blob: 97930f5f080f28c3846077a51c1731dd9b4088bb [file] [log] [blame]
import os
from typing import List, Set, Dict, Optional
from . import VulkanType, VulkanCompoundType
from .wrapperdefs import VulkanWrapperGenerator
class ApiLogDecoder(VulkanWrapperGenerator):
"""
This class generates decoding logic for the graphics API logs captured by
[GfxApiLogger](http://source/play-internal/battlestar/aosp/device/generic/vulkan-cereal/base/GfxApiLogger.h)
This allows developers to see a pretty-printed version of the API log data when using
print_gfx_logs.py
"""
# List of Vulkan APIs that we will generate decoding logic for
generated_apis = [
"vkAcquireImageANDROID",
"vkAllocateMemory",
"vkBeginCommandBufferAsyncGOOGLE",
"vkBindBufferMemory",
"vkBindImageMemory",
"vkCmdBeginRenderPass",
"vkCmdBindDescriptorSets",
"vkCmdBindIndexBuffer",
"vkCmdBindPipeline",
"vkCmdBindVertexBuffers",
"vkCmdClearAttachments",
"vkCmdClearColorImage",
"vkCmdCopyBufferToImage",
"vkCmdCopyImageToBuffer",
"vkCmdDraw",
"vkCmdDrawIndexed",
"vkCmdEndRenderPass",
"vkCmdPipelineBarrier",
"vkCmdSetScissor",
"vkCmdSetViewport",
"vkCollectDescriptorPoolIdsGOOGLE",
"vkCreateBufferWithRequirementsGOOGLE",
"vkCreateDescriptorPool",
"vkCreateDescriptorSetLayout",
"vkCreateFence",
"vkCreateFramebuffer",
"vkCreateGraphicsPipelines",
"vkCreateImageView",
"vkCreateImageWithRequirementsGOOGLE",
"vkCreatePipelineCache",
"vkCreateRenderPass",
"vkCreateSampler",
"vkCreateSemaphore",
"vkCreateShaderModule",
"vkDestroyBuffer",
"vkDestroyCommandPool",
"vkDestroyDescriptorPool",
"vkDestroyDescriptorSetLayout",
"vkDestroyDevice",
"vkDestroyFence",
"vkDestroyFramebuffer",
"vkDestroyImage",
"vkDestroyImageView",
"vkDestroyInstance",
"vkDestroyPipeline",
"vkDestroyPipelineCache",
"vkDestroyPipelineLayout",
"vkDestroyRenderPass",
"vkDestroySemaphore",
"vkDestroyShaderModule",
"vkEndCommandBufferAsyncGOOGLE",
"vkFreeCommandBuffers",
"vkFreeMemory",
"vkFreeMemorySyncGOOGLE",
"vkGetFenceStatus",
"vkGetMemoryHostAddressInfoGOOGLE",
"vkGetBlobGOOGLE",
"vkGetPhysicalDeviceFormatProperties",
"vkGetPhysicalDeviceProperties2KHR",
"vkGetPipelineCacheData",
"vkGetSwapchainGrallocUsageANDROID",
"vkQueueCommitDescriptorSetUpdatesGOOGLE",
"vkQueueFlushCommandsGOOGLE",
"vkQueueSignalReleaseImageANDROIDAsyncGOOGLE",
"vkQueueSubmitAsyncGOOGLE",
"vkQueueWaitIdle",
"vkResetFences",
"vkWaitForFences",
]
def __init__(self, module, typeInfo):
VulkanWrapperGenerator.__init__(self, module, typeInfo)
self.typeInfo = typeInfo
# Set of Vulkan structs that we need to write decoding logic for
self.structs: Set[str] = set()
# Maps enum group names to the list of enums in the group, for all enum groups in the spec
# E.g.: "VkResult": ["VK_SUCCESS", "VK_NOT_READY", "VK_TIMEOUT", etc...]
self.all_enums: Dict[str, List[str]] = {}
# Set of Vulkan enums that we need to write decoding logic for
self.needed_enums: Set[str] = {"VkStructureType"}
def onBegin(self):
self.module.append("""
#####################################################################################################
# Pretty-printer functions for Vulkan data structures
# THIS FILE IS AUTO-GENERATED - DO NOT EDIT
#
# To re-generate this file, run generate-vulkan-sources.sh
#####################################################################################################
""".lstrip())
def onGenGroup(self, groupinfo, groupName, alias=None):
"""Called for each enum group in the spec"""
for enum in groupinfo.elem.findall("enum"):
self.all_enums[groupName] = self.all_enums.get(groupName, []) + [enum.get('name')]
def onEnd(self):
for api_name in sorted(self.generated_apis):
self.process_api(api_name)
self.process_structs()
self.process_enums()
def process_api(self, api_name):
"""Main entry point to generate decoding logic for each Vulkan API"""
api = self.typeInfo.apis[api_name]
self.module.append('def OP_{}(printer, indent: int):\n'.format(api_name))
# Decode the sequence number. All commands have sequence numbers, except those handled
# by VkSubdecoder.cpp. The logic here is a bit of a hack since it's based on the command
# name. Ideally, we would detect whether a particular command is part of a subdecode block
# in the decoding script.
if not api_name.startswith("vkCmd") and api_name != "vkBeginCommandBufferAsyncGOOGLE":
self.module.append(' printer.write_int("seqno: ", 4, indent)\n')
for param in api.parameters:
# Add any structs that this API uses to the list of structs to write decoding logic for
if self.typeInfo.isCompoundType(param.typeName):
self.structs.add(param.typeName)
# Don't try to print the pData field of vkQueueFlushCommandsGOOGLE, those are the
# commands processed as part of the subdecode pass
if api.name == "vkQueueFlushCommandsGOOGLE" and param.paramName == "pData":
continue
# Write out decoding logic for that parameter
self.process_type(param)
# Finally, add a return statement. This is needed in case the API has no parameters.
self.module.append(' return\n\n')
def process_structs(self):
"""Writes decoding logic for all the structs that we use"""
# self.structs now contains all the structs used directly by the Vulkan APIs we use.
# Recursively expand this set to add all the structs used by these structs.
copy = self.structs.copy()
self.structs.clear()
for struct_name in copy:
self.expand_needed_structs(struct_name)
# Now we have the full list of structs that we need to write decoding logic for.
# Write a decoder for each of them
for struct_name in sorted(self.structs):
struct = self.typeInfo.structs[struct_name]
self.module.append('def struct_{}(printer, indent: int):\n'.format(struct_name))
for member in self.get_members(struct):
self.process_type(member)
self.module.append('\n')
def expand_needed_structs(self, struct_name: str):
"""
Recursively adds all the structs used by a given struct to the list of structs to process
"""
if struct_name in self.structs:
return
self.structs.add(struct_name)
struct = self.typeInfo.structs[struct_name]
for member in self.get_members(struct):
if self.typeInfo.isCompoundType(member.typeName):
self.expand_needed_structs(member.typeName)
def get_members(self, struct: VulkanCompoundType):
"""
Returns the members of a struct/union that we need to process.
For structs, returns the list of all members
For unions, returns a list with just the first member.
"""
return struct.members[0:1] if struct.isUnion else struct.members
def process_type(self, type: VulkanType):
"""
Writes decoding logic for a single Vulkan type. This could be the parameter in a Vulkan API,
or a struct member.
"""
if type.typeName == "VkStructureType":
self.module.append(
' printer.write_stype_and_pnext("{}", indent)\n'.format(
type.parent.structEnumExpr))
return
if type.isNextPointer():
return
if type.paramName == "commandBuffer":
if type.parent.name != "vkQueueFlushCommandsGOOGLE":
return
# Enums
if type.isEnum(self.typeInfo):
self.needed_enums.add(type.typeName)
self.module.append(
' printer.write_enum("{}", {}, indent)\n'.format(
type.paramName, type.typeName))
return
# Bitmasks
if type.isBitmask(self.typeInfo):
enum_type = self.typeInfo.bitmasks.get(type.typeName)
if enum_type:
self.needed_enums.add(enum_type)
self.module.append(
' printer.write_flags("{}", {}, indent)\n'.format(
type.paramName, enum_type))
return
# else, fall through and let the primitive type logic handle it
# Structs or unions
if self.typeInfo.isCompoundType(type.typeName):
self.module.append(
' printer.write_struct("{name}", struct_{type}, {optional}, {count}, indent)\n'
.format(name=type.paramName,
type=type.typeName,
optional=type.isOptionalPointer(),
count=self.get_length_expression(type)))
return
# Null-terminated strings
if type.isString():
self.module.append(' printer.write_string("{}", None, indent)\n'.format(
type.paramName))
return
# Arrays of primitive types
if type.staticArrExpr and type.primitiveEncodingSize and type.primitiveEncodingSize <= 8:
# Array sizes are specified either as a number, or as an enum value
array_size = int(type.staticArrExpr) if type.staticArrExpr.isdigit() \
else self.typeInfo.enumValues.get(type.staticArrExpr)
assert array_size is not None, type.staticArrExpr
if type.typeName == "char":
self.module.append(
' printer.write_string("{}", {}, indent)\n'.format(
type.paramName, array_size))
elif type.typeName == "float":
self.module.append(
' printer.write_float("{}", indent, count={})\n'
.format(type.paramName, array_size))
else:
self.module.append(
' printer.write_int("{name}", {int_size}, indent, signed={signed}, count={array_size})\n'
.format(name=type.paramName,
array_size=array_size,
int_size=type.primitiveEncodingSize,
signed=type.isSigned()))
return
# Pointers
if type.pointerIndirectionLevels > 0:
# Assume that all uint32* are always serialized directly rather than passed by pointers.
# This is probably not always true (e.g. out params) - fix this as needed.
size = 4 if type.primitiveEncodingSize == 4 else 8
self.module.append(
' {name} = printer.write_int("{name}", {size}, indent, optional={opt}, count={count}, big_endian={big_endian})\n'
.format(name=type.paramName,
size=size,
opt=type.isOptionalPointer(),
count=self.get_length_expression(type),
big_endian=self.using_big_endian(type)))
return
# Primitive types (ints, floats)
if type.isSimpleValueType(self.typeInfo) and type.primitiveEncodingSize:
if type.typeName == "float":
self.module.append(
' printer.write_float("{name}", indent)\n'.format(name=type.paramName))
else:
self.module.append(
' {name} = printer.write_int("{name}", {size}, indent, signed={signed}, big_endian={big_endian})\n'.format(
name=type.paramName,
size=type.primitiveEncodingSize,
signed=type.isSigned(),
big_endian=self.using_big_endian(type))
)
return
raise NotImplementedError(
"No decoding logic for {} {}".format(type.typeName, type.paramName))
def using_big_endian(self, type: VulkanType):
"""For some reason gfxstream serializes some types as big endian"""
return type.typeName == "size_t"
def get_length_expression(self, type: VulkanType) -> Optional[str]:
"""Returns the length expression for a given type"""
if type.lenExpr is None:
return None
if type.lenExpr.isalpha():
return type.lenExpr
# There are a couple of instances in the spec where we use a math expression to express the
# length (e.g. VkPipelineMultisampleStateCreateInfo). CodeGen().generalLengthAccess() has
# logic o parse these expressions correctly, but for now,we just use a simple lookup table.
known_expressions = {
r"latexmath:[\lceil{\mathit{rasterizationSamples} \over 32}\rceil]":
"int(rasterizationSamples / 32)",
r"latexmath:[\textrm{codeSize} \over 4]": "int(codeSize / 4)",
r"null-terminated": None
}
if type.lenExpr in known_expressions:
return known_expressions[type.lenExpr]
raise NotImplementedError("Unknown length expression: " + type.lenExpr)
def process_enums(self):
"""
For each Vulkan enum that we use, write out a python dictionary mapping the enum values back
to the enum name as a string
"""
for enum_name in sorted(self.needed_enums):
self.module.append('{} = {{\n'.format(enum_name))
for identifier in self.all_enums[enum_name]:
value = self.typeInfo.enumValues.get(identifier)
if value is not None and isinstance(value, int):
self.module.append(' {}: "{}",\n'.format(value, identifier))
self.module.append('}\n\n')