blob: e8f13440ac43308156271edbc4dd974c3a96c702 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Authors: wink@google.com (Wink Saville),
// kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <climits>
#include <cstdint>
#include <string>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/stringprintf.h>
#include <google/protobuf/parse_context.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl_lite.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/generated_message_table_driven.h>
#include <google/protobuf/generated_message_util.h>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/repeated_field.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/stl_util.h>
#include <google/protobuf/port_def.inc>
namespace google {
namespace protobuf {
std::string MessageLite::InitializationErrorString() const {
return "(cannot determine missing fields for lite message)";
}
std::string MessageLite::DebugString() const {
std::uintptr_t address = reinterpret_cast<std::uintptr_t>(this);
return StrCat("MessageLite at 0x", strings::Hex(address));
}
namespace {
// When serializing, we first compute the byte size, then serialize the message.
// If serialization produces a different number of bytes than expected, we
// call this function, which crashes. The problem could be due to a bug in the
// protobuf implementation but is more likely caused by concurrent modification
// of the message. This function attempts to distinguish between the two and
// provide a useful error message.
void ByteSizeConsistencyError(size_t byte_size_before_serialization,
size_t byte_size_after_serialization,
size_t bytes_produced_by_serialization,
const MessageLite& message) {
GOOGLE_CHECK_EQ(byte_size_before_serialization, byte_size_after_serialization)
<< message.GetTypeName()
<< " was modified concurrently during serialization.";
GOOGLE_CHECK_EQ(bytes_produced_by_serialization, byte_size_before_serialization)
<< "Byte size calculation and serialization were inconsistent. This "
"may indicate a bug in protocol buffers or it may be caused by "
"concurrent modification of "
<< message.GetTypeName() << ".";
GOOGLE_LOG(FATAL) << "This shouldn't be called if all the sizes are equal.";
}
std::string InitializationErrorMessage(const char* action,
const MessageLite& message) {
// Note: We want to avoid depending on strutil in the lite library, otherwise
// we'd use:
//
// return strings::Substitute(
// "Can't $0 message of type \"$1\" because it is missing required "
// "fields: $2",
// action, message.GetTypeName(),
// message.InitializationErrorString());
std::string result;
result += "Can't ";
result += action;
result += " message of type \"";
result += message.GetTypeName();
result += "\" because it is missing required fields: ";
result += message.InitializationErrorString();
return result;
}
inline StringPiece as_string_view(const void* data, int size) {
return StringPiece(static_cast<const char*>(data), size);
}
} // namespace
void MessageLite::LogInitializationErrorMessage() const {
GOOGLE_LOG(ERROR) << InitializationErrorMessage("parse", *this);
}
namespace internal {
#if GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER
template <bool aliasing>
bool MergePartialFromImpl(StringPiece input, MessageLite* msg) {
const char* ptr;
internal::ParseContext ctx(io::CodedInputStream::GetDefaultRecursionLimit(),
aliasing, &ptr, input);
ptr = msg->_InternalParse(ptr, &ctx);
// ctx has an explicit limit set (length of string_view).
return ptr && ctx.EndedAtLimit();
}
template <bool aliasing>
bool MergePartialFromImpl(io::ZeroCopyInputStream* input, MessageLite* msg) {
const char* ptr;
internal::ParseContext ctx(io::CodedInputStream::GetDefaultRecursionLimit(),
aliasing, &ptr, input);
ptr = msg->_InternalParse(ptr, &ctx);
// ctx has no explicit limit (hence we end on end of stream)
return ptr && ctx.EndedAtEndOfStream();
}
template <bool aliasing>
bool MergePartialFromImpl(BoundedZCIS input, MessageLite* msg) {
const char* ptr;
internal::ParseContext ctx(io::CodedInputStream::GetDefaultRecursionLimit(),
aliasing, &ptr, input.zcis, input.limit);
ptr = msg->_InternalParse(ptr, &ctx);
if (PROTOBUF_PREDICT_FALSE(!ptr)) return false;
ctx.BackUp(ptr);
return ctx.EndedAtLimit();
}
#else // !GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER
inline bool InlineMergePartialEntireStream(io::CodedInputStream* cis,
MessageLite* message,
bool aliasing) {
return message->MergePartialFromCodedStream(cis) &&
cis->ConsumedEntireMessage();
}
template <bool aliasing>
bool MergePartialFromImpl(StringPiece input, MessageLite* msg) {
io::CodedInputStream decoder(reinterpret_cast<const uint8*>(input.data()),
input.size());
return InlineMergePartialEntireStream(&decoder, msg, aliasing);
}
template <bool aliasing>
bool MergePartialFromImpl(BoundedZCIS input, MessageLite* msg) {
io::CodedInputStream decoder(input.zcis);
decoder.PushLimit(input.limit);
return InlineMergePartialEntireStream(&decoder, msg, aliasing) &&
decoder.BytesUntilLimit() == 0;
}
template <bool aliasing>
bool MergePartialFromImpl(io::ZeroCopyInputStream* input, MessageLite* msg) {
io::CodedInputStream decoder(input);
return InlineMergePartialEntireStream(&decoder, msg, aliasing);
}
#endif // !GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER
template bool MergePartialFromImpl<false>(StringPiece input,
MessageLite* msg);
template bool MergePartialFromImpl<true>(StringPiece input,
MessageLite* msg);
template bool MergePartialFromImpl<false>(io::ZeroCopyInputStream* input,
MessageLite* msg);
template bool MergePartialFromImpl<true>(io::ZeroCopyInputStream* input,
MessageLite* msg);
template bool MergePartialFromImpl<false>(BoundedZCIS input, MessageLite* msg);
template bool MergePartialFromImpl<true>(BoundedZCIS input, MessageLite* msg);
} // namespace internal
MessageLite* MessageLite::New(Arena* arena) const {
MessageLite* message = New();
if (arena != NULL) {
arena->Own(message);
}
return message;
}
#if GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER
class ZeroCopyCodedInputStream : public io::ZeroCopyInputStream {
public:
ZeroCopyCodedInputStream(io::CodedInputStream* cis) : cis_(cis) {}
bool Next(const void** data, int* size) final {
if (!cis_->GetDirectBufferPointer(data, size)) return false;
cis_->Skip(*size);
return true;
}
void BackUp(int count) final { cis_->Advance(-count); }
bool Skip(int count) final { return cis_->Skip(count); }
int64 ByteCount() const final { return 0; }
bool aliasing_enabled() { return cis_->aliasing_enabled_; }
private:
io::CodedInputStream* cis_;
};
bool MessageLite::MergePartialFromCodedStream(io::CodedInputStream* input) {
ZeroCopyCodedInputStream zcis(input);
const char* ptr;
internal::ParseContext ctx(input->RecursionBudget(), zcis.aliasing_enabled(),
&ptr, &zcis);
// MergePartialFromCodedStream allows terminating the wireformat by 0 or
// end-group tag. Leaving it up to the caller to verify correct ending by
// calling LastTagWas on input. We need to maintain this behavior.
ctx.TrackCorrectEnding();
ctx.data().pool = input->GetExtensionPool();
ctx.data().factory = input->GetExtensionFactory();
ptr = _InternalParse(ptr, &ctx);
if (PROTOBUF_PREDICT_FALSE(!ptr)) return false;
ctx.BackUp(ptr);
if (!ctx.EndedAtEndOfStream()) {
GOOGLE_DCHECK(ctx.LastTag() != 1); // We can't end on a pushed limit.
if (ctx.IsExceedingLimit(ptr)) return false;
input->SetLastTag(ctx.LastTag());
return true;
}
input->SetConsumed();
return true;
}
#endif // GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER
bool MessageLite::MergeFromCodedStream(io::CodedInputStream* input) {
return MergePartialFromCodedStream(input) && IsInitializedWithErrors();
}
bool MessageLite::ParseFromCodedStream(io::CodedInputStream* input) {
Clear();
return MergeFromCodedStream(input);
}
bool MessageLite::ParsePartialFromCodedStream(io::CodedInputStream* input) {
Clear();
return MergePartialFromCodedStream(input);
}
bool MessageLite::ParseFromZeroCopyStream(io::ZeroCopyInputStream* input) {
return ParseFrom<kParse>(input);
}
bool MessageLite::ParsePartialFromZeroCopyStream(
io::ZeroCopyInputStream* input) {
return ParseFrom<kParsePartial>(input);
}
bool MessageLite::MergePartialFromBoundedZeroCopyStream(
io::ZeroCopyInputStream* input, int size) {
return ParseFrom<kMergePartial>(internal::BoundedZCIS{input, size});
}
bool MessageLite::MergeFromBoundedZeroCopyStream(io::ZeroCopyInputStream* input,
int size) {
return ParseFrom<kMerge>(internal::BoundedZCIS{input, size});
}
bool MessageLite::ParseFromBoundedZeroCopyStream(io::ZeroCopyInputStream* input,
int size) {
return ParseFrom<kParse>(internal::BoundedZCIS{input, size});
}
bool MessageLite::ParsePartialFromBoundedZeroCopyStream(
io::ZeroCopyInputStream* input, int size) {
return ParseFrom<kParsePartial>(internal::BoundedZCIS{input, size});
}
bool MessageLite::ParseFromString(const std::string& data) {
return ParseFrom<kParse>(data);
}
bool MessageLite::ParsePartialFromString(const std::string& data) {
return ParseFrom<kParsePartial>(data);
}
bool MessageLite::ParseFromArray(const void* data, int size) {
return ParseFrom<kParse>(as_string_view(data, size));
}
bool MessageLite::ParsePartialFromArray(const void* data, int size) {
return ParseFrom<kParsePartial>(as_string_view(data, size));
}
bool MessageLite::MergeFromString(const std::string& data) {
return ParseFrom<kMerge>(data);
}
// ===================================================================
uint8* MessageLite::SerializeWithCachedSizesToArray(uint8* target) const {
const internal::SerializationTable* table =
static_cast<const internal::SerializationTable*>(InternalGetTable());
auto deterministic =
io::CodedOutputStream::IsDefaultSerializationDeterministic();
if (table) {
return internal::TableSerializeToArray(*this, table, deterministic, target);
} else {
if (deterministic) {
// We only optimize this when using optimize_for = SPEED. In other cases
// we just use the CodedOutputStream path.
int size = GetCachedSize();
io::ArrayOutputStream out(target, size);
io::CodedOutputStream coded_out(&out);
coded_out.SetSerializationDeterministic(true);
SerializeWithCachedSizes(&coded_out);
GOOGLE_CHECK(!coded_out.HadError());
return target + size;
} else {
return InternalSerializeWithCachedSizesToArray(target);
}
}
}
bool MessageLite::SerializeToCodedStream(io::CodedOutputStream* output) const {
GOOGLE_DCHECK(IsInitialized()) << InitializationErrorMessage("serialize", *this);
return SerializePartialToCodedStream(output);
}
bool MessageLite::SerializePartialToCodedStream(
io::CodedOutputStream* output) const {
const size_t size = ByteSizeLong(); // Force size to be cached.
if (size > INT_MAX) {
GOOGLE_LOG(ERROR) << GetTypeName()
<< " exceeded maximum protobuf size of 2GB: " << size;
return false;
}
if (!output->IsSerializationDeterministic()) {
uint8* buffer = output->GetDirectBufferForNBytesAndAdvance(size);
if (buffer != nullptr) {
uint8* end = InternalSerializeWithCachedSizesToArray(buffer);
if (end - buffer != size) {
ByteSizeConsistencyError(size, ByteSizeLong(), end - buffer, *this);
}
return true;
}
}
int original_byte_count = output->ByteCount();
SerializeWithCachedSizes(output);
if (output->HadError()) {
return false;
}
int final_byte_count = output->ByteCount();
if (final_byte_count - original_byte_count != size) {
ByteSizeConsistencyError(size, ByteSizeLong(),
final_byte_count - original_byte_count, *this);
}
return true;
}
bool MessageLite::SerializeToZeroCopyStream(
io::ZeroCopyOutputStream* output) const {
io::CodedOutputStream encoder(output);
return SerializeToCodedStream(&encoder);
}
bool MessageLite::SerializePartialToZeroCopyStream(
io::ZeroCopyOutputStream* output) const {
io::CodedOutputStream encoder(output);
return SerializePartialToCodedStream(&encoder);
}
bool MessageLite::AppendToString(std::string* output) const {
GOOGLE_DCHECK(IsInitialized()) << InitializationErrorMessage("serialize", *this);
return AppendPartialToString(output);
}
bool MessageLite::AppendPartialToString(std::string* output) const {
size_t old_size = output->size();
size_t byte_size = ByteSizeLong();
if (byte_size > INT_MAX) {
GOOGLE_LOG(ERROR) << GetTypeName()
<< " exceeded maximum protobuf size of 2GB: " << byte_size;
return false;
}
STLStringResizeUninitialized(output, old_size + byte_size);
uint8* start =
reinterpret_cast<uint8*>(io::mutable_string_data(output) + old_size);
uint8* end = SerializeWithCachedSizesToArray(start);
if (end - start != byte_size) {
ByteSizeConsistencyError(byte_size, ByteSizeLong(), end - start, *this);
}
return true;
}
bool MessageLite::SerializeToString(std::string* output) const {
output->clear();
return AppendToString(output);
}
bool MessageLite::SerializePartialToString(std::string* output) const {
output->clear();
return AppendPartialToString(output);
}
bool MessageLite::SerializeToArray(void* data, int size) const {
GOOGLE_DCHECK(IsInitialized()) << InitializationErrorMessage("serialize", *this);
return SerializePartialToArray(data, size);
}
bool MessageLite::SerializePartialToArray(void* data, int size) const {
const size_t byte_size = ByteSizeLong();
if (byte_size > INT_MAX) {
GOOGLE_LOG(ERROR) << GetTypeName()
<< " exceeded maximum protobuf size of 2GB: " << byte_size;
return false;
}
if (size < byte_size) return false;
uint8* start = reinterpret_cast<uint8*>(data);
uint8* end = SerializeWithCachedSizesToArray(start);
if (end - start != byte_size) {
ByteSizeConsistencyError(byte_size, ByteSizeLong(), end - start, *this);
}
return true;
}
std::string MessageLite::SerializeAsString() const {
// If the compiler implements the (Named) Return Value Optimization,
// the local variable 'output' will not actually reside on the stack
// of this function, but will be overlaid with the object that the
// caller supplied for the return value to be constructed in.
std::string output;
if (!AppendToString(&output)) output.clear();
return output;
}
std::string MessageLite::SerializePartialAsString() const {
std::string output;
if (!AppendPartialToString(&output)) output.clear();
return output;
}
void MessageLite::SerializeWithCachedSizes(
io::CodedOutputStream* output) const {
GOOGLE_DCHECK(InternalGetTable());
internal::TableSerialize(
*this,
static_cast<const internal::SerializationTable*>(InternalGetTable()),
output);
}
// The table driven code optimizes the case that the CodedOutputStream buffer
// is large enough to serialize into it directly.
// If the proto is optimized for speed, this method will be overridden by
// generated code for maximum speed. If the proto is optimized for size or
// is lite, then we need to specialize this to avoid infinite recursion.
uint8* MessageLite::InternalSerializeWithCachedSizesToArray(
uint8* target) const {
const internal::SerializationTable* table =
static_cast<const internal::SerializationTable*>(InternalGetTable());
if (table == NULL) {
// We only optimize this when using optimize_for = SPEED. In other cases
// we just use the CodedOutputStream path.
int size = GetCachedSize();
io::ArrayOutputStream out(target, size);
io::CodedOutputStream coded_out(&out);
SerializeWithCachedSizes(&coded_out);
GOOGLE_CHECK(!coded_out.HadError());
return target + size;
} else {
return internal::TableSerializeToArray(*this, table, false, target);
}
}
namespace internal {
template <>
MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
const MessageLite* prototype, Arena* arena) {
return prototype->New(arena);
}
template <>
void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
MessageLite* to) {
to->CheckTypeAndMergeFrom(from);
}
template <>
void GenericTypeHandler<std::string>::Merge(const std::string& from,
std::string* to) {
*to = from;
}
} // namespace internal
} // namespace protobuf
} // namespace google