blob: 6a640fa67f9302cd40ca6bfafa68bfb0f1db01e7 [file] [log] [blame]
/*
*
* Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc.
* 2005 Lars Knoll & Zack Rusin, Trolltech
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of Keith Packard not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. Keith Packard makes no
* representations about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
* SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
* SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <math.h>
#include "pixman-private.h"
typedef struct
{
uint32_t left_ag;
uint32_t left_rb;
uint32_t right_ag;
uint32_t right_rb;
int32_t left_x;
int32_t right_x;
int32_t stepper;
pixman_gradient_stop_t *stops;
int num_stops;
unsigned int spread;
int need_reset;
} GradientWalker;
static void
_gradient_walker_init (GradientWalker *walker,
gradient_t *gradient,
unsigned int spread)
{
walker->num_stops = gradient->n_stops;
walker->stops = gradient->stops;
walker->left_x = 0;
walker->right_x = 0x10000;
walker->stepper = 0;
walker->left_ag = 0;
walker->left_rb = 0;
walker->right_ag = 0;
walker->right_rb = 0;
walker->spread = spread;
walker->need_reset = TRUE;
}
static void
_gradient_walker_reset (GradientWalker *walker,
pixman_fixed_32_32_t pos)
{
int32_t x, left_x, right_x;
pixman_color_t *left_c, *right_c;
int n, count = walker->num_stops;
pixman_gradient_stop_t * stops = walker->stops;
static const pixman_color_t transparent_black = { 0, 0, 0, 0 };
switch (walker->spread)
{
case PIXMAN_REPEAT_NORMAL:
x = (int32_t)pos & 0xFFFF;
for (n = 0; n < count; n++)
if (x < stops[n].x)
break;
if (n == 0) {
left_x = stops[count-1].x - 0x10000;
left_c = &stops[count-1].color;
} else {
left_x = stops[n-1].x;
left_c = &stops[n-1].color;
}
if (n == count) {
right_x = stops[0].x + 0x10000;
right_c = &stops[0].color;
} else {
right_x = stops[n].x;
right_c = &stops[n].color;
}
left_x += (pos - x);
right_x += (pos - x);
break;
case PIXMAN_REPEAT_PAD:
for (n = 0; n < count; n++)
if (pos < stops[n].x)
break;
if (n == 0) {
left_x = INT32_MIN;
left_c = &stops[0].color;
} else {
left_x = stops[n-1].x;
left_c = &stops[n-1].color;
}
if (n == count) {
right_x = INT32_MAX;
right_c = &stops[n-1].color;
} else {
right_x = stops[n].x;
right_c = &stops[n].color;
}
break;
case PIXMAN_REPEAT_REFLECT:
x = (int32_t)pos & 0xFFFF;
if ((int32_t)pos & 0x10000)
x = 0x10000 - x;
for (n = 0; n < count; n++)
if (x < stops[n].x)
break;
if (n == 0) {
left_x = -stops[0].x;
left_c = &stops[0].color;
} else {
left_x = stops[n-1].x;
left_c = &stops[n-1].color;
}
if (n == count) {
right_x = 0x20000 - stops[n-1].x;
right_c = &stops[n-1].color;
} else {
right_x = stops[n].x;
right_c = &stops[n].color;
}
if ((int32_t)pos & 0x10000) {
pixman_color_t *tmp_c;
int32_t tmp_x;
tmp_x = 0x10000 - right_x;
right_x = 0x10000 - left_x;
left_x = tmp_x;
tmp_c = right_c;
right_c = left_c;
left_c = tmp_c;
x = 0x10000 - x;
}
left_x += (pos - x);
right_x += (pos - x);
break;
default: /* RepeatNone */
for (n = 0; n < count; n++)
if (pos < stops[n].x)
break;
if (n == 0)
{
left_x = INT32_MIN;
right_x = stops[0].x;
left_c = right_c = (pixman_color_t*) &transparent_black;
}
else if (n == count)
{
left_x = stops[n-1].x;
right_x = INT32_MAX;
left_c = right_c = (pixman_color_t*) &transparent_black;
}
else
{
left_x = stops[n-1].x;
right_x = stops[n].x;
left_c = &stops[n-1].color;
right_c = &stops[n].color;
}
}
walker->left_x = left_x;
walker->right_x = right_x;
walker->left_ag = ((left_c->alpha >> 8) << 16) | (left_c->green >> 8);
walker->left_rb = ((left_c->red & 0xff00) << 8) | (left_c->blue >> 8);
walker->right_ag = ((right_c->alpha >> 8) << 16) | (right_c->green >> 8);
walker->right_rb = ((right_c->red & 0xff00) << 8) | (right_c->blue >> 8);
if ( walker->left_x == walker->right_x ||
( walker->left_ag == walker->right_ag &&
walker->left_rb == walker->right_rb ) )
{
walker->stepper = 0;
}
else
{
int32_t width = right_x - left_x;
walker->stepper = ((1 << 24) + width/2)/width;
}
walker->need_reset = FALSE;
}
#define GRADIENT_WALKER_NEED_RESET(w,x) \
( (w)->need_reset || (x) < (w)->left_x || (x) >= (w)->right_x)
/* the following assumes that GRADIENT_WALKER_NEED_RESET(w,x) is FALSE */
static uint32_t
_gradient_walker_pixel (GradientWalker *walker,
pixman_fixed_32_32_t x)
{
int dist, idist;
uint32_t t1, t2, a, color;
if (GRADIENT_WALKER_NEED_RESET (walker, x))
_gradient_walker_reset (walker, x);
dist = ((int)(x - walker->left_x)*walker->stepper) >> 16;
idist = 256 - dist;
/* combined INTERPOLATE and premultiply */
t1 = walker->left_rb*idist + walker->right_rb*dist;
t1 = (t1 >> 8) & 0xff00ff;
t2 = walker->left_ag*idist + walker->right_ag*dist;
t2 &= 0xff00ff00;
color = t2 & 0xff000000;
a = t2 >> 24;
t1 = t1*a + 0x800080;
t1 = (t1 + ((t1 >> 8) & 0xff00ff)) >> 8;
t2 = (t2 >> 8)*a + 0x800080;
t2 = (t2 + ((t2 >> 8) & 0xff00ff));
return (color | (t1 & 0xff00ff) | (t2 & 0xff00));
}
void pixmanFetchSourcePict(source_image_t * pict, int x, int y, int width,
uint32_t *buffer, uint32_t *mask, uint32_t maskBits)
{
#if 0
SourcePictPtr pGradient = pict->pSourcePict;
#endif
GradientWalker walker;
uint32_t *end = buffer + width;
gradient_t *gradient;
if (pict->common.type == SOLID)
{
register uint32_t color = ((solid_fill_t *)pict)->color;
while (buffer < end)
*(buffer++) = color;
return;
}
gradient = (gradient_t *)pict;
_gradient_walker_init (&walker, gradient, pict->common.repeat);
if (pict->common.type == LINEAR) {
pixman_vector_t v, unit;
pixman_fixed_32_32_t l;
pixman_fixed_48_16_t dx, dy, a, b, off;
linear_gradient_t *linear = (linear_gradient_t *)pict;
/* reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed(x) + pixman_fixed_1/2;
v.vector[1] = pixman_int_to_fixed(y) + pixman_fixed_1/2;
v.vector[2] = pixman_fixed_1;
if (pict->common.transform) {
if (!pixman_transform_point_3d (pict->common.transform, &v))
return;
unit.vector[0] = pict->common.transform->matrix[0][0];
unit.vector[1] = pict->common.transform->matrix[1][0];
unit.vector[2] = pict->common.transform->matrix[2][0];
} else {
unit.vector[0] = pixman_fixed_1;
unit.vector[1] = 0;
unit.vector[2] = 0;
}
dx = linear->p2.x - linear->p1.x;
dy = linear->p2.y - linear->p1.y;
l = dx*dx + dy*dy;
if (l != 0) {
a = (dx << 32) / l;
b = (dy << 32) / l;
off = (-a*linear->p1.x - b*linear->p1.y)>>16;
}
if (l == 0 || (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1)) {
pixman_fixed_48_16_t inc, t;
/* affine transformation only */
if (l == 0) {
t = 0;
inc = 0;
} else {
t = ((a*v.vector[0] + b*v.vector[1]) >> 16) + off;
inc = (a * unit.vector[0] + b * unit.vector[1]) >> 16;
}
if (pict->class == SOURCE_IMAGE_CLASS_VERTICAL)
{
register uint32_t color;
color = _gradient_walker_pixel( &walker, t );
while (buffer < end)
*(buffer++) = color;
}
else
{
if (!mask) {
while (buffer < end)
{
*(buffer) = _gradient_walker_pixel (&walker, t);
buffer += 1;
t += inc;
}
} else {
while (buffer < end) {
if (*mask++ & maskBits)
{
*(buffer) = _gradient_walker_pixel (&walker, t);
}
buffer += 1;
t += inc;
}
}
}
}
else /* projective transformation */
{
pixman_fixed_48_16_t t;
if (pict->class == SOURCE_IMAGE_CLASS_VERTICAL)
{
register uint32_t color;
if (v.vector[2] == 0)
{
t = 0;
}
else
{
pixman_fixed_48_16_t x, y;
x = ((pixman_fixed_48_16_t) v.vector[0] << 16) / v.vector[2];
y = ((pixman_fixed_48_16_t) v.vector[1] << 16) / v.vector[2];
t = ((a * x + b * y) >> 16) + off;
}
color = _gradient_walker_pixel( &walker, t );
while (buffer < end)
*(buffer++) = color;
}
else
{
while (buffer < end)
{
if (!mask || *mask++ & maskBits)
{
if (v.vector[2] == 0) {
t = 0;
} else {
pixman_fixed_48_16_t x, y;
x = ((pixman_fixed_48_16_t)v.vector[0] << 16) / v.vector[2];
y = ((pixman_fixed_48_16_t)v.vector[1] << 16) / v.vector[2];
t = ((a*x + b*y) >> 16) + off;
}
*(buffer) = _gradient_walker_pixel (&walker, t);
}
++buffer;
v.vector[0] += unit.vector[0];
v.vector[1] += unit.vector[1];
v.vector[2] += unit.vector[2];
}
}
}
} else {
/*
* In the radial gradient problem we are given two circles (c₁,r₁) and
* (c₂,r₂) that define the gradient itself. Then, for any point p, we
* must compute the value(s) of t within [0.0, 1.0] representing the
* circle(s) that would color the point.
*
* There are potentially two values of t since the point p can be
* colored by both sides of the circle, (which happens whenever one
* circle is not entirely contained within the other).
*
* If we solve for a value of t that is outside of [0.0, 1.0] then we
* use the extend mode (NONE, REPEAT, REFLECT, or PAD) to map to a
* value within [0.0, 1.0].
*
* Here is an illustration of the problem:
*
* p₂
* p •
* • ╲
* · ╲r₂
* p₁ · ╲
* • θ╲
* ╲ ╌╌•
* ╲r₁ · c₂
* θ╲ ·
* ╌╌•
* c₁
*
* Given (c₁,r₁), (c₂,r₂) and p, we must find an angle θ such that two
* points p₁ and p₂ on the two circles are collinear with p. Then, the
* desired value of t is the ratio of the length of p₁p to the length
* of p₁p₂.
*
* So, we have six unknown values: (p₁x, p₁y), (p₂x, p₂y), θ and t.
* We can also write six equations that constrain the problem:
*
* Point p₁ is a distance r₁ from c₁ at an angle of θ:
*
* 1. p₁x = c₁x + r₁·cos θ
* 2. p₁y = c₁y + r₁·sin θ
*
* Point p₂ is a distance r₂ from c₂ at an angle of θ:
*
* 3. p₂x = c₂x + r2·cos θ
* 4. p₂y = c₂y + r2·sin θ
*
* Point p lies at a fraction t along the line segment p₁p₂:
*
* 5. px = t·p₂x + (1-t)·p₁x
* 6. py = t·p₂y + (1-t)·p₁y
*
* To solve, first subtitute 1-4 into 5 and 6:
*
* px = t·(c₂x + r₂·cos θ) + (1-t)·(c₁x + r₁·cos θ)
* py = t·(c₂y + r₂·sin θ) + (1-t)·(c₁y + r₁·sin θ)
*
* Then solve each for cos θ and sin θ expressed as a function of t:
*
* cos θ = (-(c₂x - c₁x)·t + (px - c₁x)) / ((r₂-r₁)·t + r₁)
* sin θ = (-(c₂y - c₁y)·t + (py - c₁y)) / ((r₂-r₁)·t + r₁)
*
* To simplify this a bit, we define new variables for several of the
* common terms as shown below:
*
* p₂
* p •
* • ╲
* · ┆ ╲r₂
* p₁ · ┆ ╲
* • pdy┆ ╲
* ╲ ┆ •c₂
* ╲r₁ ┆ · ┆
* ╲ ·┆ ┆cdy
* •╌╌╌╌┴╌╌╌╌╌╌╌┘
* c₁ pdx cdx
*
* cdx = (c₂x - c₁x)
* cdy = (c₂y - c₁y)
* dr = r₂-r₁
* pdx = px - c₁x
* pdy = py - c₁y
*
* Note that cdx, cdy, and dr do not depend on point p at all, so can
* be pre-computed for the entire gradient. The simplifed equations
* are now:
*
* cos θ = (-cdx·t + pdx) / (dr·t + r₁)
* sin θ = (-cdy·t + pdy) / (dr·t + r₁)
*
* Finally, to get a single function of t and eliminate the last
* unknown θ, we use the identity sin²θ + cos²θ = 1. First, square
* each equation, (we knew a quadratic was coming since it must be
* possible to obtain two solutions in some cases):
*
* cos²θ = (cdx²t² - 2·cdx·pdx·t + pdx²) / (dr²·t² + 2·r₁·dr·t + r₁²)
* sin²θ = (cdy²t² - 2·cdy·pdy·t + pdy²) / (dr²·t² + 2·r₁·dr·t + r₁²)
*
* Then add both together, set the result equal to 1, and express as a
* standard quadratic equation in t of the form At² + Bt + C = 0
*
* (cdx² + cdy² - dr²)·t² - 2·(cdx·pdx + cdy·pdy + r₁·dr)·t + (pdx² + pdy² - r₁²) = 0
*
* In other words:
*
* A = cdx² + cdy² - dr²
* B = -2·(pdx·cdx + pdy·cdy + r₁·dr)
* C = pdx² + pdy² - r₁²
*
* And again, notice that A does not depend on p, so can be
* precomputed. From here we just use the quadratic formula to solve
* for t:
*
* t = (-2·B ± ⎷(B² - 4·A·C)) / 2·A
*/
/* radial or conical */
pixman_bool_t affine = TRUE;
double cx = 1.;
double cy = 0.;
double cz = 0.;
double rx = x + 0.5;
double ry = y + 0.5;
double rz = 1.;
if (pict->common.transform) {
pixman_vector_t v;
/* reference point is the center of the pixel */
v.vector[0] = pixman_int_to_fixed(x) + pixman_fixed_1/2;
v.vector[1] = pixman_int_to_fixed(y) + pixman_fixed_1/2;
v.vector[2] = pixman_fixed_1;
if (!pixman_transform_point_3d (pict->common.transform, &v))
return;
cx = pict->common.transform->matrix[0][0]/65536.;
cy = pict->common.transform->matrix[1][0]/65536.;
cz = pict->common.transform->matrix[2][0]/65536.;
rx = v.vector[0]/65536.;
ry = v.vector[1]/65536.;
rz = v.vector[2]/65536.;
affine = pict->common.transform->matrix[2][0] == 0 && v.vector[2] == pixman_fixed_1;
}
if (pict->common.type == RADIAL) {
radial_gradient_t *radial = (radial_gradient_t *)pict;
if (affine) {
while (buffer < end) {
if (!mask || *mask++ & maskBits)
{
double pdx, pdy;
double B, C;
double det;
double c1x = radial->c1.x / 65536.0;
double c1y = radial->c1.y / 65536.0;
double r1 = radial->c1.radius / 65536.0;
pixman_fixed_48_16_t t;
pdx = rx - c1x;
pdy = ry - c1y;
B = -2 * ( pdx * radial->cdx
+ pdy * radial->cdy
+ r1 * radial->dr);
C = (pdx * pdx + pdy * pdy - r1 * r1);
det = (B * B) - (4 * radial->A * C);
if (det < 0.0)
det = 0.0;
if (radial->A < 0)
t = (pixman_fixed_48_16_t) ((- B - sqrt(det)) / (2.0 * radial->A) * 65536);
else
t = (pixman_fixed_48_16_t) ((- B + sqrt(det)) / (2.0 * radial->A) * 65536);
*(buffer) = _gradient_walker_pixel (&walker, t);
}
++buffer;
rx += cx;
ry += cy;
}
} else {
/* projective */
while (buffer < end) {
if (!mask || *mask++ & maskBits)
{
double pdx, pdy;
double B, C;
double det;
double c1x = radial->c1.x / 65536.0;
double c1y = radial->c1.y / 65536.0;
double r1 = radial->c1.radius / 65536.0;
pixman_fixed_48_16_t t;
double x, y;
if (rz != 0) {
x = rx/rz;
y = ry/rz;
} else {
x = y = 0.;
}
pdx = x - c1x;
pdy = y - c1y;
B = -2 * ( pdx * radial->cdx
+ pdy * radial->cdy
+ r1 * radial->dr);
C = (pdx * pdx + pdy * pdy - r1 * r1);
det = (B * B) - (4 * radial->A * C);
if (det < 0.0)
det = 0.0;
if (radial->A < 0)
t = (pixman_fixed_48_16_t) ((- B - sqrt(det)) / (2.0 * radial->A) * 65536);
else
t = (pixman_fixed_48_16_t) ((- B + sqrt(det)) / (2.0 * radial->A) * 65536);
*(buffer) = _gradient_walker_pixel (&walker, t);
}
++buffer;
rx += cx;
ry += cy;
rz += cz;
}
}
} else /* SourcePictTypeConical */ {
conical_gradient_t *conical = (conical_gradient_t *)pict;
double a = conical->angle/(180.*65536);
if (affine) {
rx -= conical->center.x/65536.;
ry -= conical->center.y/65536.;
while (buffer < end) {
double angle;
if (!mask || *mask++ & maskBits)
{
pixman_fixed_48_16_t t;
angle = atan2(ry, rx) + a;
t = (pixman_fixed_48_16_t) (angle * (65536. / (2*M_PI)));
*(buffer) = _gradient_walker_pixel (&walker, t);
}
++buffer;
rx += cx;
ry += cy;
}
} else {
while (buffer < end) {
double x, y;
double angle;
if (!mask || *mask++ & maskBits)
{
pixman_fixed_48_16_t t;
if (rz != 0) {
x = rx/rz;
y = ry/rz;
} else {
x = y = 0.;
}
x -= conical->center.x/65536.;
y -= conical->center.y/65536.;
angle = atan2(y, x) + a;
t = (pixman_fixed_48_16_t) (angle * (65536. / (2*M_PI)));
*(buffer) = _gradient_walker_pixel (&walker, t);
}
++buffer;
rx += cx;
ry += cy;
rz += cz;
}
}
}
}
}
/*
* For now, just evaluate the source picture at 32bpp and expand. We could
* produce smoother gradients by evaluating them at higher color depth, but
* that's a project for the future.
*/
void pixmanFetchSourcePict64(source_image_t * pict, int x, int y, int width,
uint64_t *buffer, uint64_t *mask, uint32_t maskBits)
{
uint32_t *mask8 = NULL;
// Contract the mask image, if one exists, so that the 32-bit fetch function
// can use it.
if (mask) {
mask8 = pixman_malloc_ab(width, sizeof(uint32_t));
pixman_contract(mask8, mask, width);
}
// Fetch the source image into the first half of buffer.
pixmanFetchSourcePict(pict, x, y, width, (uint32_t*)buffer, mask8,
maskBits);
// Expand from 32bpp to 64bpp in place.
pixman_expand(buffer, (uint32_t*)buffer, PIXMAN_a8r8g8b8, width);
free(mask8);
}