blob: 8a2d72ea3d8749d4ef312a259519659b3d573ff7 [file] [log] [blame]
/*
* Copyright © 2009 ARM Ltd, Movial Creative Technologies Oy
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of ARM Ltd not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. ARM Ltd makes no
* representations about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
* SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
* SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*
* Author: Ian Rickards (ian.rickards@arm.com)
* Author: Jonathan Morton (jonathan.morton@movial.com)
* Author: Markku Vire (markku.vire@movial.com)
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <arm_neon.h>
#include <string.h>
#include "pixman-private.h"
/* Deal with an intrinsic that is defined differently in GCC */
#if !defined(__ARMCC_VERSION) && !defined(__pld)
#define __pld(_x) __builtin_prefetch (_x)
#endif
static force_inline uint8x8x4_t
unpack0565 (uint16x8_t rgb)
{
uint16x8_t gb, b;
uint8x8x4_t res;
res.val[3] = vdup_n_u8 (0);
gb = vshrq_n_u16 (rgb, 5);
b = vshrq_n_u16 (rgb, 5 + 6);
res.val[0] = vmovn_u16 (rgb); /* get low 5 bits */
res.val[1] = vmovn_u16 (gb); /* get mid 6 bits */
res.val[2] = vmovn_u16 (b); /* get top 5 bits */
res.val[0] = vshl_n_u8 (res.val[0], 3); /* shift to top */
res.val[1] = vshl_n_u8 (res.val[1], 2); /* shift to top */
res.val[2] = vshl_n_u8 (res.val[2], 3); /* shift to top */
res.val[0] = vsri_n_u8 (res.val[0], res.val[0], 5);
res.val[1] = vsri_n_u8 (res.val[1], res.val[1], 6);
res.val[2] = vsri_n_u8 (res.val[2], res.val[2], 5);
return res;
}
#ifdef USE_GCC_INLINE_ASM
/* Some versions of gcc have problems with vshll_n_u8 intrinsic (Bug 23576) */
#define vshll_n_u8(a, n) ({ uint16x8_t r; \
asm ("vshll.u8 %q0, %P1, %2\n" : "=w" (r) : "w" (a), "i" (n)); r; })
#endif
static force_inline uint16x8_t
pack0565 (uint8x8x4_t s)
{
uint16x8_t rgb, val_g, val_r;
rgb = vshll_n_u8 (s.val[2], 8);
val_g = vshll_n_u8 (s.val[1], 8);
val_r = vshll_n_u8 (s.val[0], 8);
rgb = vsriq_n_u16 (rgb, val_g, 5);
rgb = vsriq_n_u16 (rgb, val_r, 5 + 6);
return rgb;
}
static force_inline uint8x8_t
neon2mul (uint8x8_t x,
uint8x8_t alpha)
{
uint16x8_t tmp, tmp2;
uint8x8_t res;
tmp = vmull_u8 (x, alpha);
tmp2 = vrshrq_n_u16 (tmp, 8);
res = vraddhn_u16 (tmp, tmp2);
return res;
}
static force_inline uint8x8x4_t
neon8mul (uint8x8x4_t x,
uint8x8_t alpha)
{
uint16x8x4_t tmp;
uint8x8x4_t res;
uint16x8_t qtmp1, qtmp2;
tmp.val[0] = vmull_u8 (x.val[0], alpha);
tmp.val[1] = vmull_u8 (x.val[1], alpha);
tmp.val[2] = vmull_u8 (x.val[2], alpha);
tmp.val[3] = vmull_u8 (x.val[3], alpha);
qtmp1 = vrshrq_n_u16 (tmp.val[0], 8);
qtmp2 = vrshrq_n_u16 (tmp.val[1], 8);
res.val[0] = vraddhn_u16 (tmp.val[0], qtmp1);
qtmp1 = vrshrq_n_u16 (tmp.val[2], 8);
res.val[1] = vraddhn_u16 (tmp.val[1], qtmp2);
qtmp2 = vrshrq_n_u16 (tmp.val[3], 8);
res.val[2] = vraddhn_u16 (tmp.val[2], qtmp1);
res.val[3] = vraddhn_u16 (tmp.val[3], qtmp2);
return res;
}
static force_inline uint8x8x4_t
neon8qadd (uint8x8x4_t x,
uint8x8x4_t y)
{
uint8x8x4_t res;
res.val[0] = vqadd_u8 (x.val[0], y.val[0]);
res.val[1] = vqadd_u8 (x.val[1], y.val[1]);
res.val[2] = vqadd_u8 (x.val[2], y.val[2]);
res.val[3] = vqadd_u8 (x.val[3], y.val[3]);
return res;
}
static void
neon_composite_add_8000_8000 (pixman_implementation_t * impl,
pixman_op_t op,
pixman_image_t * src_image,
pixman_image_t * mask_image,
pixman_image_t * dst_image,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
uint8_t *dst_line, *dst;
uint8_t *src_line, *src;
int dst_stride, src_stride;
uint16_t w;
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint8_t, src_stride, src_line, 1);
PIXMAN_IMAGE_GET_LINE (dst_image, dest_x, dest_y, uint8_t, dst_stride, dst_line, 1);
if (width >= 8)
{
/* Use overlapping 8-pixel method */
while (height--)
{
uint8_t *keep_dst = 0;
uint8x8_t sval, dval, temp;
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
#ifndef USE_GCC_INLINE_ASM
sval = vld1_u8 ((void *)src);
dval = vld1_u8 ((void *)dst);
keep_dst = dst;
temp = vqadd_u8 (dval, sval);
src += (w & 7);
dst += (w & 7);
w -= (w & 7);
while (w)
{
sval = vld1_u8 ((void *)src);
dval = vld1_u8 ((void *)dst);
vst1_u8 ((void *)keep_dst, temp);
keep_dst = dst;
temp = vqadd_u8 (dval, sval);
src += 8;
dst += 8;
w -= 8;
}
vst1_u8 ((void *)keep_dst, temp);
#else
asm volatile (
/* avoid using d8-d15 (q4-q7) aapcs callee-save registers */
"vld1.8 {d0}, [%[src]]\n\t"
"vld1.8 {d4}, [%[dst]]\n\t"
"mov %[keep_dst], %[dst]\n\t"
"and ip, %[w], #7\n\t"
"add %[src], %[src], ip\n\t"
"add %[dst], %[dst], ip\n\t"
"subs %[w], %[w], ip\n\t"
"b 9f\n\t"
/* LOOP */
"2:\n\t"
"vld1.8 {d0}, [%[src]]!\n\t"
"vld1.8 {d4}, [%[dst]]!\n\t"
"vst1.8 {d20}, [%[keep_dst]]\n\t"
"sub %[keep_dst], %[dst], #8\n\t"
"subs %[w], %[w], #8\n\t"
"9:\n\t"
"vqadd.u8 d20, d0, d4\n\t"
"bne 2b\n\t"
"1:\n\t"
"vst1.8 {d20}, [%[keep_dst]]\n\t"
: [w] "+r" (w), [src] "+r" (src), [dst] "+r" (dst), [keep_dst] "=r" (keep_dst)
:
: "ip", "cc", "memory", "d0", "d4",
"d20"
);
#endif
}
}
else
{
const uint8_t nil = 0;
const uint8x8_t vnil = vld1_dup_u8 (&nil);
while (height--)
{
uint8x8_t sval = vnil, dval = vnil;
uint8_t *dst4 = 0, *dst2 = 0;
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
if (w & 4)
{
sval = vreinterpret_u8_u32 (
vld1_lane_u32 ((void *)src, vreinterpret_u32_u8 (sval), 1));
dval = vreinterpret_u8_u32 (
vld1_lane_u32 ((void *)dst, vreinterpret_u32_u8 (dval), 1));
dst4 = dst;
src += 4;
dst += 4;
}
if (w & 2)
{
sval = vreinterpret_u8_u16 (
vld1_lane_u16 ((void *)src, vreinterpret_u16_u8 (sval), 1));
dval = vreinterpret_u8_u16 (
vld1_lane_u16 ((void *)dst, vreinterpret_u16_u8 (dval), 1));
dst2 = dst;
src += 2;
dst += 2;
}
if (w & 1)
{
sval = vld1_lane_u8 (src, sval, 1);
dval = vld1_lane_u8 (dst, dval, 1);
}
dval = vqadd_u8 (dval, sval);
if (w & 1)
vst1_lane_u8 (dst, dval, 1);
if (w & 2)
vst1_lane_u16 ((void *)dst2, vreinterpret_u16_u8 (dval), 1);
if (w & 4)
vst1_lane_u32 ((void *)dst4, vreinterpret_u32_u8 (dval), 1);
}
}
}
static void
neon_composite_over_8888_8888 (pixman_implementation_t * impl,
pixman_op_t op,
pixman_image_t * src_image,
pixman_image_t * mask_image,
pixman_image_t * dst_image,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
uint32_t *dst_line, *dst;
uint32_t *src_line, *src;
int dst_stride, src_stride;
uint32_t w;
PIXMAN_IMAGE_GET_LINE (dst_image, dest_x, dest_y, uint32_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint32_t, src_stride, src_line, 1);
if (width >= 8)
{
/* Use overlapping 8-pixel method */
while (height--)
{
uint32_t *keep_dst = 0;
uint8x8x4_t sval, dval, temp;
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
#ifndef USE_GCC_INLINE_ASM
sval = vld4_u8 ((void *)src);
dval = vld4_u8 ((void *)dst);
keep_dst = dst;
temp = neon8mul (dval, vmvn_u8 (sval.val[3]));
temp = neon8qadd (sval, temp);
src += (w & 7);
dst += (w & 7);
w -= (w & 7);
while (w)
{
sval = vld4_u8 ((void *)src);
dval = vld4_u8 ((void *)dst);
vst4_u8 ((void *)keep_dst, temp);
keep_dst = dst;
temp = neon8mul (dval, vmvn_u8 (sval.val[3]));
temp = neon8qadd (sval, temp);
src += 8;
dst += 8;
w -= 8;
}
vst4_u8 ((void *)keep_dst, temp);
#else
asm volatile (
/* avoid using d8-d15 (q4-q7) aapcs callee-save registers */
"vld4.8 {d0-d3}, [%[src]]\n\t"
"vld4.8 {d4-d7}, [%[dst]]\n\t"
"mov %[keep_dst], %[dst]\n\t"
"and ip, %[w], #7\n\t"
"add %[src], %[src], ip, LSL#2\n\t"
"add %[dst], %[dst], ip, LSL#2\n\t"
"subs %[w], %[w], ip\n\t"
"b 9f\n\t"
/* LOOP */
"2:\n\t"
"vld4.8 {d0-d3}, [%[src]]!\n\t"
"vld4.8 {d4-d7}, [%[dst]]!\n\t"
"vst4.8 {d20-d23}, [%[keep_dst]]\n\t"
"sub %[keep_dst], %[dst], #8*4\n\t"
"subs %[w], %[w], #8\n\t"
"9:\n\t"
"vmvn.8 d31, d3\n\t"
"vmull.u8 q10, d31, d4\n\t"
"vmull.u8 q11, d31, d5\n\t"
"vmull.u8 q12, d31, d6\n\t"
"vmull.u8 q13, d31, d7\n\t"
"vrshr.u16 q8, q10, #8\n\t"
"vrshr.u16 q9, q11, #8\n\t"
"vraddhn.u16 d20, q10, q8\n\t"
"vraddhn.u16 d21, q11, q9\n\t"
"vrshr.u16 q8, q12, #8\n\t"
"vrshr.u16 q9, q13, #8\n\t"
"vraddhn.u16 d22, q12, q8\n\t"
"vraddhn.u16 d23, q13, q9\n\t"
/* result in d20-d23 */
"vqadd.u8 d20, d0, d20\n\t"
"vqadd.u8 d21, d1, d21\n\t"
"vqadd.u8 d22, d2, d22\n\t"
"vqadd.u8 d23, d3, d23\n\t"
"bne 2b\n\t"
"1:\n\t"
"vst4.8 {d20-d23}, [%[keep_dst]]\n\t"
: [w] "+r" (w), [src] "+r" (src), [dst] "+r" (dst), [keep_dst] "=r" (keep_dst)
:
: "ip", "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23"
);
#endif
}
}
else
{
uint8x8_t alpha_selector = vreinterpret_u8_u64 (
vcreate_u64 (0x0707070703030303ULL));
/* Handle width < 8 */
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
while (w >= 2)
{
uint8x8_t sval, dval;
/* two 32-bit pixels packed into D-reg; ad-hoc vectorization */
sval = vreinterpret_u8_u32 (vld1_u32 ((void *)src));
dval = vreinterpret_u8_u32 (vld1_u32 ((void *)dst));
dval = neon2mul (dval, vtbl1_u8 (vmvn_u8 (sval), alpha_selector));
vst1_u8 ((void *)dst, vqadd_u8 (sval, dval));
src += 2;
dst += 2;
w -= 2;
}
if (w)
{
uint8x8_t sval, dval;
/* single 32-bit pixel in lane 0 */
sval = vreinterpret_u8_u32 (vld1_dup_u32 ((void *)src)); /* only interested in lane 0 */
dval = vreinterpret_u8_u32 (vld1_dup_u32 ((void *)dst)); /* only interested in lane 0 */
dval = neon2mul (dval, vtbl1_u8 (vmvn_u8 (sval), alpha_selector));
vst1_lane_u32 ((void *)dst, vreinterpret_u32_u8 (vqadd_u8 (sval, dval)), 0);
}
}
}
}
static void
neon_composite_over_8888_n_8888 (pixman_implementation_t * impl,
pixman_op_t op,
pixman_image_t * src_image,
pixman_image_t * mask_image,
pixman_image_t * dst_image,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
uint32_t *dst_line, *dst;
uint32_t *src_line, *src;
uint32_t mask;
int dst_stride, src_stride;
uint32_t w;
uint8x8_t mask_alpha;
PIXMAN_IMAGE_GET_LINE (dst_image, dest_x, dest_y, uint32_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint32_t, src_stride, src_line, 1);
mask = _pixman_image_get_solid (mask_image, dst_image->bits.format);
mask_alpha = vdup_n_u8 ((mask) >> 24);
if (width >= 8)
{
/* Use overlapping 8-pixel method */
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
uint32_t *keep_dst = 0;
#ifndef USE_GCC_INLINE_ASM
uint8x8x4_t sval, dval, temp;
sval = vld4_u8 ((void *)src);
dval = vld4_u8 ((void *)dst);
keep_dst = dst;
sval = neon8mul (sval, mask_alpha);
temp = neon8mul (dval, vmvn_u8 (sval.val[3]));
temp = neon8qadd (sval, temp);
src += (w & 7);
dst += (w & 7);
w -= (w & 7);
while (w)
{
sval = vld4_u8 ((void *)src);
dval = vld4_u8 ((void *)dst);
vst4_u8 ((void *)keep_dst, temp);
keep_dst = dst;
sval = neon8mul (sval, mask_alpha);
temp = neon8mul (dval, vmvn_u8 (sval.val[3]));
temp = neon8qadd (sval, temp);
src += 8;
dst += 8;
w -= 8;
}
vst4_u8 ((void *)keep_dst, temp);
#else
asm volatile (
/* avoid using d8-d15 (q4-q7) aapcs callee-save registers */
"vdup.32 d30, %[mask]\n\t"
"vdup.8 d30, d30[3]\n\t"
"vld4.8 {d0-d3}, [%[src]]\n\t"
"vld4.8 {d4-d7}, [%[dst]]\n\t"
"mov %[keep_dst], %[dst]\n\t"
"and ip, %[w], #7\n\t"
"add %[src], %[src], ip, LSL#2\n\t"
"add %[dst], %[dst], ip, LSL#2\n\t"
"subs %[w], %[w], ip\n\t"
"b 9f\n\t"
/* LOOP */
"2:\n\t"
"vld4.8 {d0-d3}, [%[src]]!\n\t"
"vld4.8 {d4-d7}, [%[dst]]!\n\t"
"vst4.8 {d20-d23}, [%[keep_dst]]\n\t"
"sub %[keep_dst], %[dst], #8*4\n\t"
"subs %[w], %[w], #8\n\t"
"9:\n\t"
"vmull.u8 q10, d30, d0\n\t"
"vmull.u8 q11, d30, d1\n\t"
"vmull.u8 q12, d30, d2\n\t"
"vmull.u8 q13, d30, d3\n\t"
"vrshr.u16 q8, q10, #8\n\t"
"vrshr.u16 q9, q11, #8\n\t"
"vraddhn.u16 d0, q10, q8\n\t"
"vraddhn.u16 d1, q11, q9\n\t"
"vrshr.u16 q9, q13, #8\n\t"
"vrshr.u16 q8, q12, #8\n\t"
"vraddhn.u16 d3, q13, q9\n\t"
"vraddhn.u16 d2, q12, q8\n\t"
"vmvn.8 d31, d3\n\t"
"vmull.u8 q10, d31, d4\n\t"
"vmull.u8 q11, d31, d5\n\t"
"vmull.u8 q12, d31, d6\n\t"
"vmull.u8 q13, d31, d7\n\t"
"vrshr.u16 q8, q10, #8\n\t"
"vrshr.u16 q9, q11, #8\n\t"
"vraddhn.u16 d20, q10, q8\n\t"
"vrshr.u16 q8, q12, #8\n\t"
"vraddhn.u16 d21, q11, q9\n\t"
"vrshr.u16 q9, q13, #8\n\t"
"vraddhn.u16 d22, q12, q8\n\t"
"vraddhn.u16 d23, q13, q9\n\t"
/* result in d20-d23 */
"vqadd.u8 d20, d0, d20\n\t"
"vqadd.u8 d21, d1, d21\n\t"
"vqadd.u8 d22, d2, d22\n\t"
"vqadd.u8 d23, d3, d23\n\t"
"bne 2b\n\t"
"1:\n\t"
"vst4.8 {d20-d23}, [%[keep_dst]]\n\t"
: [w] "+r" (w), [src] "+r" (src), [dst] "+r" (dst), [keep_dst] "=r" (keep_dst)
: [mask] "r" (mask)
: "ip", "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27",
"d30", "d31"
);
#endif
}
}
else
{
uint8x8_t alpha_selector = vreinterpret_u8_u64 (vcreate_u64 (0x0707070703030303ULL));
/* Handle width < 8 */
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
src = src_line;
src_line += src_stride;
w = width;
while (w >= 2)
{
uint8x8_t sval, dval;
sval = vreinterpret_u8_u32 (vld1_u32 ((void *)src));
dval = vreinterpret_u8_u32 (vld1_u32 ((void *)dst));
/* sval * const alpha_mul */
sval = neon2mul (sval, mask_alpha);
/* dval * 255-(src alpha) */
dval = neon2mul (dval, vtbl1_u8 (vmvn_u8 (sval), alpha_selector));
vst1_u8 ((void *)dst, vqadd_u8 (sval, dval));
src += 2;
dst += 2;
w -= 2;
}
if (w)
{
uint8x8_t sval, dval;
sval = vreinterpret_u8_u32 (vld1_dup_u32 ((void *)src));
dval = vreinterpret_u8_u32 (vld1_dup_u32 ((void *)dst));
/* sval * const alpha_mul */
sval = neon2mul (sval, mask_alpha);
/* dval * 255-(src alpha) */
dval = neon2mul (dval, vtbl1_u8 (vmvn_u8 (sval), alpha_selector));
vst1_lane_u32 ((void *)dst, vreinterpret_u32_u8 (vqadd_u8 (sval, dval)), 0);
}
}
}
}
static void
neon_composite_over_n_8_0565 (pixman_implementation_t * impl,
pixman_op_t op,
pixman_image_t * src_image,
pixman_image_t * mask_image,
pixman_image_t * dst_image,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
uint32_t src, srca;
uint16_t *dst_line, *dst;
uint8_t *mask_line, *mask;
int dst_stride, mask_stride;
uint32_t w;
uint8x8_t sval2;
uint8x8x4_t sval8;
src = _pixman_image_get_solid (src_image, dst_image->bits.format);
srca = src >> 24;
if (src == 0)
return;
sval2=vreinterpret_u8_u32 (vdup_n_u32 (src));
sval8.val[0]=vdup_lane_u8 (sval2,0);
sval8.val[1]=vdup_lane_u8 (sval2,1);
sval8.val[2]=vdup_lane_u8 (sval2,2);
sval8.val[3]=vdup_lane_u8 (sval2,3);
PIXMAN_IMAGE_GET_LINE (dst_image, dest_x, dest_y, uint16_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint8_t, mask_stride, mask_line, 1);
if (width>=8)
{
/* Use overlapping 8-pixel method, modified to avoid rewritten dest being reused */
while (height--)
{
uint16_t *keep_dst=0;
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
#ifndef USE_GCC_INLINE_ASM
uint8x8_t alpha;
uint16x8_t dval, temp;
uint8x8x4_t sval8temp;
alpha = vld1_u8 ((void *)mask);
dval = vld1q_u16 ((void *)dst);
keep_dst = dst;
sval8temp = neon8mul (sval8, alpha);
temp = pack0565 (neon8qadd (sval8temp, neon8mul (unpack0565 (dval), vmvn_u8 (sval8temp.val[3]))));
mask += (w & 7);
dst += (w & 7);
w -= (w & 7);
while (w)
{
dval = vld1q_u16 ((void *)dst);
alpha = vld1_u8 ((void *)mask);
vst1q_u16 ((void *)keep_dst, temp);
keep_dst = dst;
sval8temp = neon8mul (sval8, alpha);
temp = pack0565 (neon8qadd (sval8temp, neon8mul (unpack0565 (dval), vmvn_u8 (sval8temp.val[3]))));
mask+=8;
dst+=8;
w-=8;
}
vst1q_u16 ((void *)keep_dst, temp);
#else
asm volatile (
"vdup.32 d0, %[src]\n\t"
"vdup.8 d1, d0[1]\n\t"
"vdup.8 d2, d0[2]\n\t"
"vdup.8 d3, d0[3]\n\t"
"vdup.8 d0, d0[0]\n\t"
"vld1.8 {q12}, [%[dst]]\n\t"
"vld1.8 {d31}, [%[mask]]\n\t"
"mov %[keep_dst], %[dst]\n\t"
"and ip, %[w], #7\n\t"
"add %[mask], %[mask], ip\n\t"
"add %[dst], %[dst], ip, LSL#1\n\t"
"subs %[w], %[w], ip\n\t"
"b 9f\n\t"
/* LOOP */
"2:\n\t"
"vld1.16 {q12}, [%[dst]]!\n\t"
"vld1.8 {d31}, [%[mask]]!\n\t"
"vst1.16 {q10}, [%[keep_dst]]\n\t"
"sub %[keep_dst], %[dst], #8*2\n\t"
"subs %[w], %[w], #8\n\t"
"9:\n\t"
/* expand 0565 q12 to 8888 {d4-d7} */
"vmovn.u16 d4, q12\t\n"
"vshr.u16 q11, q12, #5\t\n"
"vshr.u16 q10, q12, #6+5\t\n"
"vmovn.u16 d5, q11\t\n"
"vmovn.u16 d6, q10\t\n"
"vshl.u8 d4, d4, #3\t\n"
"vshl.u8 d5, d5, #2\t\n"
"vshl.u8 d6, d6, #3\t\n"
"vsri.u8 d4, d4, #5\t\n"
"vsri.u8 d5, d5, #6\t\n"
"vsri.u8 d6, d6, #5\t\n"
"vmull.u8 q10, d31, d0\n\t"
"vmull.u8 q11, d31, d1\n\t"
"vmull.u8 q12, d31, d2\n\t"
"vmull.u8 q13, d31, d3\n\t"
"vrshr.u16 q8, q10, #8\n\t"
"vrshr.u16 q9, q11, #8\n\t"
"vraddhn.u16 d20, q10, q8\n\t"
"vraddhn.u16 d21, q11, q9\n\t"
"vrshr.u16 q9, q13, #8\n\t"
"vrshr.u16 q8, q12, #8\n\t"
"vraddhn.u16 d23, q13, q9\n\t"
"vraddhn.u16 d22, q12, q8\n\t"
/* duplicate in 4/2/1 & 8pix vsns */
"vmvn.8 d30, d23\n\t"
"vmull.u8 q14, d30, d6\n\t"
"vmull.u8 q13, d30, d5\n\t"
"vmull.u8 q12, d30, d4\n\t"
"vrshr.u16 q8, q14, #8\n\t"
"vrshr.u16 q9, q13, #8\n\t"
"vraddhn.u16 d6, q14, q8\n\t"
"vrshr.u16 q8, q12, #8\n\t"
"vraddhn.u16 d5, q13, q9\n\t"
"vqadd.u8 d6, d6, d22\n\t" /* moved up */
"vraddhn.u16 d4, q12, q8\n\t"
/* intentionally don't calculate alpha */
/* result in d4-d6 */
/* "vqadd.u8 d6, d6, d22\n\t" ** moved up */
"vqadd.u8 d5, d5, d21\n\t"
"vqadd.u8 d4, d4, d20\n\t"
/* pack 8888 {d20-d23} to 0565 q10 */
"vshll.u8 q10, d6, #8\n\t"
"vshll.u8 q3, d5, #8\n\t"
"vshll.u8 q2, d4, #8\n\t"
"vsri.u16 q10, q3, #5\t\n"
"vsri.u16 q10, q2, #11\t\n"
"bne 2b\n\t"
"1:\n\t"
"vst1.16 {q10}, [%[keep_dst]]\n\t"
: [w] "+r" (w), [dst] "+r" (dst), [mask] "+r" (mask), [keep_dst] "=r" (keep_dst)
: [src] "r" (src)
: "ip", "cc", "memory", "d0","d1","d2","d3","d4","d5","d6","d7",
"d16","d17","d18","d19","d20","d21","d22","d23","d24","d25","d26","d27","d28","d29",
"d30","d31"
);
#endif
}
}
else
{
while (height--)
{
void *dst4=0, *dst2=0;
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
#if 1 /* #ifndef USE_GCC_INLINE_ASM */
uint8x8_t alpha;
uint16x8_t dval, temp;
uint8x8x4_t sval8temp;
if (w&4)
{
alpha = vreinterpret_u8_u32 (vld1_lane_u32 ((void *)mask, vreinterpret_u32_u8 (alpha),1));
dval = vreinterpretq_u16_u64 (vld1q_lane_u64 ((void *)dst, vreinterpretq_u64_u16 (dval),1));
dst4=dst;
mask+=4;
dst+=4;
}
if (w&2)
{
alpha = vreinterpret_u8_u16 (vld1_lane_u16 ((void *)mask, vreinterpret_u16_u8 (alpha),1));
dval = vreinterpretq_u16_u32 (vld1q_lane_u32 ((void *)dst, vreinterpretq_u32_u16 (dval),1));
dst2=dst;
mask+=2;
dst+=2;
}
if (w&1)
{
alpha = vld1_lane_u8 ((void *)mask, alpha,1);
dval = vld1q_lane_u16 ((void *)dst, dval,1);
}
sval8temp = neon8mul (sval8, alpha);
temp = pack0565 (neon8qadd (sval8temp, neon8mul (unpack0565 (dval), vmvn_u8 (sval8temp.val[3]))));
if (w&1)
vst1q_lane_u16 ((void *)dst, temp,1);
if (w&2)
vst1q_lane_u32 ((void *)dst2, vreinterpretq_u32_u16 (temp),1);
if (w&4)
vst1q_lane_u64 ((void *)dst4, vreinterpretq_u64_u16 (temp),1);
#else
/* this code has some bug (does not pass blitters-test) */
asm volatile (
"vdup.32 d0, %[src]\n\t"
"vdup.8 d1, d0[1]\n\t"
"vdup.8 d2, d0[2]\n\t"
"vdup.8 d3, d0[3]\n\t"
"vdup.8 d0, d0[0]\n\t"
"tst %[w], #4\t\n"
"beq skip_load4\t\n"
"vld1.64 {d25}, [%[dst]]\n\t"
"vld1.32 {d31[1]}, [%[mask]]\n\t"
"mov %[dst4], %[dst]\t\n"
"add %[mask], %[mask], #4\t\n"
"add %[dst], %[dst], #4*2\t\n"
"skip_load4:\t\n"
"tst %[w], #2\t\n"
"beq skip_load2\t\n"
"vld1.32 {d24[1]}, [%[dst]]\n\t"
"vld1.16 {d31[1]}, [%[mask]]\n\t"
"mov %[dst2], %[dst]\t\n"
"add %[mask], %[mask], #2\t\n"
"add %[dst], %[dst], #2*2\t\n"
"skip_load2:\t\n"
"tst %[w], #1\t\n"
"beq skip_load1\t\n"
"vld1.16 {d24[1]}, [%[dst]]\n\t"
"vld1.8 {d31[1]}, [%[mask]]\n\t"
"skip_load1:\t\n"
/* expand 0565 q12 to 8888 {d4-d7} */
"vmovn.u16 d4, q12\t\n"
"vshr.u16 q11, q12, #5\t\n"
"vshr.u16 q10, q12, #6+5\t\n"
"vmovn.u16 d5, q11\t\n"
"vmovn.u16 d6, q10\t\n"
"vshl.u8 d4, d4, #3\t\n"
"vshl.u8 d5, d5, #2\t\n"
"vshl.u8 d6, d6, #3\t\n"
"vsri.u8 d4, d4, #5\t\n"
"vsri.u8 d5, d5, #6\t\n"
"vsri.u8 d6, d6, #5\t\n"
"vmull.u8 q10, d31, d0\n\t"
"vmull.u8 q11, d31, d1\n\t"
"vmull.u8 q12, d31, d2\n\t"
"vmull.u8 q13, d31, d3\n\t"
"vrshr.u16 q8, q10, #8\n\t"
"vrshr.u16 q9, q11, #8\n\t"
"vraddhn.u16 d20, q10, q8\n\t"
"vraddhn.u16 d21, q11, q9\n\t"
"vrshr.u16 q9, q13, #8\n\t"
"vrshr.u16 q8, q12, #8\n\t"
"vraddhn.u16 d23, q13, q9\n\t"
"vraddhn.u16 d22, q12, q8\n\t"
/* duplicate in 4/2/1 & 8pix vsns */
"vmvn.8 d30, d23\n\t"
"vmull.u8 q14, d30, d6\n\t"
"vmull.u8 q13, d30, d5\n\t"
"vmull.u8 q12, d30, d4\n\t"
"vrshr.u16 q8, q14, #8\n\t"
"vrshr.u16 q9, q13, #8\n\t"
"vraddhn.u16 d6, q14, q8\n\t"
"vrshr.u16 q8, q12, #8\n\t"
"vraddhn.u16 d5, q13, q9\n\t"
"vqadd.u8 d6, d6, d22\n\t" /* moved up */
"vraddhn.u16 d4, q12, q8\n\t"
/* intentionally don't calculate alpha */
/* result in d4-d6 */
/* "vqadd.u8 d6, d6, d22\n\t" ** moved up */
"vqadd.u8 d5, d5, d21\n\t"
"vqadd.u8 d4, d4, d20\n\t"
/* pack 8888 {d20-d23} to 0565 q10 */
"vshll.u8 q10, d6, #8\n\t"
"vshll.u8 q3, d5, #8\n\t"
"vshll.u8 q2, d4, #8\n\t"
"vsri.u16 q10, q3, #5\t\n"
"vsri.u16 q10, q2, #11\t\n"
"tst %[w], #1\n\t"
"beq skip_store1\t\n"
"vst1.16 {d20[1]}, [%[dst]]\t\n"
"skip_store1:\t\n"
"tst %[w], #2\n\t"
"beq skip_store2\t\n"
"vst1.32 {d20[1]}, [%[dst2]]\t\n"
"skip_store2:\t\n"
"tst %[w], #4\n\t"
"beq skip_store4\t\n"
"vst1.16 {d21}, [%[dst4]]\t\n"
"skip_store4:\t\n"
: [w] "+r" (w), [dst] "+r" (dst), [mask] "+r" (mask), [dst4] "+r" (dst4), [dst2] "+r" (dst2)
: [src] "r" (src)
: "ip", "cc", "memory", "d0","d1","d2","d3","d4","d5","d6","d7",
"d16","d17","d18","d19","d20","d21","d22","d23","d24","d25","d26","d27","d28","d29",
"d30","d31"
);
#endif
}
}
}
static void
neon_composite_over_n_8_8888 (pixman_implementation_t * impl,
pixman_op_t op,
pixman_image_t * src_image,
pixman_image_t * mask_image,
pixman_image_t * dst_image,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
uint32_t src, srca;
uint32_t *dst_line, *dst;
uint8_t *mask_line, *mask;
int dst_stride, mask_stride;
uint32_t w;
uint8x8_t sval2;
uint8x8x4_t sval8;
uint8x8_t mask_selector = vreinterpret_u8_u64 (vcreate_u64 (0x0101010100000000ULL));
uint8x8_t alpha_selector = vreinterpret_u8_u64 (vcreate_u64 (0x0707070703030303ULL));
src = _pixman_image_get_solid (src_image, dst_image->bits.format);
/* bail out if fully transparent */
srca = src >> 24;
if (src == 0)
return;
sval2 = vreinterpret_u8_u32 (vdup_n_u32 (src));
sval8.val[0] = vdup_lane_u8 (sval2, 0);
sval8.val[1] = vdup_lane_u8 (sval2, 1);
sval8.val[2] = vdup_lane_u8 (sval2, 2);
sval8.val[3] = vdup_lane_u8 (sval2, 3);
PIXMAN_IMAGE_GET_LINE (dst_image, dest_x, dest_y, uint32_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint8_t, mask_stride, mask_line, 1);
if (width >= 8)
{
/* Use overlapping 8-pixel method, modified to avoid
* rewritten dest being reused
*/
while (height--)
{
uint32_t *keep_dst = 0;
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
#ifndef USE_GCC_INLINE_ASM
uint8x8_t alpha;
uint8x8x4_t dval, temp;
alpha = vld1_u8 ((void *)mask);
dval = vld4_u8 ((void *)dst);
keep_dst = dst;
temp = neon8mul (sval8, alpha);
dval = neon8mul (dval, vmvn_u8 (temp.val[3]));
temp = neon8qadd (temp, dval);
mask += (w & 7);
dst += (w & 7);
w -= (w & 7);
while (w)
{
alpha = vld1_u8 ((void *)mask);
dval = vld4_u8 ((void *)dst);
vst4_u8 ((void *)keep_dst, temp);
keep_dst = dst;
temp = neon8mul (sval8, alpha);
dval = neon8mul (dval, vmvn_u8 (temp.val[3]));
temp = neon8qadd (temp, dval);
mask += 8;
dst += 8;
w -= 8;
}
vst4_u8 ((void *)keep_dst, temp);
#else
asm volatile (
"vdup.32 d0, %[src]\n\t"
"vdup.8 d1, d0[1]\n\t"
"vdup.8 d2, d0[2]\n\t"
"vdup.8 d3, d0[3]\n\t"
"vdup.8 d0, d0[0]\n\t"
"vld4.8 {d4-d7}, [%[dst]]\n\t"
"vld1.8 {d31}, [%[mask]]\n\t"
"mov %[keep_dst], %[dst]\n\t"
"and ip, %[w], #7\n\t"
"add %[mask], %[mask], ip\n\t"
"add %[dst], %[dst], ip, LSL#2\n\t"
"subs %[w], %[w], ip\n\t"
"b 9f\n\t"
/* LOOP */
"2:\n\t"
"vld4.8 {d4-d7}, [%[dst]]!\n\t"
"vld1.8 {d31}, [%[mask]]!\n\t"
"vst4.8 {d20-d23}, [%[keep_dst]]\n\t"
"sub %[keep_dst], %[dst], #8*4\n\t"
"subs %[w], %[w], #8\n\t"
"9:\n\t"
"vmull.u8 q10, d31, d0\n\t"
"vmull.u8 q11, d31, d1\n\t"
"vmull.u8 q12, d31, d2\n\t"
"vmull.u8 q13, d31, d3\n\t"
"vrshr.u16 q8, q10, #8\n\t"
"vrshr.u16 q9, q11, #8\n\t"
"vraddhn.u16 d20, q10, q8\n\t"
"vraddhn.u16 d21, q11, q9\n\t"
"vrshr.u16 q9, q13, #8\n\t"
"vrshr.u16 q8, q12, #8\n\t"
"vraddhn.u16 d23, q13, q9\n\t"
"vraddhn.u16 d22, q12, q8\n\t"
"vmvn.8 d30, d23\n\t"
"vmull.u8 q12, d30, d4\n\t"
"vmull.u8 q13, d30, d5\n\t"
"vmull.u8 q14, d30, d6\n\t"
"vmull.u8 q15, d30, d7\n\t"
"vrshr.u16 q8, q12, #8\n\t"
"vrshr.u16 q9, q13, #8\n\t"
"vraddhn.u16 d4, q12, q8\n\t"
"vrshr.u16 q8, q14, #8\n\t"
"vraddhn.u16 d5, q13, q9\n\t"
"vrshr.u16 q9, q15, #8\n\t"
"vraddhn.u16 d6, q14, q8\n\t"
"vraddhn.u16 d7, q15, q9\n\t"
/* result in d4-d7 */
"vqadd.u8 d20, d4, d20\n\t"
"vqadd.u8 d21, d5, d21\n\t"
"vqadd.u8 d22, d6, d22\n\t"
"vqadd.u8 d23, d7, d23\n\t"
"bne 2b\n\t"
"1:\n\t"
"vst4.8 {d20-d23}, [%[keep_dst]]\n\t"
: [w] "+r" (w), [dst] "+r" (dst), [mask] "+r" (mask), [keep_dst] "=r" (keep_dst)
: [src] "r" (src)
: "ip", "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29",
"d30", "d31"
);
#endif
}
}
else
{
while (height--)
{
uint8x8_t alpha;
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
while (w >= 2)
{
uint8x8_t dval, temp, res;
alpha = vtbl1_u8 (
vreinterpret_u8_u16 (vld1_dup_u16 ((void *)mask)), mask_selector);
dval = vld1_u8 ((void *)dst);
temp = neon2mul (sval2, alpha);
res = vqadd_u8 (
temp, neon2mul (dval, vtbl1_u8 (vmvn_u8 (temp), alpha_selector)));
vst1_u8 ((void *)dst, res);
mask += 2;
dst += 2;
w -= 2;
}
if (w)
{
uint8x8_t dval, temp, res;
alpha = vtbl1_u8 (vld1_dup_u8 ((void *)mask), mask_selector);
dval = vreinterpret_u8_u32 (vld1_dup_u32 ((void *)dst));
temp = neon2mul (sval2, alpha);
res = vqadd_u8 (
temp, neon2mul (dval, vtbl1_u8 (vmvn_u8 (temp), alpha_selector)));
vst1_lane_u32 ((void *)dst, vreinterpret_u32_u8 (res), 0);
}
}
}
}
static void
neon_composite_add_8888_8_8 (pixman_implementation_t * impl,
pixman_op_t op,
pixman_image_t * src_image,
pixman_image_t * mask_image,
pixman_image_t * dst_image,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
uint8_t *dst_line, *dst;
uint8_t *mask_line, *mask;
int dst_stride, mask_stride;
uint32_t w;
uint32_t src;
uint8x8_t sa;
PIXMAN_IMAGE_GET_LINE (dst_image, dest_x, dest_y, uint8_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint8_t, mask_stride, mask_line, 1);
src = _pixman_image_get_solid (src_image, dst_image->bits.format);
sa = vdup_n_u8 ((src) >> 24);
if (width >= 8)
{
/* Use overlapping 8-pixel method, modified to avoid rewritten dest being reused */
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
uint8x8_t mval, dval, res;
uint8_t *keep_dst;
mval = vld1_u8 ((void *)mask);
dval = vld1_u8 ((void *)dst);
keep_dst = dst;
res = vqadd_u8 (neon2mul (mval, sa), dval);
mask += (w & 7);
dst += (w & 7);
w -= w & 7;
while (w)
{
mval = vld1_u8 ((void *)mask);
dval = vld1_u8 ((void *)dst);
vst1_u8 ((void *)keep_dst, res);
keep_dst = dst;
res = vqadd_u8 (neon2mul (mval, sa), dval);
mask += 8;
dst += 8;
w -= 8;
}
vst1_u8 ((void *)keep_dst, res);
}
}
else
{
/* Use 4/2/1 load/store method to handle 1-7 pixels */
while (height--)
{
dst = dst_line;
dst_line += dst_stride;
mask = mask_line;
mask_line += mask_stride;
w = width;
uint8x8_t mval = sa, dval = sa, res;
uint8_t *dst4 = 0, *dst2 = 0;
if (w & 4)
{
mval = vreinterpret_u8_u32 (
vld1_lane_u32 ((void *)mask, vreinterpret_u32_u8 (mval), 1));
dval = vreinterpret_u8_u32 (
vld1_lane_u32 ((void *)dst, vreinterpret_u32_u8 (dval), 1));
dst4 = dst;
mask += 4;
dst += 4;
}
if (w & 2)
{
mval = vreinterpret_u8_u16 (
vld1_lane_u16 ((void *)mask, vreinterpret_u16_u8 (mval), 1));
dval = vreinterpret_u8_u16 (
vld1_lane_u16 ((void *)dst, vreinterpret_u16_u8 (dval), 1));
dst2 = dst;
mask += 2;
dst += 2;
}
if (w & 1)
{
mval = vld1_lane_u8 (mask, mval, 1);
dval = vld1_lane_u8 (dst, dval, 1);
}
res = vqadd_u8 (neon2mul (mval, sa), dval);
if (w & 1)
vst1_lane_u8 (dst, res, 1);
if (w & 2)
vst1_lane_u16 ((void *)dst2, vreinterpret_u16_u8 (res), 1);
if (w & 4)
vst1_lane_u32 ((void *)dst4, vreinterpret_u32_u8 (res), 1);
}
}
}
#ifdef USE_GCC_INLINE_ASM
static void
neon_composite_src_16_16 (pixman_implementation_t * impl,
pixman_op_t op,
pixman_image_t * src_image,
pixman_image_t * mask_image,
pixman_image_t * dst_image,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
uint16_t *dst_line, *src_line;
uint32_t dst_stride, src_stride;
if (!height || !width)
return;
/* We simply copy 16-bit-aligned pixels from one place to another. */
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint16_t, src_stride, src_line, 1);
PIXMAN_IMAGE_GET_LINE (dst_image, dest_x, dest_y, uint16_t, dst_stride, dst_line, 1);
/* Preload the first input scanline */
{
uint16_t *src_ptr = src_line;
uint32_t count = width;
asm volatile (
"0: @ loop \n"
" subs %[count], %[count], #32 \n"
" pld [%[src]] \n"
" add %[src], %[src], #64 \n"
" bgt 0b \n"
/* Clobbered input registers marked as input/outputs */
: [src] "+r" (src_ptr), [count] "+r" (count)
: /* no unclobbered inputs */
: "cc"
);
}
while (height--)
{
uint16_t *dst_ptr = dst_line;
uint16_t *src_ptr = src_line;
uint32_t count = width;
uint32_t tmp = 0;
/* Uses multi-register access and preloading to maximise bandwidth.
* Each pixel is one halfword, so a quadword contains 8px.
* Preload frequency assumed a 64-byte cacheline.
*/
asm volatile (
" cmp %[count], #64 \n"
" blt 1f @ skip oversized fragments \n"
"0: @ start with eight quadwords at a time \n"
/* preload from next scanline */
" pld [%[src], %[src_stride], LSL #1] \n"
" sub %[count], %[count], #64 \n"
" vld1.16 {d16, d17, d18, d19}, [%[src]]! \n"
" vld1.16 {d20, d21, d22, d23}, [%[src]]! \n"
/* preload from next scanline */
" pld [%[src], %[src_stride], LSL #1] \n"
" vld1.16 {d24, d25, d26, d27}, [%[src]]! \n"
" vld1.16 {d28, d29, d30, d31}, [%[src]]! \n"
" cmp %[count], #64 \n"
" vst1.16 {d16, d17, d18, d19}, [%[dst]]! \n"
" vst1.16 {d20, d21, d22, d23}, [%[dst]]! \n"
" vst1.16 {d24, d25, d26, d27}, [%[dst]]! \n"
" vst1.16 {d28, d29, d30, d31}, [%[dst]]! \n"
" bge 0b \n"
" cmp %[count], #0 \n"
" beq 7f @ aligned fastpath \n"
"1: @ four quadwords \n"
" tst %[count], #32 \n"
" beq 2f @ skip oversized fragment \n"
/* preload from next scanline */
" pld [%[src], %[src_stride], LSL #1] \n"
" vld1.16 {d16, d17, d18, d19}, [%[src]]! \n"
" vld1.16 {d20, d21, d22, d23}, [%[src]]! \n"
" vst1.16 {d16, d17, d18, d19}, [%[dst]]! \n"
" vst1.16 {d20, d21, d22, d23}, [%[dst]]! \n"
"2: @ two quadwords \n"
" tst %[count], #16 \n"
" beq 3f @ skip oversized fragment \n"
/* preload from next scanline */
" pld [%[src], %[src_stride], LSL #1] \n"
" vld1.16 {d16, d17, d18, d19}, [%[src]]! \n"
" vst1.16 {d16, d17, d18, d19}, [%[dst]]! \n"
"3: @ one quadword \n"
" tst %[count], #8 \n"
" beq 4f @ skip oversized fragment \n"
" vld1.16 {d16, d17}, [%[src]]! \n"
" vst1.16 {d16, d17}, [%[dst]]! \n"
"4: @ one doubleword \n"
" tst %[count], #4 \n"
" beq 5f @ skip oversized fragment \n"
" vld1.16 {d16}, [%[src]]! \n"
" vst1.16 {d16}, [%[dst]]! \n"
"5: @ one word \n"
" tst %[count], #2 \n"
" beq 6f @ skip oversized fragment \n"
" ldr %[tmp], [%[src]], #4 \n"
" str %[tmp], [%[dst]], #4 \n"
"6: @ one halfword \n"
" tst %[count], #1 \n"
" beq 7f @ skip oversized fragment \n"
" ldrh %[tmp], [%[src]] \n"
" strh %[tmp], [%[dst]] \n"
"7: @ end \n"
/* Clobbered input registers marked as input/outputs */
: [dst] "+r" (dst_ptr), [src] "+r" (src_ptr),
[count] "+r" (count), [tmp] "+r" (tmp)
/* Unclobbered input */
: [src_stride] "r" (src_stride)
/* Clobbered vector registers */
: "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31", "cc", "memory"
);
src_line += src_stride;
dst_line += dst_stride;
}
}
#endif /* USE_GCC_INLINE_ASM */
static void
neon_composite_src_24_16 (pixman_implementation_t * impl,
pixman_op_t op,
pixman_image_t * src_image,
pixman_image_t * mask_image,
pixman_image_t * dst_image,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
uint16_t *dst_line;
uint32_t *src_line;
uint32_t dst_stride, src_stride;
if (!width || !height)
return;
/* We simply copy pixels from one place to another,
* assuming that the source's alpha is opaque.
*/
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint32_t, src_stride, src_line, 1);
PIXMAN_IMAGE_GET_LINE (dst_image, dest_x, dest_y, uint16_t, dst_stride, dst_line, 1);
/* Preload the first input scanline */
{
uint8_t *src_ptr = (uint8_t*) src_line;
uint32_t count = (width + 15) / 16;
#ifdef USE_GCC_INLINE_ASM
asm volatile (
"0: @ loop \n"
" subs %[count], %[count], #1 \n"
" pld [%[src]] \n"
" add %[src], %[src], #64 \n"
" bgt 0b \n"
/* Clobbered input registers marked as input/outputs */
: [src] "+r" (src_ptr), [count] "+r" (count)
: /* no unclobbered inputs */
: "cc"
);
#else
do
{
__pld (src_ptr);
src_ptr += 64;
}
while (--count);
#endif
}
while (height--)
{
uint16_t *dst_ptr = dst_line;
uint32_t *src_ptr = src_line;
uint32_t count = width;
const uint32_t rb_mask = 0x1F;
const uint32_t g_mask = 0x3F;
/* If you're going to complain about a goto, take a long hard look
* at the massive blocks of assembler this skips over. ;-)
*/
if (count < 8)
goto small_stuff;
#ifdef USE_GCC_INLINE_ASM
/* This is not as aggressive as the RGB565-source case.
* Generally the source is in cached RAM when the formats are
* different, so we use preload.
*
* We don't need to blend, so we are not reading from the
* uncached framebuffer.
*/
asm volatile (
" cmp %[count], #16 \n"
" blt 1f @ skip oversized fragments \n"
"0: @ start with sixteen pixels at a time \n"
" sub %[count], %[count], #16 \n"
" pld [%[src], %[src_stride], lsl #2] @ preload from next scanline \n"
" vld4.8 {d0, d1, d2, d3}, [%[src]]! @ d3 is alpha and ignored, d2-0 are rgb. \n"
" vld4.8 {d4, d5, d6, d7}, [%[src]]! @ d7 is alpha and ignored, d6-4 are rgb. \n"
" vshll.u8 q8, d2, #8 @ expand first red for repacking \n"
" vshll.u8 q10, d1, #8 @ expand first green for repacking \n"
" vshll.u8 q11, d0, #8 @ expand first blue for repacking \n"
" vshll.u8 q9, d6, #8 @ expand second red for repacking \n"
" vsri.u16 q8, q10, #5 @ insert first green after red \n"
" vshll.u8 q10, d5, #8 @ expand second green for repacking \n"
" vsri.u16 q8, q11, #11 @ insert first blue after green \n"
" vshll.u8 q11, d4, #8 @ expand second blue for repacking \n"
" vsri.u16 q9, q10, #5 @ insert second green after red \n"
" vsri.u16 q9, q11, #11 @ insert second blue after green \n"
" cmp %[count], #16 \n"
" vst1.16 {d16, d17, d18, d19}, [%[dst]]! @ store 16 pixels \n"
" bge 0b \n"
"1: @ end of main loop \n"
" cmp %[count], #8 @ can we still do an 8-pixel block? \n"
" blt 2f \n"
" sub %[count], %[count], #8 \n"
" pld [%[src], %[src_stride], lsl #2] @ preload from next scanline \n"
" vld4.8 {d0, d1, d2, d3}, [%[src]]! @ d3 is alpha and ignored, d2-0 are rgb. \n"
" vshll.u8 q8, d2, #8 @ expand first red for repacking \n"
" vshll.u8 q10, d1, #8 @ expand first green for repacking \n"
" vshll.u8 q11, d0, #8 @ expand first blue for repacking \n"
" vsri.u16 q8, q10, #5 @ insert first green after red \n"
" vsri.u16 q8, q11, #11 @ insert first blue after green \n"
" vst1.16 {d16, d17}, [%[dst]]! @ store 8 pixels \n"
"2: @ end \n"
/* Clobbered input and working registers marked as input/outputs */
: [dst] "+r" (dst_ptr), [src] "+r" (src_ptr), [count] "+r" (count)
/* Unclobbered input */
: [src_stride] "r" (src_stride)
/* Clobbered vector registers */
/* NB: these are the quad aliases of the
* double registers used in the asm
*/
: "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d16", "d17",
"d18", "d19", "d20", "d21", "d22", "d23", "cc", "memory"
);
#else
/* A copy of the above code, in intrinsics-form. */
while (count >= 16)
{
uint8x8x4_t pixel_set_a, pixel_set_b;
uint16x8_t red_a, green_a, blue_a;
uint16x8_t red_b, green_b, blue_b;
uint16x8_t dest_pixels_a, dest_pixels_b;
count -= 16;
__pld (src_ptr + src_stride);
pixel_set_a = vld4_u8 ((uint8_t*)(src_ptr));
pixel_set_b = vld4_u8 ((uint8_t*)(src_ptr + 8));
src_ptr += 16;
red_a = vshll_n_u8 (pixel_set_a.val[2], 8);
green_a = vshll_n_u8 (pixel_set_a.val[1], 8);
blue_a = vshll_n_u8 (pixel_set_a.val[0], 8);
red_b = vshll_n_u8 (pixel_set_b.val[2], 8);
green_b = vshll_n_u8 (pixel_set_b.val[1], 8);
blue_b = vshll_n_u8 (pixel_set_b.val[0], 8);
dest_pixels_a = vsriq_n_u16 (red_a, green_a, 5);
dest_pixels_b = vsriq_n_u16 (red_b, green_b, 5);
dest_pixels_a = vsriq_n_u16 (dest_pixels_a, blue_a, 11);
dest_pixels_b = vsriq_n_u16 (dest_pixels_b, blue_b, 11);
/* There doesn't seem to be an intrinsic for the
* double-quadword variant
*/
vst1q_u16 (dst_ptr, dest_pixels_a);
vst1q_u16 (dst_ptr + 8, dest_pixels_b);
dst_ptr += 16;
}
/* 8-pixel loop */
if (count >= 8)
{
uint8x8x4_t pixel_set_a;
uint16x8_t red_a, green_a, blue_a;
uint16x8_t dest_pixels_a;
__pld (src_ptr + src_stride);
count -= 8;
pixel_set_a = vld4_u8 ((uint8_t*)(src_ptr));
src_ptr += 8;
red_a = vshll_n_u8 (pixel_set_a.val[2], 8);
green_a = vshll_n_u8 (pixel_set_a.val[1], 8);
blue_a = vshll_n_u8 (pixel_set_a.val[0], 8);
dest_pixels_a = vsriq_n_u16 (red_a, green_a, 5);
dest_pixels_a = vsriq_n_u16 (dest_pixels_a, blue_a, 11);
vst1q_u16 (dst_ptr, dest_pixels_a);
dst_ptr += 8;
}
#endif /* USE_GCC_INLINE_ASM */
small_stuff:
if (count)
__pld (src_ptr + src_stride);
while (count >= 2)
{
uint32_t src_pixel_a = *src_ptr++;
uint32_t src_pixel_b = *src_ptr++;
/* ARM is really good at shift-then-ALU ops. */
/* This should be a total of six shift-ANDs and five shift-ORs. */
uint32_t dst_pixels_a;
uint32_t dst_pixels_b;
dst_pixels_a = ((src_pixel_a >> 3) & rb_mask);
dst_pixels_a |= ((src_pixel_a >> 10) & g_mask) << 5;
dst_pixels_a |= ((src_pixel_a >> 19) & rb_mask) << 11;
dst_pixels_b = ((src_pixel_b >> 3) & rb_mask);
dst_pixels_b |= ((src_pixel_b >> 10) & g_mask) << 5;
dst_pixels_b |= ((src_pixel_b >> 19) & rb_mask) << 11;
/* little-endian mode only */
*((uint32_t*) dst_ptr) = dst_pixels_a | (dst_pixels_b << 16);
dst_ptr += 2;
count -= 2;
}
if (count)
{
uint32_t src_pixel = *src_ptr++;
/* ARM is really good at shift-then-ALU ops.
* This block should end up as three shift-ANDs
* and two shift-ORs.
*/
uint32_t tmp_blue = (src_pixel >> 3) & rb_mask;
uint32_t tmp_green = (src_pixel >> 10) & g_mask;
uint32_t tmp_red = (src_pixel >> 19) & rb_mask;
uint16_t dst_pixel = (tmp_red << 11) | (tmp_green << 5) | tmp_blue;
*dst_ptr++ = dst_pixel;
count--;
}
src_line += src_stride;
dst_line += dst_stride;
}
}
static pixman_bool_t
pixman_fill_neon (uint32_t *bits,
int stride,
int bpp,
int x,
int y,
int width,
int height,
uint32_t _xor)
{
uint32_t byte_stride, color;
char *dst;
/* stride is always multiple of 32bit units in pixman */
byte_stride = stride * sizeof(uint32_t);
switch (bpp)
{
case 8:
dst = ((char *) bits) + y * byte_stride + x;
_xor &= 0xff;
color = _xor << 24 | _xor << 16 | _xor << 8 | _xor;
break;
case 16:
dst = ((char *) bits) + y * byte_stride + x * 2;
_xor &= 0xffff;
color = _xor << 16 | _xor;
width *= 2; /* width to bytes */
break;
case 32:
dst = ((char *) bits) + y * byte_stride + x * 4;
color = _xor;
width *= 4; /* width to bytes */
break;
default:
return FALSE;
}
#ifdef USE_GCC_INLINE_ASM
if (width < 16)
{
/* We have a special case for such small widths that don't allow
* us to use wide 128-bit stores anyway. We don't waste time
* trying to align writes, since there are only very few of them anyway
*/
asm volatile (
"cmp %[height], #0\n"/* Check if empty fill */
"beq 3f\n"
"vdup.32 d0, %[color]\n"/* Fill the color to neon req */
/* Check if we have a such width that can easily be handled by single
* operation for each scanline. This significantly reduces the number
* of test/branch instructions for each scanline
*/
"cmp %[width], #8\n"
"beq 4f\n"
"cmp %[width], #4\n"
"beq 5f\n"
"cmp %[width], #2\n"
"beq 6f\n"
/* Loop starts here for each scanline */
"1:\n"
"mov r4, %[dst]\n" /* Starting address of the current line */
"tst %[width], #8\n"
"beq 2f\n"
"vst1.8 {d0}, [r4]!\n"
"2:\n"
"tst %[width], #4\n"
"beq 2f\n"
"str %[color], [r4], #4\n"
"2:\n"
"tst %[width], #2\n"
"beq 2f\n"
"strh %[color], [r4], #2\n"
"2:\n"
"tst %[width], #1\n"
"beq 2f\n"
"strb %[color], [r4], #1\n"
"2:\n"
"subs %[height], %[height], #1\n"
"add %[dst], %[dst], %[byte_stride]\n"
"bne 1b\n"
"b 3f\n"
/* Special fillers for those widths that we can do with single operation */
"4:\n"
"subs %[height], %[height], #1\n"
"vst1.8 {d0}, [%[dst]]\n"
"add %[dst], %[dst], %[byte_stride]\n"
"bne 4b\n"
"b 3f\n"
"5:\n"
"subs %[height], %[height], #1\n"
"str %[color], [%[dst]]\n"
"add %[dst], %[dst], %[byte_stride]\n"
"bne 5b\n"
"b 3f\n"
"6:\n"
"subs %[height], %[height], #1\n"
"strh %[color], [%[dst]]\n"
"add %[dst], %[dst], %[byte_stride]\n"
"bne 6b\n"
"3:\n"
: [height] "+r" (height), [dst] "+r" (dst)
: [color] "r" (color), [width] "r" (width),
[byte_stride] "r" (byte_stride)
: "memory", "cc", "d0", "r4");
}
else
{
asm volatile (
"cmp %[height], #0\n"/* Check if empty fill */
"beq 5f\n"
"vdup.32 q0, %[color]\n"/* Fill the color to neon req */
/* Loop starts here for each scanline */
"1:\n"
"mov r4, %[dst]\n"/* Starting address of the current line */
"mov r5, %[width]\n"/* We're going to write this many bytes */
"ands r6, r4, #15\n"/* Are we at the 128-bit aligned address? */
"beq 2f\n"/* Jump to the best case */
/* We're not 128-bit aligned: However, we know that we can get to the
next aligned location, since the fill is at least 16 bytes wide */
"rsb r6, r6, #16\n" /* We would need to go forward this much */
"sub r5, r5, r6\n"/* Update bytes left */
"tst r6, #1\n"
"beq 6f\n"
"vst1.8 {d0[0]}, [r4]!\n"/* Store byte, now we are word aligned */
"6:\n"
"tst r6, #2\n"
"beq 6f\n"
"vst1.16 {d0[0]}, [r4, :16]!\n"/* Store half word, now we are 16-bit aligned */
"6:\n"
"tst r6, #4\n"
"beq 6f\n"
"vst1.32 {d0[0]}, [r4, :32]!\n"/* Store word, now we're 32-bit aligned */
"6:\n"
"tst r6, #8\n"
"beq 2f\n"
"vst1.64 {d0}, [r4, :64]!\n"/* Store qword now we're 64-bit aligned */
/* The good case: We're 128-bit aligned for this scanline */
"2:\n"
"and r6, r5, #15\n"/* Number of tailing bytes */
"cmp r5, r6\n"/* Do we have at least one qword to write? */
"beq 6f\n"/* No, we just write the tail */
"lsr r5, r5, #4\n"/* This many full qwords to write */
/* The main block: Do 128-bit aligned writes */
"3:\n"
"subs r5, r5, #1\n"
"vst1.64 {d0, d1}, [r4, :128]!\n"
"bne 3b\n"
/* Handle the tailing bytes: Do 64, 32, 16 and 8-bit aligned writes as needed.
We know that we're currently at 128-bit aligned address, so we can just
pick the biggest operations that the remaining write width allows */
"6:\n"
"cmp r6, #0\n"
"beq 4f\n"
"tst r6, #8\n"
"beq 6f\n"
"vst1.64 {d0}, [r4, :64]!\n"
"6:\n"
"tst r6, #4\n"
"beq 6f\n"
"vst1.32 {d0[0]}, [r4, :32]!\n"
"6:\n"
"tst r6, #2\n"
"beq 6f\n"
"vst1.16 {d0[0]}, [r4, :16]!\n"
"6:\n"
"tst r6, #1\n"
"beq 4f\n"
"vst1.8 {d0[0]}, [r4]!\n"
"4:\n"
/* Handle the next scanline */
"subs %[height], %[height], #1\n"
"add %[dst], %[dst], %[byte_stride]\n"
"bne 1b\n"
"5:\n"
: [height] "+r" (height), [dst] "+r" (dst)
: [color] "r" (color), [width] "r" (width),
[byte_stride] "r" (byte_stride)
: "memory", "cc", "d0", "d1", "r4", "r5", "r6");
}
return TRUE;
#else
/* TODO: intrinsic version for armcc */
return FALSE;
#endif
}
/* TODO: is there a more generic way of doing this being introduced? */
#define NEON_SCANLINE_BUFFER_PIXELS (1024)
static inline void
neon_quadword_copy (void * dst,
void * src,
uint32_t count, /* of quadwords */
uint32_t trailer_count /* of bytes */)
{
uint8_t *t_dst = dst, *t_src = src;
/* Uses aligned multi-register loads to maximise read bandwidth
* on uncached memory such as framebuffers
* The accesses do not have the aligned qualifiers, so that the copy
* may convert between aligned-uncached and unaligned-cached memory.
* It is assumed that the CPU can infer alignedness from the address.
*/
#ifdef USE_GCC_INLINE_ASM
asm volatile (
" cmp %[count], #8 \n"
" blt 1f @ skip oversized fragments \n"
"0: @ start with eight quadwords at a time \n"
" sub %[count], %[count], #8 \n"
" vld1.8 {d16, d17, d18, d19}, [%[src]]! \n"
" vld1.8 {d20, d21, d22, d23}, [%[src]]! \n"
" vld1.8 {d24, d25, d26, d27}, [%[src]]! \n"
" vld1.8 {d28, d29, d30, d31}, [%[src]]! \n"
" cmp %[count], #8 \n"
" vst1.8 {d16, d17, d18, d19}, [%[dst]]! \n"
" vst1.8 {d20, d21, d22, d23}, [%[dst]]! \n"
" vst1.8 {d24, d25, d26, d27}, [%[dst]]! \n"
" vst1.8 {d28, d29, d30, d31}, [%[dst]]! \n"
" bge 0b \n"
"1: @ four quadwords \n"
" tst %[count], #4 \n"
" beq 2f @ skip oversized fragment \n"
" vld1.8 {d16, d17, d18, d19}, [%[src]]! \n"
" vld1.8 {d20, d21, d22, d23}, [%[src]]! \n"
" vst1.8 {d16, d17, d18, d19}, [%[dst]]! \n"
" vst1.8 {d20, d21, d22, d23}, [%[dst]]! \n"
"2: @ two quadwords \n"
" tst %[count], #2 \n"
" beq 3f @ skip oversized fragment \n"
" vld1.8 {d16, d17, d18, d19}, [%[src]]! \n"
" vst1.8 {d16, d17, d18, d19}, [%[dst]]! \n"
"3: @ one quadword \n"
" tst %[count], #1 \n"
" beq 4f @ skip oversized fragment \n"
" vld1.8 {d16, d17}, [%[src]]! \n"
" vst1.8 {d16, d17}, [%[dst]]! \n"
"4: @ end \n"
/* Clobbered input registers marked as input/outputs */
: [dst] "+r" (t_dst), [src] "+r" (t_src), [count] "+r" (count)
/* No unclobbered inputs */
:
/* Clobbered vector registers */
: "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25",
"d26", "d27", "d28", "d29", "d30", "d31", "cc", "memory");
#else
while (count >= 8)
{
uint8x16x4_t t1 = vld4q_u8 (t_src);
uint8x16x4_t t2 = vld4q_u8 (t_src + sizeof(uint8x16x4_t));
t_src += sizeof(uint8x16x4_t) * 2;
vst4q_u8 (t_dst, t1);
vst4q_u8 (t_dst + sizeof(uint8x16x4_t), t2);
t_dst += sizeof(uint8x16x4_t) * 2;
count -= 8;
}
if (count & 4)
{
uint8x16x4_t t1 = vld4q_u8 (t_src);
t_src += sizeof(uint8x16x4_t);
vst4q_u8 (t_dst, t1);
t_dst += sizeof(uint8x16x4_t);
}
if (count & 2)
{
uint8x8x4_t t1 = vld4_u8 (t_src);
t_src += sizeof(uint8x8x4_t);
vst4_u8 (t_dst, t1);
t_dst += sizeof(uint8x8x4_t);
}
if (count & 1)
{
uint8x16_t t1 = vld1q_u8 (t_src);
t_src += sizeof(uint8x16_t);
vst1q_u8 (t_dst, t1);
t_dst += sizeof(uint8x16_t);
}
#endif /* !USE_GCC_INLINE_ASM */
if (trailer_count)
{
if (trailer_count & 8)
{
uint8x8_t t1 = vld1_u8 (t_src);
t_src += sizeof(uint8x8_t);
vst1_u8 (t_dst, t1);
t_dst += sizeof(uint8x8_t);
}
if (trailer_count & 4)
{
*((uint32_t*) t_dst) = *((uint32_t*) t_src);
t_dst += 4;
t_src += 4;
}
if (trailer_count & 2)
{
*((uint16_t*) t_dst) = *((uint16_t*) t_src);
t_dst += 2;
t_src += 2;
}
if (trailer_count & 1)
{
*t_dst++ = *t_src++;
}
}
}
static inline void
solid_over_565_8_pix_neon (uint32_t glyph_colour,
uint16_t *dest,
uint8_t * in_mask,
uint32_t dest_stride, /* bytes, not elements */
uint32_t mask_stride,
uint32_t count /* 8-pixel groups */)
{
/* Inner loop of glyph blitter (solid colour, alpha mask) */
#ifdef USE_GCC_INLINE_ASM
asm volatile (
" vld4.8 {d20[], d21[], d22[], d23[]}, [%[glyph_colour]] @ splat solid colour components \n"
"0: @ loop \n"
" vld1.16 {d0, d1}, [%[dest]] @ load first pixels from framebuffer \n"
" vld1.8 {d17}, [%[in_mask]] @ load alpha mask of glyph \n"
" vmull.u8 q9, d17, d23 @ apply glyph colour alpha to mask \n"
" vshrn.u16 d17, q9, #8 @ reformat it to match original mask \n"
" vmvn d18, d17 @ we need the inverse mask for the background \n"
" vsli.u16 q3, q0, #5 @ duplicate framebuffer blue bits \n"
" vshrn.u16 d2, q0, #8 @ unpack red from framebuffer pixels \n"
" vshrn.u16 d4, q0, #3 @ unpack green \n"
" vsri.u8 d2, d2, #5 @ duplicate red bits (extend 5 to 8) \n"
" vshrn.u16 d6, q3, #2 @ unpack extended blue (truncate 10 to 8) \n"
" vsri.u8 d4, d4, #6 @ duplicate green bits (extend 6 to 8) \n"
" vmull.u8 q1, d2, d18 @ apply inverse mask to background red... \n"
" vmull.u8 q2, d4, d18 @ ...green... \n"
" vmull.u8 q3, d6, d18 @ ...blue \n"
" subs %[count], %[count], #1 @ decrement/test loop counter \n"
" vmlal.u8 q1, d17, d22 @ add masked foreground red... \n"
" vmlal.u8 q2, d17, d21 @ ...green... \n"
" vmlal.u8 q3, d17, d20 @ ...blue \n"
" add %[in_mask], %[in_mask], %[mask_stride] @ advance mask pointer, while we wait \n"
" vsri.16 q1, q2, #5 @ pack green behind red \n"
" vsri.16 q1, q3, #11 @ pack blue into pixels \n"
" vst1.16 {d2, d3}, [%[dest]] @ store composited pixels \n"
" add %[dest], %[dest], %[dest_stride] @ advance framebuffer pointer \n"
" bne 0b @ next please \n"
/* Clobbered registers marked as input/outputs */
: [dest] "+r" (dest), [in_mask] "+r" (in_mask), [count] "+r" (count)
/* Inputs */
: [dest_stride] "r" (dest_stride), [mask_stride] "r" (mask_stride), [glyph_colour] "r" (&glyph_colour)
/* Clobbers, including the inputs we modify, and potentially lots of memory */
: "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d17", "d18", "d19",
"d20", "d21", "d22", "d23", "d24", "d25", "cc", "memory"
);
#else
uint8x8x4_t solid_colour = vld4_dup_u8 ((uint8_t*) &glyph_colour);
while (count--)
{
uint16x8_t pixels = vld1q_u16 (dest);
uint8x8_t mask = vshrn_n_u16 (vmull_u8 (solid_colour.val[3], vld1_u8 (in_mask)), 8);
uint8x8_t mask_image = vmvn_u8 (mask);
uint8x8_t t_red = vshrn_n_u16 (pixels, 8);
uint8x8_t t_green = vshrn_n_u16 (pixels, 3);
uint8x8_t t_blue = vshrn_n_u16 (vsli_n_u8 (pixels, pixels, 5), 2);
uint16x8_t s_red = vmull_u8 (vsri_n_u8 (t_red, t_red, 5), mask_image);
uint16x8_t s_green = vmull_u8 (vsri_n_u8 (t_green, t_green, 6), mask_image);
uint16x8_t s_blue = vmull_u8 (t_blue, mask_image);
s_red = vmlal (s_red, mask, solid_colour.val[2]);
s_green = vmlal (s_green, mask, solid_colour.val[1]);
s_blue = vmlal (s_blue, mask, solid_colour.val[0]);
pixels = vsri_n_u16 (s_red, s_green, 5);
pixels = vsri_n_u16 (pixels, s_blue, 11);
vst1q_u16 (dest, pixels);
dest += dest_stride;
mask += mask_stride;
}
#endif
}
#if 0 /* this is broken currently */
static void
neon_composite_over_n_8_0565 (pixman_implementation_t * impl,
pixman_op_t op,
pixman_image_t * src_image,
pixman_image_t * mask_image,
pixman_image_t * dst_image,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
uint32_t src, srca;
uint16_t *dst_line, *aligned_line;
uint8_t *mask_line;
uint32_t dst_stride, mask_stride;
uint32_t kernel_count, copy_count, copy_tail;
uint8_t kernel_offset, copy_offset;
src = _pixman_image_get_solid (src_image, dst_image->bits.format);
/* bail out if fully transparent or degenerate */
srca = src >> 24;
if (src == 0)
return;
if (width == 0 || height == 0)
return;
if (width > NEON_SCANLINE_BUFFER_PIXELS)
{
/* split the blit, so we can use a fixed-size scanline buffer
* TODO: there must be a more elegant way of doing this.
*/
int x;
for (x = 0; x < width; x += NEON_SCANLINE_BUFFER_PIXELS)
{
neon_composite_over_n_8_0565 (
impl, op,
src_image, mask_image, dst_image,
src_x + x, src_y, mask_x + x, mask_y, dest_x + x, dest_y,
(x + NEON_SCANLINE_BUFFER_PIXELS > width) ? width - x : NEON_SCANLINE_BUFFER_PIXELS, height);
}
return;
}
PIXMAN_IMAGE_GET_LINE (dst_image, dest_x, dest_y, uint16_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, uint8_t, mask_stride, mask_line, 1);
/* keep within minimum number of aligned quadwords on width
* while also keeping the minimum number of columns to process
*/
{
unsigned long aligned_left = (unsigned long)(dst_line) & ~0xF;
unsigned long aligned_right = (((unsigned long)(dst_line + width)) + 0xF) & ~0xF;
unsigned long ceiling_length = (((unsigned long) width) * sizeof(*dst_line) + 0xF) & ~0xF;
/* the fast copy should be quadword aligned */
copy_offset = dst_line - ((uint16_t*) aligned_left);
aligned_line = dst_line - copy_offset;
copy_count = (uint32_t) ((aligned_right - aligned_left) >> 4);
copy_tail = 0;
if (aligned_right - aligned_left > ceiling_length)
{
/* unaligned routine is tightest */
kernel_count = (uint32_t) (ceiling_length >> 4);
kernel_offset = copy_offset;
}
else
{
/* aligned routine is equally tight, so it is safer to align */
kernel_count = copy_count;
kernel_offset = 0;
}
/* We should avoid reading beyond scanline ends for safety */
if (aligned_line < (dst_line - dest_x) ||
(aligned_line + (copy_count * 16 / sizeof(*dst_line))) > ((dst_line - dest_x) + dst_image->bits.width))
{
/* switch to precise read */
copy_offset = kernel_offset = 0;
aligned_line = dst_line;
kernel_count = (uint32_t) (ceiling_length >> 4);
copy_count = (width * sizeof(*dst_line)) >> 4;
copy_tail = (width * sizeof(*dst_line)) & 0xF;
}
}
{
uint16_t scan_line[NEON_SCANLINE_BUFFER_PIXELS + 8]; /* deliberately not initialised */
uint8_t glyph_line[NEON_SCANLINE_BUFFER_PIXELS + 8];
int y = height;
/* row-major order */
/* left edge, middle block, right edge */
for ( ; y--; mask_line += mask_stride, aligned_line += dst_stride, dst_line += dst_stride)
{
/* We don't want to overrun the edges of the glyph,
* so realign the edge data into known buffers
*/
neon_quadword_copy (glyph_line + copy_offset, mask_line, width >> 4, width & 0xF);
/* Uncached framebuffer access is really, really slow
* if we do it piecemeal. It should be much faster if we
* grab it all at once. One scanline should easily fit in
* L1 cache, so this should not waste RAM bandwidth.
*/
neon_quadword_copy (scan_line, aligned_line, copy_count, copy_tail);
/* Apply the actual filter */
solid_over_565_8_pix_neon (
src, scan_line + kernel_offset,
glyph_line + kernel_offset, 8 * sizeof(*dst_line),
8, kernel_count);
/* Copy the modified scanline back */
neon_quadword_copy (dst_line, scan_line + copy_offset,
width >> 3, (width & 7) * 2);
}
}
}
#endif
#ifdef USE_GCC_INLINE_ASM
static inline void
plain_over_565_8_pix_neon (uint32_t colour,
uint16_t *dest,
uint32_t dest_stride, /* bytes, not elements */
uint32_t count /* 8-pixel groups */)
{
/* Inner loop for plain translucent rects
* (solid colour without alpha mask)
*/
asm volatile (
" vld4.8 {d20[], d21[], d22[], d23[]}, [%[colour]] @ solid colour load/splat \n"
" vmull.u8 q12, d23, d22 @ premultiply alpha red \n"
" vmull.u8 q13, d23, d21 @ premultiply alpha green \n"
" vmull.u8 q14, d23, d20 @ premultiply alpha blue \n"
" vmvn d18, d23 @ inverse alpha for background \n"
"0: @ loop\n"
" vld1.16 {d0, d1}, [%[dest]] @ load first pixels from framebuffer \n"
" vshrn.u16 d2, q0, #8 @ unpack red from framebuffer pixels \n"
" vshrn.u16 d4, q0, #3 @ unpack green \n"
" vsli.u16 q3, q0, #5 @ duplicate framebuffer blue bits \n"
" vsri.u8 d2, d2, #5 @ duplicate red bits (extend 5 to 8) \n"
" vsri.u8 d4, d4, #6 @ duplicate green bits (extend 6 to 8) \n"
" vshrn.u16 d6, q3, #2 @ unpack extended blue (truncate 10 to 8) \n"
" vmov q0, q12 @ retrieve foreground red \n"
" vmlal.u8 q0, d2, d18 @ blend red - my kingdom for a four-operand MLA \n"
" vmov q1, q13 @ retrieve foreground green \n"
" vmlal.u8 q1, d4, d18 @ blend green \n"
" vmov q2, q14 @ retrieve foreground blue \n"
" vmlal.u8 q2, d6, d18 @ blend blue \n"
" subs %[count], %[count], #1 @ decrement/test loop counter \n"
" vsri.16 q0, q1, #5 @ pack green behind red \n"
" vsri.16 q0, q2, #11 @ pack blue into pixels \n"
" vst1.16 {d0, d1}, [%[dest]] @ store composited pixels \n"
" add %[dest], %[dest], %[dest_stride] @ advance framebuffer pointer \n"
" bne 0b @ next please \n"
/* Clobbered registers marked as input/outputs */
: [dest] "+r" (dest), [count] "+r" (count)
/* Inputs */
: [dest_stride] "r" (dest_stride), [colour] "r" (&colour)
/* Clobbers, including the inputs we modify, and
* potentially lots of memory
*/
: "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d18", "d19",
"d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29",
"cc", "memory"
);
}
static void
neon_composite_over_n_0565 (pixman_implementation_t * impl,
pixman_op_t op,
pixman_image_t * src_image,
pixman_image_t * mask_image,
pixman_image_t * dst_image,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
uint32_t src, srca;
uint16_t *dst_line, *aligned_line;
uint32_t dst_stride;
uint32_t kernel_count, copy_count, copy_tail;
uint8_t kernel_offset, copy_offset;
src = _pixman_image_get_solid (src_image, dst_image->bits.format);
/* bail out if fully transparent */
srca = src >> 24;
if (src == 0)
return;
if (width == 0 || height == 0)
return;
if (width > NEON_SCANLINE_BUFFER_PIXELS)
{
/* split the blit, so we can use a fixed-size scanline buffer *
* TODO: there must be a more elegant way of doing this.
*/
int x;
for (x = 0; x < width; x += NEON_SCANLINE_BUFFER_PIXELS)
{
neon_composite_over_n_0565 (
impl, op,
src_image, mask_image, dst_image,
src_x + x, src_y, mask_x + x, mask_y, dest_x + x, dest_y,
(x + NEON_SCANLINE_BUFFER_PIXELS > width) ? width - x : NEON_SCANLINE_BUFFER_PIXELS, height);
}
return;
}
PIXMAN_IMAGE_GET_LINE (dst_image, dest_x, dest_y, uint16_t, dst_stride, dst_line, 1);
/* keep within minimum number of aligned quadwords on width
* while also keeping the minimum number of columns to process
*/
{
unsigned long aligned_left = (unsigned long)(dst_line) & ~0xF;
unsigned long aligned_right = (((unsigned long)(dst_line + width)) + 0xF) & ~0xF;
unsigned long ceiling_length = (((unsigned long) width) * sizeof(*dst_line) + 0xF) & ~0xF;
/* the fast copy should be quadword aligned */
copy_offset = dst_line - ((uint16_t*) aligned_left);
aligned_line = dst_line - copy_offset;
copy_count = (uint32_t) ((aligned_right - aligned_left) >> 4);
copy_tail = 0;
if (aligned_right - aligned_left > ceiling_length)
{
/* unaligned routine is tightest */
kernel_count = (uint32_t) (ceiling_length >> 4);
kernel_offset = copy_offset;
}
else
{
/* aligned routine is equally tight, so it is safer to align */
kernel_count = copy_count;
kernel_offset = 0;
}
/* We should avoid reading beyond scanline ends for safety */
if (aligned_line < (dst_line - dest_x) ||
(aligned_line + (copy_count * 16 / sizeof(*dst_line))) > ((dst_line - dest_x) + dst_image->bits.width))
{
/* switch to precise read */
copy_offset = kernel_offset = 0;
aligned_line = dst_line;
kernel_count = (uint32_t) (ceiling_length >> 4);
copy_count = (width * sizeof(*dst_line)) >> 4;
copy_tail = (width * sizeof(*dst_line)) & 0xF;
}
}
{
uint16_t scan_line[NEON_SCANLINE_BUFFER_PIXELS + 8]; /* deliberately not initialised */
/* row-major order */
/* left edge, middle block, right edge */
for ( ; height--; aligned_line += dst_stride, dst_line += dst_stride)
{
/* Uncached framebuffer access is really, really slow if we do it piecemeal.
* It should be much faster if we grab it all at once.
* One scanline should easily fit in L1 cache, so this should
* not waste RAM bandwidth.
*/
neon_quadword_copy (scan_line, aligned_line, copy_count, copy_tail);
/* Apply the actual filter */
plain_over_565_8_pix_neon (
src, scan_line + kernel_offset, 8 * sizeof(*dst_line), kernel_count);
/* Copy the modified scanline back */
neon_quadword_copy (
dst_line, scan_line + copy_offset, width >> 3, (width & 7) * 2);
}
}
}
static inline void
ARGB8_over_565_8_pix_neon (uint32_t *src,
uint16_t *dest,
uint32_t src_stride, /* bytes, not elements */
uint32_t count /* 8-pixel groups */)
{
asm volatile (
"0: @ loop\n"
" pld [%[src], %[src_stride]] @ preload from next scanline \n"
" vld1.16 {d0, d1}, [%[dest]] @ load pixels from framebuffer \n"
" vld4.8 {d20, d21, d22, d23},[%[src]]! @ load source image pixels \n"
" vsli.u16 q3, q0, #5 @ duplicate framebuffer blue bits \n"
" vshrn.u16 d2, q0, #8 @ unpack red from framebuffer pixels \n"
" vshrn.u16 d4, q0, #3 @ unpack green \n"
" vmvn d18, d23 @ we need the inverse alpha for the background \n"
" vsri.u8 d2, d2, #5 @ duplicate red bits (extend 5 to 8) \n"
" vshrn.u16 d6, q3, #2 @ unpack extended blue (truncate 10 to 8) \n"
" vsri.u8 d4, d4, #6 @ duplicate green bits (extend 6 to 8) \n"
" vmull.u8 q1, d2, d18 @ apply inverse alpha to background red... \n"
" vmull.u8 q2, d4, d18 @ ...green... \n"
" vmull.u8 q3, d6, d18 @ ...blue \n"
" subs %[count], %[count], #1 @ decrement/test loop counter \n"
" vmlal.u8 q1, d23, d22 @ add blended foreground red... \n"
" vmlal.u8 q2, d23, d21 @ ...green... \n"
" vmlal.u8 q3, d23, d20 @ ...blue \n"
" vsri.16 q1, q2, #5 @ pack green behind red \n"
" vsri.16 q1, q3, #11 @ pack blue into pixels \n"
" vst1.16 {d2, d3}, [%[dest]]! @ store composited pixels \n"
" bne 0b @ next please \n"
/* Clobbered registers marked as input/outputs */
: [dest] "+r" (dest), [src] "+r" (src), [count] "+r" (count)
/* Inputs */
: [src_stride] "r" (src_stride)
/* Clobbers, including the inputs we modify, and potentially lots of memory */
: "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d17", "d18", "d20",
"d21", "d22", "d23", "cc", "memory"
);
}
static void
neon_composite_over_8888_0565 (pixman_implementation_t * impl,
pixman_op_t op,
pixman_image_t * src_image,
pixman_image_t * mask_image,
pixman_image_t * dst_image,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
uint32_t *src_line;
uint16_t *dst_line, *aligned_line;
uint32_t dst_stride, src_stride;
uint32_t kernel_count, copy_count, copy_tail;
uint8_t kernel_offset, copy_offset;
/* we assume mask is opaque
* so the only alpha to deal with is embedded in src
*/
if (width > NEON_SCANLINE_BUFFER_PIXELS)
{
/* split the blit, so we can use a fixed-size scanline buffer */
int x;
for (x = 0; x < width; x += NEON_SCANLINE_BUFFER_PIXELS)
{
neon_composite_over_8888_0565 (
impl, op,
src_image, mask_image, dst_image,
src_x + x, src_y, mask_x + x, mask_y, dest_x + x, dest_y,
(x + NEON_SCANLINE_BUFFER_PIXELS > width) ? width - x : NEON_SCANLINE_BUFFER_PIXELS, height);
}
return;
}
PIXMAN_IMAGE_GET_LINE (dst_image, dest_x, dest_y, uint16_t, dst_stride, dst_line, 1);
PIXMAN_IMAGE_GET_LINE (src_image, src_x, src_y, uint32_t, src_stride, src_line, 1);
/* keep within minimum number of aligned quadwords on width
* while also keeping the minimum number of columns to process
*/
{
unsigned long aligned_left = (unsigned long)(dst_line) & ~0xF;
unsigned long aligned_right = (((unsigned long)(dst_line + width)) + 0xF) & ~0xF;
unsigned long ceiling_length = (((unsigned long) width) * sizeof(*dst_line) + 0xF) & ~0xF;
/* the fast copy should be quadword aligned */
copy_offset = dst_line - ((uint16_t*) aligned_left);
aligned_line = dst_line - copy_offset;
copy_count = (uint32_t) ((aligned_right - aligned_left) >> 4);
copy_tail = 0;
if (aligned_right - aligned_left > ceiling_length)
{
/* unaligned routine is tightest */
kernel_count = (uint32_t) (ceiling_length >> 4);
kernel_offset = copy_offset;
}
else
{
/* aligned routine is equally tight, so it is safer to align */
kernel_count = copy_count;
kernel_offset = 0;
}
/* We should avoid reading beyond scanline ends for safety */
if (aligned_line < (dst_line - dest_x) ||
(aligned_line + (copy_count * 16 / sizeof(*dst_line))) > ((dst_line - dest_x) + dst_image->bits.width))
{
/* switch to precise read */
copy_offset = kernel_offset = 0;
aligned_line = dst_line;
kernel_count = (uint32_t) (ceiling_length >> 4);
copy_count = (width * sizeof(*dst_line)) >> 4;
copy_tail = (width * sizeof(*dst_line)) & 0xF;
}
}
/* Preload the first input scanline */
{
uint8_t *src_ptr = (uint8_t*) src_line;
uint32_t count = (width + 15) / 16;
#ifdef USE_GCC_INLINE_ASM
asm volatile (
"0: @ loop \n"
" subs %[count], %[count], #1 \n"
" pld [%[src]] \n"
" add %[src], %[src], #64 \n"
" bgt 0b \n"
/* Clobbered input registers marked as input/outputs */
: [src] "+r" (src_ptr), [count] "+r" (count)
: /* no unclobbered inputs */
: "cc"
);
#else
do
{
__pld (src_ptr);
src_ptr += 64;
}
while (--count);
#endif
}
{
uint16_t scan_line[NEON_SCANLINE_BUFFER_PIXELS + 8]; /* deliberately not initialised */
/* row-major order */
/* left edge, middle block, right edge */
for ( ; height--; src_line += src_stride, aligned_line += dst_stride)
{
/* Uncached framebuffer access is really, really slow if we do
* it piecemeal. It should be much faster if we grab it all at
* once. One scanline should easily fit in L1 cache, so this
* should not waste RAM bandwidth.
*/
neon_quadword_copy (scan_line, aligned_line, copy_count, copy_tail);
/* Apply the actual filter */
ARGB8_over_565_8_pix_neon (
src_line, scan_line + kernel_offset,
src_stride * sizeof(*src_line), kernel_count);
/* Copy the modified scanline back */
neon_quadword_copy (dst_line,
scan_line + copy_offset,
width >> 3, (width & 7) * 2);
}
}
}
#endif /* USE_GCC_INLINE_ASM */
static const pixman_fast_path_t arm_neon_fast_path_array[] =
{
{ PIXMAN_OP_ADD, PIXMAN_solid, PIXMAN_a8, PIXMAN_a8, neon_composite_add_8888_8_8, 0 },
{ PIXMAN_OP_ADD, PIXMAN_a8, PIXMAN_null, PIXMAN_a8, neon_composite_add_8000_8000, 0 },
{ PIXMAN_OP_OVER, PIXMAN_solid, PIXMAN_a8, PIXMAN_r5g6b5, neon_composite_over_n_8_0565, 0 },
{ PIXMAN_OP_OVER, PIXMAN_solid, PIXMAN_a8, PIXMAN_b5g6r5, neon_composite_over_n_8_0565, 0 },
{ PIXMAN_OP_SRC, PIXMAN_a8r8g8b8, PIXMAN_null, PIXMAN_r5g6b5, neon_composite_src_24_16, 0 },
{ PIXMAN_OP_SRC, PIXMAN_x8r8g8b8, PIXMAN_null, PIXMAN_r5g6b5, neon_composite_src_24_16, 0 },
{ PIXMAN_OP_SRC, PIXMAN_a8b8g8r8, PIXMAN_null, PIXMAN_b5g6r5, neon_composite_src_24_16, 0 },
{ PIXMAN_OP_SRC, PIXMAN_x8b8g8r8, PIXMAN_null, PIXMAN_b5g6r5, neon_composite_src_24_16, 0 },
#ifdef USE_GCC_INLINE_ASM
{ PIXMAN_OP_SRC, PIXMAN_r5g6b5, PIXMAN_null, PIXMAN_r5g6b5, neon_composite_src_16_16, 0 },
{ PIXMAN_OP_SRC, PIXMAN_b5g6r5, PIXMAN_null, PIXMAN_b5g6r5, neon_composite_src_16_16, 0 },
#if 0 /* this code has some bugs */
{ PIXMAN_OP_OVER, PIXMAN_solid, PIXMAN_null, PIXMAN_r5g6b5, neon_composite_over_n_0565, 0 },
{ PIXMAN_OP_OVER, PIXMAN_solid, PIXMAN_null, PIXMAN_b5g6r5, neon_composite_over_n_0565, 0 },
{ PIXMAN_OP_OVER, PIXMAN_a8r8g8b8, PIXMAN_null, PIXMAN_r5g6b5, neon_composite_over_8888_0565, 0 },
{ PIXMAN_OP_OVER, PIXMAN_a8b8g8r8, PIXMAN_null, PIXMAN_b5g6r5, neon_composite_over_8888_0565, 0 },
#endif
#endif
{ PIXMAN_OP_OVER, PIXMAN_a8r8g8b8, PIXMAN_null, PIXMAN_a8r8g8b8, neon_composite_over_8888_8888, 0 },
{ PIXMAN_OP_OVER, PIXMAN_a8r8g8b8, PIXMAN_null, PIXMAN_x8r8g8b8, neon_composite_over_8888_8888, 0 },
{ PIXMAN_OP_OVER, PIXMAN_a8b8g8r8, PIXMAN_null, PIXMAN_a8b8g8r8, neon_composite_over_8888_8888, 0 },
{ PIXMAN_OP_OVER, PIXMAN_a8b8g8r8, PIXMAN_null, PIXMAN_x8b8g8r8, neon_composite_over_8888_8888, 0 },
{ PIXMAN_OP_OVER, PIXMAN_a8r8g8b8, PIXMAN_a8, PIXMAN_a8r8g8b8, neon_composite_over_8888_n_8888, NEED_SOLID_MASK },
{ PIXMAN_OP_OVER, PIXMAN_a8r8g8b8, PIXMAN_a8, PIXMAN_x8r8g8b8, neon_composite_over_8888_n_8888, NEED_SOLID_MASK },
{ PIXMAN_OP_OVER, PIXMAN_solid, PIXMAN_a8, PIXMAN_a8r8g8b8, neon_composite_over_n_8_8888, 0 },
{ PIXMAN_OP_OVER, PIXMAN_solid, PIXMAN_a8, PIXMAN_x8r8g8b8, neon_composite_over_n_8_8888, 0 },
{ PIXMAN_OP_OVER, PIXMAN_solid, PIXMAN_a8, PIXMAN_a8b8g8r8, neon_composite_over_n_8_8888, 0 },
{ PIXMAN_OP_OVER, PIXMAN_solid, PIXMAN_a8, PIXMAN_x8b8g8r8, neon_composite_over_n_8_8888, 0 },
{ PIXMAN_OP_NONE },
};
const pixman_fast_path_t *const arm_neon_fast_paths = arm_neon_fast_path_array;
static void
arm_neon_composite (pixman_implementation_t *imp,
pixman_op_t op,
pixman_image_t * src,
pixman_image_t * mask,
pixman_image_t * dest,
int32_t src_x,
int32_t src_y,
int32_t mask_x,
int32_t mask_y,
int32_t dest_x,
int32_t dest_y,
int32_t width,
int32_t height)
{
if (_pixman_run_fast_path (arm_neon_fast_paths, imp,
op, src, mask, dest,
src_x, src_y,
mask_x, mask_y,
dest_x, dest_y,
width, height))
{
return;
}
_pixman_implementation_composite (imp->delegate, op,
src, mask, dest,
src_x, src_y,
mask_x, mask_y,
dest_x, dest_y,
width, height);
}
static pixman_bool_t
pixman_blt_neon (void *src_bits,
void *dst_bits,
int src_stride,
int dst_stride,
int src_bpp,
int dst_bpp,
int src_x,
int src_y,
int dst_x,
int dst_y,
int width,
int height)
{
if (!width || !height)
return TRUE;
/* accelerate only straight copies involving complete bytes */
if (src_bpp != dst_bpp || (src_bpp & 7))
return FALSE;
{
uint32_t bytes_per_pixel = src_bpp >> 3;
uint32_t byte_width = width * bytes_per_pixel;
/* parameter is in words for some reason */
int32_t src_stride_bytes = src_stride * 4;
int32_t dst_stride_bytes = dst_stride * 4;
uint8_t *src_bytes = ((uint8_t*) src_bits) +
src_y * src_stride_bytes + src_x * bytes_per_pixel;
uint8_t *dst_bytes = ((uint8_t*) dst_bits) +
dst_y * dst_stride_bytes + dst_x * bytes_per_pixel;
uint32_t quadword_count = byte_width / 16;
uint32_t offset = byte_width % 16;
while (height--)
{
neon_quadword_copy (dst_bytes, src_bytes, quadword_count, offset);
src_bytes += src_stride_bytes;
dst_bytes += dst_stride_bytes;
}
}
return TRUE;
}
static pixman_bool_t
arm_neon_blt (pixman_implementation_t *imp,
uint32_t * src_bits,
uint32_t * dst_bits,
int src_stride,
int dst_stride,
int src_bpp,
int dst_bpp,
int src_x,
int src_y,
int dst_x,
int dst_y,
int width,
int height)
{
if (pixman_blt_neon (
src_bits, dst_bits, src_stride, dst_stride, src_bpp, dst_bpp,
src_x, src_y, dst_x, dst_y, width, height))
{
return TRUE;
}
return _pixman_implementation_blt (
imp->delegate,
src_bits, dst_bits, src_stride, dst_stride, src_bpp, dst_bpp,
src_x, src_y, dst_x, dst_y, width, height);
}
static pixman_bool_t
arm_neon_fill (pixman_implementation_t *imp,
uint32_t * bits,
int stride,
int bpp,
int x,
int y,
int width,
int height,
uint32_t xor)
{
if (pixman_fill_neon (bits, stride, bpp, x, y, width, height, xor))
return TRUE;
return _pixman_implementation_fill (
imp->delegate, bits, stride, bpp, x, y, width, height, xor);
}
pixman_implementation_t *
_pixman_implementation_create_arm_neon (void)
{
pixman_implementation_t *general = _pixman_implementation_create_fast_path ();
pixman_implementation_t *imp = _pixman_implementation_create (general);
imp->composite = arm_neon_composite;
#if 0 /* this code has some bugs */
imp->blt = arm_neon_blt;
#endif
imp->fill = arm_neon_fill;
return imp;
}