blob: 0c16f31c3f31d808f0c1dbd12efc9ed08e1488f3 [file] [log] [blame]
/*
* Copyright (c) 2020, The OpenThread Authors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "common/encoding.hpp"
#include "common/message.hpp"
#include "common/numeric_limits.hpp"
#include "common/random.hpp"
#include "common/string.hpp"
#include "instance/instance.hpp"
#include "net/checksum.hpp"
#include "net/icmp6.hpp"
#include "net/ip4_types.hpp"
#include "net/udp6.hpp"
#include "utils/verhoeff_checksum.hpp"
#include "test_platform.h"
#include "test_util.hpp"
namespace ot {
uint16_t CalculateChecksum(const void *aBuffer, uint16_t aLength)
{
// Calculates checksum over a given buffer data. This implementation
// is inspired by the algorithm from RFC-1071.
uint32_t sum = 0;
const uint8_t *bytes = reinterpret_cast<const uint8_t *>(aBuffer);
while (aLength >= sizeof(uint16_t))
{
sum += BigEndian::ReadUint16(bytes);
bytes += sizeof(uint16_t);
aLength -= sizeof(uint16_t);
}
if (aLength > 0)
{
sum += (static_cast<uint32_t>(bytes[0]) << 8);
}
// Fold 32-bit sum to 16 bits.
while (sum >> 16)
{
sum = (sum & 0xffff) + (sum >> 16);
}
return static_cast<uint16_t>(sum & 0xffff);
}
uint16_t CalculateChecksum(const Ip6::Address &aSource,
const Ip6::Address &aDestination,
uint8_t aIpProto,
const Message &aMessage)
{
// This method calculates the checksum over an IPv6 message.
constexpr uint16_t kMaxPayload = 1024;
OT_TOOL_PACKED_BEGIN
struct PseudoHeader
{
Ip6::Address mSource;
Ip6::Address mDestination;
uint32_t mPayloadLength;
uint32_t mProtocol;
} OT_TOOL_PACKED_END;
OT_TOOL_PACKED_BEGIN
struct ChecksumData
{
PseudoHeader mPseudoHeader;
uint8_t mPayload[kMaxPayload];
} OT_TOOL_PACKED_END;
ChecksumData data;
uint16_t payloadLength;
payloadLength = aMessage.GetLength() - aMessage.GetOffset();
data.mPseudoHeader.mSource = aSource;
data.mPseudoHeader.mDestination = aDestination;
data.mPseudoHeader.mProtocol = BigEndian::HostSwap32(aIpProto);
data.mPseudoHeader.mPayloadLength = BigEndian::HostSwap32(payloadLength);
SuccessOrQuit(aMessage.Read(aMessage.GetOffset(), data.mPayload, payloadLength));
return CalculateChecksum(&data, sizeof(PseudoHeader) + payloadLength);
}
uint16_t CalculateChecksum(const Ip4::Address &aSource,
const Ip4::Address &aDestination,
uint8_t aIpProto,
const Message &aMessage)
{
// This method calculates the checksum over an IPv4 message.
constexpr uint16_t kMaxPayload = 1024;
OT_TOOL_PACKED_BEGIN
struct PseudoHeader
{
Ip4::Address mSource;
Ip4::Address mDestination;
uint16_t mPayloadLength;
uint16_t mProtocol;
} OT_TOOL_PACKED_END;
OT_TOOL_PACKED_BEGIN
struct ChecksumData
{
PseudoHeader mPseudoHeader;
uint8_t mPayload[kMaxPayload];
} OT_TOOL_PACKED_END;
ChecksumData data;
uint16_t payloadLength;
payloadLength = aMessage.GetLength() - aMessage.GetOffset();
data.mPseudoHeader.mSource = aSource;
data.mPseudoHeader.mDestination = aDestination;
data.mPseudoHeader.mProtocol = BigEndian::HostSwap16(aIpProto);
data.mPseudoHeader.mPayloadLength = BigEndian::HostSwap16(payloadLength);
SuccessOrQuit(aMessage.Read(aMessage.GetOffset(), data.mPayload, payloadLength));
return CalculateChecksum(&data, sizeof(PseudoHeader) + payloadLength);
}
void CorruptMessage(Message &aMessage)
{
// Change a random bit in the message.
uint16_t byteOffset;
uint8_t bitOffset;
uint8_t byte;
byteOffset = Random::NonCrypto::GetUint16InRange(0, aMessage.GetLength());
SuccessOrQuit(aMessage.Read(byteOffset, byte));
bitOffset = Random::NonCrypto::GetUint8InRange(0, kBitsPerByte);
byte ^= (1 << bitOffset);
aMessage.Write(byteOffset, byte);
}
void TestUdpMessageChecksum(void)
{
constexpr uint16_t kMinSize = sizeof(Ip6::Udp::Header);
constexpr uint16_t kMaxSize = kBufferSize * 3 + 24;
const char *kSourceAddress = "fd00:1122:3344:5566:7788:99aa:bbcc:ddee";
const char *kDestAddress = "fd01:2345:6789:abcd:ef01:2345:6789:abcd";
Instance *instance = static_cast<Instance *>(testInitInstance());
VerifyOrQuit(instance != nullptr);
for (uint16_t size = kMinSize; size <= kMaxSize; size++)
{
Message *message = instance->Get<Ip6::Ip6>().NewMessage(sizeof(Ip6::Udp::Header));
Ip6::Udp::Header udpHeader;
Ip6::MessageInfo messageInfo;
VerifyOrQuit(message != nullptr, "Ip6::NewMesssage() failed");
SuccessOrQuit(message->SetLength(size));
// Write UDP header with a random payload.
Random::NonCrypto::Fill(udpHeader);
udpHeader.SetChecksum(0);
message->Write(0, udpHeader);
if (size > sizeof(udpHeader))
{
uint8_t buffer[kMaxSize];
uint16_t payloadSize = size - sizeof(udpHeader);
Random::NonCrypto::FillBuffer(buffer, payloadSize);
message->WriteBytes(sizeof(udpHeader), &buffer[0], payloadSize);
}
SuccessOrQuit(messageInfo.GetSockAddr().FromString(kSourceAddress));
SuccessOrQuit(messageInfo.GetPeerAddr().FromString(kDestAddress));
// Verify that the `Checksum::UpdateMessageChecksum` correctly
// updates the checksum field in the UDP header on the message.
Checksum::UpdateMessageChecksum(*message, messageInfo.GetSockAddr(), messageInfo.GetPeerAddr(), Ip6::kProtoUdp);
SuccessOrQuit(message->Read(message->GetOffset(), udpHeader));
VerifyOrQuit(udpHeader.GetChecksum() != 0);
// Verify that the calculated UDP checksum is valid.
VerifyOrQuit(CalculateChecksum(messageInfo.GetSockAddr(), messageInfo.GetPeerAddr(), Ip6::kProtoUdp,
*message) == 0xffff);
// Verify that `Checksum::VerifyMessageChecksum()` accepts the
// message and its calculated checksum.
SuccessOrQuit(Checksum::VerifyMessageChecksum(*message, messageInfo, Ip6::kProtoUdp));
// Corrupt the message and verify that checksum is no longer accepted.
CorruptMessage(*message);
VerifyOrQuit(Checksum::VerifyMessageChecksum(*message, messageInfo, Ip6::kProtoUdp) != kErrorNone,
"Checksum passed on corrupted message");
message->Free();
}
}
void TestIcmp6MessageChecksum(void)
{
constexpr uint16_t kMinSize = sizeof(Ip6::Icmp::Header);
constexpr uint16_t kMaxSize = kBufferSize * 3 + 24;
const char *kSourceAddress = "fd00:feef:dccd:baab:9889:7667:5444:3223";
const char *kDestAddress = "fd01:abab:beef:cafe:1234:5678:9abc:0";
Instance *instance = static_cast<Instance *>(testInitInstance());
VerifyOrQuit(instance != nullptr, "Null OpenThread instance\n");
for (uint16_t size = kMinSize; size <= kMaxSize; size++)
{
Message *message = instance->Get<Ip6::Ip6>().NewMessage(sizeof(Ip6::Icmp::Header));
Ip6::Icmp::Header icmp6Header;
Ip6::MessageInfo messageInfo;
VerifyOrQuit(message != nullptr, "Ip6::NewMesssage() failed");
SuccessOrQuit(message->SetLength(size));
// Write ICMP6 header with a random payload.
Random::NonCrypto::Fill(icmp6Header);
icmp6Header.SetChecksum(0);
message->Write(0, icmp6Header);
if (size > sizeof(icmp6Header))
{
uint8_t buffer[kMaxSize];
uint16_t payloadSize = size - sizeof(icmp6Header);
Random::NonCrypto::FillBuffer(buffer, payloadSize);
message->WriteBytes(sizeof(icmp6Header), &buffer[0], payloadSize);
}
SuccessOrQuit(messageInfo.GetSockAddr().FromString(kSourceAddress));
SuccessOrQuit(messageInfo.GetPeerAddr().FromString(kDestAddress));
// Verify that the `Checksum::UpdateMessageChecksum` correctly
// updates the checksum field in the ICMP6 header on the message.
Checksum::UpdateMessageChecksum(*message, messageInfo.GetSockAddr(), messageInfo.GetPeerAddr(),
Ip6::kProtoIcmp6);
SuccessOrQuit(message->Read(message->GetOffset(), icmp6Header));
VerifyOrQuit(icmp6Header.GetChecksum() != 0, "Failed to update checksum");
// Verify that the calculated ICMP6 checksum is valid.
VerifyOrQuit(CalculateChecksum(messageInfo.GetSockAddr(), messageInfo.GetPeerAddr(), Ip6::kProtoIcmp6,
*message) == 0xffff);
// Verify that `Checksum::VerifyMessageChecksum()` accepts the
// message and its calculated checksum.
SuccessOrQuit(Checksum::VerifyMessageChecksum(*message, messageInfo, Ip6::kProtoIcmp6));
// Corrupt the message and verify that checksum is no longer accepted.
CorruptMessage(*message);
VerifyOrQuit(Checksum::VerifyMessageChecksum(*message, messageInfo, Ip6::kProtoIcmp6) != kErrorNone,
"Checksum passed on corrupted message");
message->Free();
}
}
void TestTcp4MessageChecksum(void)
{
constexpr size_t kMinSize = sizeof(Ip4::Tcp::Header);
constexpr size_t kMaxSize = kBufferSize * 3 + 24;
const char *kSourceAddress = "12.34.56.78";
const char *kDestAddress = "87.65.43.21";
Ip4::Address sourceAddress;
Ip4::Address destAddress;
Instance *instance = static_cast<Instance *>(testInitInstance());
VerifyOrQuit(instance != nullptr);
SuccessOrQuit(sourceAddress.FromString(kSourceAddress));
SuccessOrQuit(destAddress.FromString(kDestAddress));
for (uint16_t size = kMinSize; size <= kMaxSize; size++)
{
Message *message = instance->Get<Ip6::Ip6>().NewMessage(sizeof(Ip4::Tcp::Header));
Ip4::Tcp::Header tcpHeader;
VerifyOrQuit(message != nullptr, "Ip6::NewMesssage() failed");
SuccessOrQuit(message->SetLength(size));
// Write TCP header with a random payload.
Random::NonCrypto::Fill(tcpHeader);
message->Write(0, tcpHeader);
if (size > sizeof(tcpHeader))
{
uint8_t buffer[kMaxSize];
uint16_t payloadSize = size - sizeof(tcpHeader);
Random::NonCrypto::FillBuffer(buffer, payloadSize);
message->WriteBytes(sizeof(tcpHeader), &buffer[0], payloadSize);
}
// Verify that the `Checksum::UpdateMessageChecksum` correctly
// updates the checksum field in the UDP header on the message.
Checksum::UpdateMessageChecksum(*message, sourceAddress, destAddress, Ip4::kProtoTcp);
SuccessOrQuit(message->Read(message->GetOffset(), tcpHeader));
VerifyOrQuit(tcpHeader.GetChecksum() != 0);
// Verify that the calculated UDP checksum is valid.
VerifyOrQuit(CalculateChecksum(sourceAddress, destAddress, Ip4::kProtoTcp, *message) == 0xffff);
message->Free();
}
}
void TestUdp4MessageChecksum(void)
{
constexpr uint16_t kMinSize = sizeof(Ip4::Udp::Header);
constexpr uint16_t kMaxSize = kBufferSize * 3 + 24;
const char *kSourceAddress = "12.34.56.78";
const char *kDestAddress = "87.65.43.21";
Ip4::Address sourceAddress;
Ip4::Address destAddress;
Instance *instance = static_cast<Instance *>(testInitInstance());
SuccessOrQuit(sourceAddress.FromString(kSourceAddress));
SuccessOrQuit(destAddress.FromString(kDestAddress));
VerifyOrQuit(instance != nullptr);
for (uint16_t size = kMinSize; size <= kMaxSize; size++)
{
Message *message = instance->Get<Ip6::Ip6>().NewMessage(sizeof(Ip4::Udp::Header));
Ip4::Udp::Header udpHeader;
VerifyOrQuit(message != nullptr, "Ip6::NewMesssage() failed");
SuccessOrQuit(message->SetLength(size));
// Write UDP header with a random payload.
Random::NonCrypto::Fill(udpHeader);
udpHeader.SetChecksum(0);
message->Write(0, udpHeader);
if (size > sizeof(udpHeader))
{
uint8_t buffer[kMaxSize];
uint16_t payloadSize = size - sizeof(udpHeader);
Random::NonCrypto::FillBuffer(buffer, payloadSize);
message->WriteBytes(sizeof(udpHeader), &buffer[0], payloadSize);
}
// Verify that the `Checksum::UpdateMessageChecksum` correctly
// updates the checksum field in the UDP header on the message.
Checksum::UpdateMessageChecksum(*message, sourceAddress, destAddress, Ip4::kProtoUdp);
SuccessOrQuit(message->Read(message->GetOffset(), udpHeader));
VerifyOrQuit(udpHeader.GetChecksum() != 0);
// Verify that the calculated UDP checksum is valid.
VerifyOrQuit(CalculateChecksum(sourceAddress, destAddress, Ip4::kProtoUdp, *message) == 0xffff);
message->Free();
}
}
void TestIcmp4MessageChecksum(void)
{
// A captured ICMP echo request (ping) message. Checksum field is set to zero.
const uint8_t kExampleIcmpMessage[] = "\x08\x00\x00\x00\x67\x2e\x00\x00\x62\xaf\xf1\x61\x00\x04\xfc\x24"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17"
"\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x27"
"\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37";
uint16_t kChecksumForExampleMessage = 0x5594;
Instance *instance = static_cast<Instance *>(testInitInstance());
Message *message = instance->Get<Ip6::Ip6>().NewMessage(sizeof(kExampleIcmpMessage));
Ip4::Address source;
Ip4::Address dest;
uint8_t mPayload[sizeof(kExampleIcmpMessage)];
Ip4::Icmp::Header icmpHeader;
SuccessOrQuit(message->AppendBytes(kExampleIcmpMessage, sizeof(kExampleIcmpMessage)));
// Random IPv4 address, ICMP message checksum does not include a presudo header like TCP and UDP.
source.mFields.m32 = 0x12345678;
dest.mFields.m32 = 0x87654321;
Checksum::UpdateMessageChecksum(*message, source, dest, Ip4::kProtoIcmp);
SuccessOrQuit(message->Read(0, icmpHeader));
VerifyOrQuit(icmpHeader.GetChecksum() == kChecksumForExampleMessage);
SuccessOrQuit(message->Read(message->GetOffset(), mPayload, sizeof(mPayload)));
VerifyOrQuit(CalculateChecksum(mPayload, sizeof(mPayload)) == 0xffff);
}
class ChecksumTester
{
public:
static void TestExampleVector(void)
{
// Example from RFC 1071
const uint8_t kTestVector[] = {0x00, 0x01, 0xf2, 0x03, 0xf4, 0xf5, 0xf6, 0xf7};
const uint16_t kTestVectorChecksum = 0xddf2;
Checksum checksum;
VerifyOrQuit(checksum.GetValue() == 0, "Incorrect initial checksum value");
checksum.AddData(kTestVector, sizeof(kTestVector));
VerifyOrQuit(checksum.GetValue() == kTestVectorChecksum);
VerifyOrQuit(checksum.GetValue() == CalculateChecksum(kTestVector, sizeof(kTestVector)), );
}
};
#if OPENTHREAD_CONFIG_VERHOEFF_CHECKSUM_ENABLE
void TestVerhoeffChecksum(void)
{
static constexpr uint16_t kMaxStringSize = 50;
const char *kExamples[] = {"307318421", "487300178", "123455672", "0", "15",
"999999994", "000000001", "100000000", "2363"};
const char *kInvalidFormats[] = {
"307 318421",
"307318421 ",
" 307318421",
"ABCDE",
};
char string[kMaxStringSize];
char checksum;
char expectedChecksum;
printf("\nVerhoeffChecksum\n");
for (const char *example : kExamples)
{
uint16_t length = StringLength(example, kMaxStringSize - 1);
memcpy(string, example, length + 1);
printf("- \"%s\"\n", string);
SuccessOrQuit(Utils::VerhoeffChecksum::Validate(string));
expectedChecksum = string[length - 1];
string[length - 1] = (expectedChecksum == '0') ? '9' : (expectedChecksum - 1);
VerifyOrQuit(Utils::VerhoeffChecksum::Validate(string) == kErrorFailed);
string[length - 1] = '\0';
SuccessOrQuit(Utils::VerhoeffChecksum::Calculate(string, checksum));
VerifyOrQuit(checksum == expectedChecksum);
string[length - 1] = expectedChecksum == '0' ? '9' : (expectedChecksum - 1);
}
printf("\nInvalid format:\n");
for (const char *example : kInvalidFormats)
{
printf("- \"%s\"\n", example);
VerifyOrQuit(Utils::VerhoeffChecksum::Validate(example) == kErrorInvalidArgs);
VerifyOrQuit(Utils::VerhoeffChecksum::Calculate(example, checksum) == kErrorInvalidArgs);
}
}
#endif // OPENTHREAD_CONFIG_VERHOEFF_CHECKSUM_ENABLE
} // namespace ot
int main(void)
{
ot::ChecksumTester::TestExampleVector();
ot::TestUdpMessageChecksum();
ot::TestIcmp6MessageChecksum();
ot::TestTcp4MessageChecksum();
ot::TestUdp4MessageChecksum();
ot::TestIcmp4MessageChecksum();
#if OPENTHREAD_CONFIG_VERHOEFF_CHECKSUM_ENABLE
ot::TestVerhoeffChecksum();
#endif
printf("All tests passed\n");
return 0;
}