blob: 823dedbbb4b1a2ff7d9c5167856315ddbaa87b66 [file] [log] [blame]
/*
* Copyright (c) 2018 - 2019, Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef NRF_SPU_H__
#define NRF_SPU_H__
#include <nrfx.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup nrf_spu_hal SPU HAL
* @{
* @ingroup nrf_spu
* @brief Hardware access layer for managing the System Protection Unit (SPU) peripheral.
*/
/** @brief SPU events. */
typedef enum
{
NRF_SPU_EVENT_RAMACCERR = offsetof(NRF_SPU_Type, EVENTS_RAMACCERR), ///< A security violation has been detected for the RAM memory space.
NRF_SPU_EVENT_FLASHACCERR = offsetof(NRF_SPU_Type, EVENTS_FLASHACCERR), ///< A security violation has been detected for the Flash memory space.
NRF_SPU_EVENT_PERIPHACCERR = offsetof(NRF_SPU_Type, EVENTS_PERIPHACCERR) ///< A security violation has been detected on one or several peripherals.
} nrf_spu_event_t;
/** @brief SPU interrupts. */
typedef enum
{
NRF_SPU_INT_RAMACCERR_MASK = SPU_INTENSET_RAMACCERR_Msk, ///< Interrupt on RAMACCERR event.
NRF_SPU_INT_FLASHACCERR_MASK = SPU_INTENSET_FLASHACCERR_Msk, ///< Interrupt on FLASHACCERR event.
NRF_SPU_INT_PERIPHACCERR_MASK = SPU_INTENSET_PERIPHACCERR_Msk ///< Interrupt on PERIPHACCERR event.
} nrf_spu_int_mask_t;
/** @brief SPU Non-Secure Callable (NSC) region size. */
typedef enum
{
NRF_SPU_NSC_SIZE_DISABLED = 0, ///< Not defined as a non-secure callable region.
NRF_SPU_NSC_SIZE_32B = 1, ///< Non-Secure Callable region with a 32-byte size
NRF_SPU_NSC_SIZE_64B = 2, ///< Non-Secure Callable region with a 64-byte size
NRF_SPU_NSC_SIZE_128B = 3, ///< Non-Secure Callable region with a 128-byte size
NRF_SPU_NSC_SIZE_256B = 4, ///< Non-Secure Callable region with a 256-byte size
NRF_SPU_NSC_SIZE_512B = 5, ///< Non-Secure Callable region with a 512-byte size
NRF_SPU_NSC_SIZE_1024B = 6, ///< Non-Secure Callable region with a 1024-byte size
NRF_SPU_NSC_SIZE_2048B = 7, ///< Non-Secure Callable region with a 2048-byte size
NRF_SPU_NSC_SIZE_4096B = 8 ///< Non-Secure Callable region with a 4096-byte size
} nrf_spu_nsc_size_t;
/** @brief SPU memory region permissions. */
typedef enum
{
NRF_SPU_MEM_PERM_EXECUTE = SPU_FLASHREGION_PERM_EXECUTE_Msk, ///< Allow code execution from particular memory region.
NRF_SPU_MEM_PERM_WRITE = SPU_FLASHREGION_PERM_WRITE_Msk, ///< Allow write operation on particular memory region.
NRF_SPU_MEM_PERM_READ = SPU_FLASHREGION_PERM_READ_Msk ///< Allow read operation from particular memory region.
} nrf_spu_mem_perm_t;
/**
* @brief Function for clearing a specific SPU event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to clear.
*/
__STATIC_INLINE void nrf_spu_event_clear(NRF_SPU_Type * p_reg,
nrf_spu_event_t event);
/**
* @brief Function for retrieving the state of the SPU event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to be checked.
*
* @retval true The event has been generated.
* @retval false The event has not been generated.
*/
__STATIC_INLINE bool nrf_spu_event_check(NRF_SPU_Type const * p_reg,
nrf_spu_event_t event);
/**
* @brief Function for enabling specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Interrupts to be enabled.
*/
__STATIC_INLINE void nrf_spu_int_enable(NRF_SPU_Type * p_reg,
uint32_t mask);
/**
* @brief Function for disabling specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Interrupts to be disabled.
*/
__STATIC_INLINE void nrf_spu_int_disable(NRF_SPU_Type * p_reg,
uint32_t mask);
/**
* @brief Function for retrieving the state of a given interrupt.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] spu_int Interrupt to be checked.
*
* @retval true The interrupt is enabled.
* @retval false The interrupt is not enabled.
*/
__STATIC_INLINE bool nrf_spu_int_enable_check(NRF_SPU_Type const * p_reg,
uint32_t spu_int);
/**
* @brief Function for setting up publication configuration of a given SPU event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to configure.
* @param[in] channel Channel to connect with published event.
*/
__STATIC_INLINE void nrf_spu_publish_set(NRF_SPU_Type * p_reg,
nrf_spu_event_t event,
uint32_t channel);
/**
* @brief Function for clearing publication configuration of a given SPU event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to clear.
*/
__STATIC_INLINE void nrf_spu_publish_clear(NRF_SPU_Type * p_reg,
nrf_spu_event_t event);
/**
* @brief Function for retrieving the capabilities of the current device.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @retval true ARM TrustZone support is available.
* @retval false ARM TrustZone support is not available.
*/
__STATIC_INLINE bool nrf_spu_tz_is_available(NRF_SPU_Type const * p_reg);
/**
* @brief Function for configuring the DPPI channels to be available in particular domains.
*
* Channels are configured as bitmask. Set one in bitmask to make channels available only in secure
* domain. Set zero to make it available in secure and non-secure domains.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] dppi_id DPPI peripheral id.
* @param[in] channels_mask Bitmask with channels configuration.
* @param[in] lock_conf Lock configuration until next SoC reset.
*/
__STATIC_INLINE void nrf_spu_dppi_config_set(NRF_SPU_Type * p_reg,
uint8_t dppi_id,
uint32_t channels_mask,
bool lock_conf);
/**
* @brief Function for configuring the GPIO pins to be available in particular domains.
*
* GPIO pins are configured as bitmask. Set one in bitmask to make particular pin available only
* in secure domain. Set zero to make it available in secure and non-secure domains.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] gpio_port Port number.
* @param[in] gpio_mask Bitmask with gpio configuration.
* @param[in] lock_conf Lock configuration until next SoC reset.
*/
__STATIC_INLINE void nrf_spu_gpio_config_set(NRF_SPU_Type * p_reg,
uint8_t gpio_port,
uint32_t gpio_mask,
bool lock_conf);
/**
* @brief Function for configuring non-secure callable flash region.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] flash_nsc_id Non-secure callable flash region ID.
* @param[in] flash_nsc_size Non-secure callable flash region size.
* @param[in] region_number Flash region number.
* @param[in] lock_conf Lock configuration until next SoC reset.
*/
__STATIC_INLINE void nrf_spu_flashnsc_set(NRF_SPU_Type * p_reg,
uint8_t flash_nsc_id,
nrf_spu_nsc_size_t flash_nsc_size,
uint8_t region_number,
bool lock_conf);
/**
* @brief Function for configuring non-secure callable RAM region.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] ram_nsc_id Non-secure callable RAM region ID.
* @param[in] ram_nsc_size Non-secure callable RAM region size.
* @param[in] region_number RAM region number.
* @param[in] lock_conf Lock configuration until next SoC reset.
*/
__STATIC_INLINE void nrf_spu_ramnsc_set(NRF_SPU_Type * p_reg,
uint8_t ram_nsc_id,
nrf_spu_nsc_size_t ram_nsc_size,
uint8_t region_number,
bool lock_conf);
/**
* @brief Function for configuring security for a particular flash region.
*
* Permissions parameter must be set by using the logical OR on the @ref nrf_spu_mem_perm_t values.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] region_id Flash region index.
* @param[in] secure_attr Set region attribute to secure.
* @param[in] permissions Flash region permissions.
* @param[in] lock_conf Lock configuration until next SoC reset.
*/
__STATIC_INLINE void nrf_spu_flashregion_set(NRF_SPU_Type * p_reg,
uint8_t region_id,
bool secure_attr,
uint32_t permissions,
bool lock_conf);
/**
* @brief Function for configuring security for the RAM region.
*
* Permissions parameter must be set by using the logical OR on the @ref nrf_spu_mem_perm_t values.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] region_id RAM region index.
* @param[in] secure_attr Set region attribute to secure.
* @param[in] permissions RAM region permissions.
* @param[in] lock_conf Lock configuration until next SoC reset.
*/
__STATIC_INLINE void nrf_spu_ramregion_set(NRF_SPU_Type * p_reg,
uint8_t region_id,
bool secure_attr,
uint32_t permissions,
bool lock_conf);
/**
* @brief Function for configuring access permissions of the peripheral.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] peripheral_id ID number of a particular peripheral.
* @param[in] secure_attr Peripheral registers accessible only from secure domain.
* @param[in] secure_dma DMA transfers possible only from RAM memory in secure domain.
* @param[in] lock_conf Lock configuration until next SoC reset.
*/
__STATIC_INLINE void nrf_spu_peripheral_set(NRF_SPU_Type * p_reg,
uint32_t peripheral_id,
bool secure_attr,
bool secure_dma,
bool lock_conf);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE void nrf_spu_event_clear(NRF_SPU_Type * p_reg,
nrf_spu_event_t event)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL;
volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event));
(void)dummy;
}
__STATIC_INLINE bool nrf_spu_event_check(NRF_SPU_Type const * p_reg,
nrf_spu_event_t event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event);
}
__STATIC_INLINE void nrf_spu_int_enable(NRF_SPU_Type * p_reg,
uint32_t mask)
{
p_reg->INTENSET = mask;
}
__STATIC_INLINE void nrf_spu_int_disable(NRF_SPU_Type * p_reg,
uint32_t mask)
{
p_reg->INTENCLR = mask;
}
__STATIC_INLINE bool nrf_spu_int_enable_check(NRF_SPU_Type const * p_reg,
uint32_t spu_int)
{
return (bool)(p_reg->INTENSET & spu_int);
}
__STATIC_INLINE void nrf_spu_publish_set(NRF_SPU_Type * p_reg,
nrf_spu_event_t event,
uint32_t channel)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) =
(channel | (SPU_PUBLISH_RAMACCERR_EN_Msk));
}
__STATIC_INLINE void nrf_spu_publish_clear(NRF_SPU_Type * p_reg,
nrf_spu_event_t event)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0;
}
__STATIC_INLINE bool nrf_spu_tz_is_available(NRF_SPU_Type const * p_reg)
{
return (p_reg->CAP & SPU_CAP_TZM_Msk ? true : false);
}
__STATIC_INLINE void nrf_spu_dppi_config_set(NRF_SPU_Type * p_reg,
uint8_t dppi_id,
uint32_t channels_mask,
bool lock_conf)
{
NRFX_ASSERT(!(p_reg->DPPI[dppi_id].LOCK & SPU_DPPI_LOCK_LOCK_Msk));
p_reg->DPPI[dppi_id].PERM = channels_mask;
if (lock_conf)
{
p_reg->DPPI[dppi_id].LOCK = (SPU_DPPI_LOCK_LOCK_Msk);
}
}
__STATIC_INLINE void nrf_spu_gpio_config_set(NRF_SPU_Type * p_reg,
uint8_t gpio_port,
uint32_t gpio_mask,
bool lock_conf)
{
NRFX_ASSERT(!(p_reg->GPIOPORT[gpio_port].LOCK & SPU_GPIOPORT_LOCK_LOCK_Msk));
p_reg->GPIOPORT[gpio_port].PERM = gpio_mask;
if (lock_conf)
{
p_reg->GPIOPORT[gpio_port].LOCK = (SPU_GPIOPORT_LOCK_LOCK_Msk);
}
}
__STATIC_INLINE void nrf_spu_flashnsc_set(NRF_SPU_Type * p_reg,
uint8_t flash_nsc_id,
nrf_spu_nsc_size_t flash_nsc_size,
uint8_t region_number,
bool lock_conf)
{
NRFX_ASSERT(!(p_reg->FLASHNSC[flash_nsc_id].REGION & SPU_FLASHNSC_REGION_LOCK_Msk));
NRFX_ASSERT(!(p_reg->FLASHNSC[flash_nsc_id].SIZE & SPU_FLASHNSC_SIZE_LOCK_Msk));
p_reg->FLASHNSC[flash_nsc_id].REGION = (uint32_t)region_number |
(lock_conf ? SPU_FLASHNSC_REGION_LOCK_Msk : 0);
p_reg->FLASHNSC[flash_nsc_id].SIZE = (uint32_t)flash_nsc_size |
(lock_conf ? SPU_FLASHNSC_SIZE_LOCK_Msk : 0);
}
__STATIC_INLINE void nrf_spu_ramnsc_set(NRF_SPU_Type * p_reg,
uint8_t ram_nsc_id,
nrf_spu_nsc_size_t ram_nsc_size,
uint8_t region_number,
bool lock_conf)
{
NRFX_ASSERT(!(p_reg->RAMNSC[ram_nsc_id].REGION & SPU_RAMNSC_REGION_LOCK_Msk));
NRFX_ASSERT(!(p_reg->RAMNSC[ram_nsc_id].SIZE & SPU_RAMNSC_SIZE_LOCK_Msk));
p_reg->RAMNSC[ram_nsc_id].REGION = (uint32_t)region_number |
(lock_conf ? SPU_RAMNSC_REGION_LOCK_Msk : 0);
p_reg->RAMNSC[ram_nsc_id].SIZE = (uint32_t)ram_nsc_size |
(lock_conf ? SPU_RAMNSC_SIZE_LOCK_Msk : 0);
}
__STATIC_INLINE void nrf_spu_flashregion_set(NRF_SPU_Type * p_reg,
uint8_t region_id,
bool secure_attr,
uint32_t permissions,
bool lock_conf)
{
NRFX_ASSERT(!(p_reg->FLASHREGION[region_id].PERM & SPU_FLASHREGION_PERM_LOCK_Msk));
p_reg->FLASHREGION[region_id].PERM = permissions |
(secure_attr ? SPU_FLASHREGION_PERM_SECATTR_Msk : 0) |
(lock_conf ? SPU_FLASHREGION_PERM_LOCK_Msk : 0);
}
__STATIC_INLINE void nrf_spu_ramregion_set(NRF_SPU_Type * p_reg,
uint8_t region_id,
bool secure_attr,
uint32_t permissions,
bool lock_conf)
{
NRFX_ASSERT(!(p_reg->RAMREGION[region_id].PERM & SPU_RAMREGION_PERM_LOCK_Msk));
p_reg->RAMREGION[region_id].PERM = permissions |
(secure_attr ? SPU_RAMREGION_PERM_SECATTR_Msk : 0) |
(lock_conf ? SPU_RAMREGION_PERM_LOCK_Msk : 0);
}
__STATIC_INLINE void nrf_spu_peripheral_set(NRF_SPU_Type * p_reg,
uint32_t peripheral_id,
bool secure_attr,
bool secure_dma,
bool lock_conf)
{
NRFX_ASSERT(p_reg->PERIPHID[peripheral_id].PERM & SPU_PERIPHID_PERM_PRESENT_Msk);
NRFX_ASSERT(!(p_reg->PERIPHID[peripheral_id].PERM & SPU_PERIPHID_PERM_LOCK_Msk));
p_reg->PERIPHID[peripheral_id].PERM =
(secure_attr ? SPU_PERIPHID_PERM_SECATTR_Msk : 0) |
(secure_dma ? SPU_PERIPHID_PERM_DMASEC_Msk : 0) |
(lock_conf ? SPU_PERIPHID_PERM_LOCK_Msk : 0);
}
#endif // SUPPRESS_INLINE_IMPLEMENTATION
/** @} */
#ifdef __cplusplus
}
#endif
#endif // NRF_SPU_H__