECK_GE(limit_, ptr());
cleanup::CreateNode(tag, limit_, elem, destructor);
}
private:
friend class ThreadSafeArena;
// Creates a new SerialArena inside mem using the remaining memory as for
// future allocations.
// The `parent` arena must outlive the serial arena, which is guaranteed
// because the parent manages the lifetime of the serial arenas.
static SerialArena* New(SizedPtr mem, ThreadSafeArena& parent);
// Free SerialArena returning the memory passed in to New
template <typename Deallocator>
SizedPtr Free(Deallocator deallocator);
static size_t FreeStringBlocks(StringBlock* string_block, size_t unused);
// Members are declared here to track sizeof(SerialArena) and hotness
// centrally. They are (roughly) laid out in descending order of hotness.
// Next pointer to allocate from. Always 8-byte aligned. Points inside
// head_ (and head_->pos will always be non-canonical). We keep these
// here to reduce indirection.
std::atomic<char*> ptr_{nullptr};
// Limiting address up to which memory can be allocated from the head block.
char* limit_ = nullptr;
// The active string block.
StringBlock* string_block_ = nullptr;
// The number of unused bytes in string_block_.
// We allocate from `effective_size()` down to 0 inside `string_block_`.
// `unused == 0` means that `string_block_` is exhausted. (or null).
std::atomic<size_t> string_block_unused_{0};
std::atomic<ArenaBlock*> head_{nullptr}; // Head of linked list of blocks.
std::atomic<size_t> space_used_{0}; // Necessary for metrics.
std::atomic<size_t> space_allocated_{0};
ThreadSafeArena& parent_;
// Repeated*Field and Arena play together to reduce memory consumption by
// reusing blocks. Currently, natural growth of the repeated field types makes
// them allocate blocks of size `8 + 2^N, N>=3`.
// When the repeated field grows returns the previous block and we put it in
// this free list.
// `cached_blocks_[i]` points to the free list for blocks of size `8+2^(i+3)`.
// The array of freelists is grown when needed in `ReturnArrayMemory()`.
struct CachedBlock {
// Simple linked list.
CachedBlock* next;
};
uint8_t cached_block_length_ = 0;
CachedBlock** cached_blocks_ = nullptr;
// Helper getters/setters to handle relaxed operations on atomic variables.
ArenaBlock* head() { return head_.load(std::memory_order_relaxed); }
const ArenaBlock* head() const {
return head_.load(std::memory_order_relaxed);
}
char* ptr() { return ptr_.load(std::memory_order_relaxed); }
const char* ptr() const { return ptr_.load(std::memory_order_relaxed); }
void set_ptr(char* ptr) { return ptr_.store(ptr, std::memory_order_relaxed); }
// Constructor is private as only New() should be used.
inline SerialArena(ArenaBlock* b, ThreadSafeArena& parent);
// Constructors to handle the first SerialArena.
inline explicit SerialArena(ThreadSafeArena& parent);
inline SerialArena(FirstSerialArena, ArenaBlock* b, ThreadSafeArena& parent);
void* AllocateAlignedFallback(size_t n);
void* AllocateAlignedWithCleanupFallback(size_t n, size_t align,
void (*destructor)(void*));
void AddCleanupFallback(void* elem, void (*destructor)(void*));
inline void AllocateNewBlock(size_t n);
inline void Init(ArenaBlock* b, size_t offset);
public:
static constexpr size_t kBlockHeaderSize =
ArenaAlignDefault::Ceil(sizeof(ArenaBlock));
};
inline PROTOBUF_ALWAYS_INLINE bool SerialArena::MaybeAllocateString(void*& p) {
// Check how many unused instances are in the current block.
size_t unused_bytes = string_block_unused_.load(std::memory_order_relaxed);
if (PROTOBUF_PREDICT_TRUE(unused_bytes != 0)) {
unused_bytes -= sizeof(std::string);
string_block_unused_.store(unused_bytes, std::memory_order_relaxed);
p = string_block_->AtOffset(unused_bytes);
return true;
}
return false;
}
template <>
inline PROTOBUF_ALWAYS_INLINE void*
SerialArena::MaybeAllocateWithCleanup<std::string>() {
void* p;
return MaybeAllocateString(p) ? p : nullptr;
}
ABSL_ATTRIBUTE_RETURNS_NONNULL inline PROTOBUF_ALWAYS_INLINE void*
SerialArena::AllocateFromStringBlock() {
void* p;
if (ABSL_PREDICT_TRUE(MaybeAllocateString(p))) return p;
return AllocateFromStringBlockFallback();
}
} // namespace internal
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_SERIAL_ARENA_H__