blob: 1c8eb6f978757efe5f02bac3ec7b2dc1aba50dc9 [file] [log] [blame]
/*
* Copyright (c) 2015 - 2019, Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef NRF_CLOCK_H__
#define NRF_CLOCK_H__
#include <nrfx.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup nrf_clock_hal Clock HAL
* @{
* @ingroup nrf_clock
* @brief Hardware access layer for managing the CLOCK peripheral.
*
* This code can be used to managing low-frequency clock (LFCLK) and the high-frequency clock
* (HFCLK) settings.
*/
#if defined(CLOCK_LFCLKSRC_BYPASS_Msk) && defined(CLOCK_LFCLKSRC_EXTERNAL_Msk)
// Enable support for external LFCLK sources. Read more in the Product Specification.
#define NRF_CLOCK_USE_EXTERNAL_LFCLK_SOURCES
#endif
#if defined(CLOCK_CTIV_CTIV_Msk) || defined(__NRFX_DOXYGEN__)
/**
* @brief Presence of the Low Frequency Clock calibration.
*
* In some MCUs there is possibility to use LFCLK calibration.
*/
#define NRF_CLOCK_HAS_CALIBRATION 1
#else
#define NRF_CLOCK_HAS_CALIBRATION 0
#endif // defined(CLOCK_CTIV_CTIV_Msk) || defined(__NRFX_DOXYGEN__)
/**
* @brief Low-frequency clock sources.
* @details Used by LFCLKSRC, LFCLKSTAT, and LFCLKSRCCOPY registers.
*/
typedef enum
{
#if defined(CLOCK_LFCLKSRC_SRC_RC) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_LFCLK_RC = CLOCK_LFCLKSRC_SRC_RC, /**< Internal 32 kHz RC oscillator. */
#else
NRF_CLOCK_LFCLK_RC = CLOCK_LFCLKSRC_SRC_LFRC, /**< Internal 32 kHz RC oscillator. */
#endif
#if defined(CLOCK_LFCLKSRC_SRC_Xtal) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_LFCLK_Xtal = CLOCK_LFCLKSRC_SRC_Xtal, /**< External 32 kHz crystal. */
#else
NRF_CLOCK_LFCLK_Xtal = CLOCK_LFCLKSRC_SRC_LFXO, /**< External 32 kHz crystal. */
#endif
#if defined(CLOCK_LFCLKSRC_SRC_Synth) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_LFCLK_Synth = CLOCK_LFCLKSRC_SRC_Synth, /**< Internal 32 kHz synthesizer from HFCLK system clock. */
#endif
#if defined(NRF_CLOCK_USE_EXTERNAL_LFCLK_SOURCES) || defined(__NRFX_DOXYGEN__)
/**
* External 32 kHz low swing signal. Used only with the LFCLKSRC register.
* For the others @ref NRF_CLOCK_LFCLK_Xtal is returned for this setting.
*/
NRF_CLOCK_LFCLK_Xtal_Low_Swing = (CLOCK_LFCLKSRC_SRC_Xtal |
(CLOCK_LFCLKSRC_EXTERNAL_Enabled << CLOCK_LFCLKSRC_EXTERNAL_Pos)),
/**
* External 32 kHz full swing signal. Used only with the LFCLKSRC register.
* For the others @ref NRF_CLOCK_LFCLK_Xtal is returned for this setting.
*/
NRF_CLOCK_LFCLK_Xtal_Full_Swing = (CLOCK_LFCLKSRC_SRC_Xtal |
(CLOCK_LFCLKSRC_BYPASS_Enabled << CLOCK_LFCLKSRC_BYPASS_Pos) |
(CLOCK_LFCLKSRC_EXTERNAL_Enabled << CLOCK_LFCLKSRC_EXTERNAL_Pos)),
#endif // defined(NRF_CLOCK_USE_EXTERNAL_LFCLK_SOURCES) || defined(__NRFX_DOXYGEN__)
} nrf_clock_lfclk_t;
/** @brief High-frequency clock sources. */
typedef enum
{
#if defined(CLOCK_HFCLKSTAT_SRC_RC) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_HFCLK_LOW_ACCURACY = CLOCK_HFCLKSTAT_SRC_RC, /**< Internal 16 MHz RC oscillator. */
#endif
#if defined(CLOCK_HFCLKSTAT_SRC_Xtal) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_HFCLK_HIGH_ACCURACY = CLOCK_HFCLKSTAT_SRC_Xtal /**< External 16 MHz/32 MHz crystal oscillator. */
#else
NRF_CLOCK_HFCLK_HIGH_ACCURACY = CLOCK_HFCLKSTAT_SRC_HFXO /**< External 32 MHz crystal oscillator. */
#endif
} nrf_clock_hfclk_t;
/**
* @brief Trigger status of task LFCLKSTART/HFCLKSTART.
* @details Used by LFCLKRUN and HFCLKRUN registers.
*/
typedef enum
{
NRF_CLOCK_START_TASK_NOT_TRIGGERED = CLOCK_LFCLKRUN_STATUS_NotTriggered, /**< Task LFCLKSTART/HFCLKSTART has not been triggered. */
NRF_CLOCK_START_TASK_TRIGGERED = CLOCK_LFCLKRUN_STATUS_Triggered /**< Task LFCLKSTART/HFCLKSTART has been triggered. */
} nrf_clock_start_task_status_t;
/** @brief Interrupts. */
typedef enum
{
NRF_CLOCK_INT_HF_STARTED_MASK = CLOCK_INTENSET_HFCLKSTARTED_Msk, /**< Interrupt on HFCLKSTARTED event. */
NRF_CLOCK_INT_LF_STARTED_MASK = CLOCK_INTENSET_LFCLKSTARTED_Msk, /**< Interrupt on LFCLKSTARTED event. */
#if (NRF_CLOCK_HAS_CALIBRATION) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_INT_DONE_MASK = CLOCK_INTENSET_DONE_Msk, /**< Interrupt on DONE event. */
NRF_CLOCK_INT_CTTO_MASK = CLOCK_INTENSET_CTTO_Msk, /**< Interrupt on CTTO event. */
#endif
#if defined(CLOCK_INTENSET_CTSTARTED_Msk) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_INT_CTSTARTED_MASK = CLOCK_INTENSET_CTSTARTED_Msk, /**< Interrupt on CTSTARTED event. */
NRF_CLOCK_INT_CTSTOPPED_MASK = CLOCK_INTENSET_CTSTOPPED_Msk /**< Interrupt on CTSTOPPED event. */
#endif
} nrf_clock_int_mask_t;
/**
* @brief Tasks.
*
* @details The NRF_CLOCK_TASK_LFCLKSTOP task cannot be set when the low-frequency clock is not running.
* The NRF_CLOCK_TASK_HFCLKSTOP task cannot be set when the high-frequency clock is not running.
*/
typedef enum
{
NRF_CLOCK_TASK_HFCLKSTART = offsetof(NRF_CLOCK_Type, TASKS_HFCLKSTART), /**< Start HFCLK clock source.*/
NRF_CLOCK_TASK_HFCLKSTOP = offsetof(NRF_CLOCK_Type, TASKS_HFCLKSTOP), /**< Stop HFCLK clock source.*/
NRF_CLOCK_TASK_LFCLKSTART = offsetof(NRF_CLOCK_Type, TASKS_LFCLKSTART), /**< Start LFCLK clock source.*/
NRF_CLOCK_TASK_LFCLKSTOP = offsetof(NRF_CLOCK_Type, TASKS_LFCLKSTOP), /**< Stop LFCLK clock source.*/
#if (NRF_CLOCK_HAS_CALIBRATION) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_TASK_CAL = offsetof(NRF_CLOCK_Type, TASKS_CAL), /**< Start calibration of LFCLK RC oscillator.*/
NRF_CLOCK_TASK_CTSTART = offsetof(NRF_CLOCK_Type, TASKS_CTSTART), /**< Start calibration timer.*/
NRF_CLOCK_TASK_CTSTOP = offsetof(NRF_CLOCK_Type, TASKS_CTSTOP) /**< Stop calibration timer.*/
#endif
} nrf_clock_task_t;
/** @brief Events. */
typedef enum
{
NRF_CLOCK_EVENT_HFCLKSTARTED = offsetof(NRF_CLOCK_Type, EVENTS_HFCLKSTARTED), /**< HFCLK oscillator started.*/
NRF_CLOCK_EVENT_LFCLKSTARTED = offsetof(NRF_CLOCK_Type, EVENTS_LFCLKSTARTED), /**< LFCLK oscillator started.*/
#if (NRF_CLOCK_HAS_CALIBRATION) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_EVENT_DONE = offsetof(NRF_CLOCK_Type, EVENTS_DONE), /**< Calibration of LFCLK RC oscillator completed.*/
NRF_CLOCK_EVENT_CTTO = offsetof(NRF_CLOCK_Type, EVENTS_CTTO), /**< Calibration timer time-out.*/
#endif
#if defined(CLOCK_INTENSET_CTSTARTED_Msk) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_EVENT_CTSTARTED = offsetof(NRF_CLOCK_Type, EVENTS_CTSTARTED), /**< Calibration timer started.*/
NRF_CLOCK_EVENT_CTSTOPPED = offsetof(NRF_CLOCK_Type, EVENTS_CTSTOPPED) /**< Calibration timer stopped.*/
#endif
} nrf_clock_event_t;
/**
* @brief Function for enabling the specified interrupt.
*
* @param[in] int_mask Interrupt.
*/
__STATIC_INLINE void nrf_clock_int_enable(uint32_t int_mask);
/**
* @brief Function for disabling the specified interrupt.
*
* @param[in] int_mask Interrupt.
*/
__STATIC_INLINE void nrf_clock_int_disable(uint32_t int_mask);
/**
* @brief Function for retrieving the state of the specified interrupt.
*
* @param[in] int_mask Interrupt.
*
* @retval true The interrupt is enabled.
* @retval false The interrupt is not enabled.
*/
__STATIC_INLINE bool nrf_clock_int_enable_check(nrf_clock_int_mask_t int_mask);
/**
* @brief Function for retrieving the address of the specified task.
* @details This function can be used by the PPI module.
*
* @param[in] task CLOCK Task.
*
* @return Address of the requested task register.
*/
__STATIC_INLINE uint32_t nrf_clock_task_address_get(nrf_clock_task_t task);
/**
* @brief Function for setting the specified task.
*
* @param[in] task Task to be activated.
*/
__STATIC_INLINE void nrf_clock_task_trigger(nrf_clock_task_t task);
/**
* @brief Function for retrieving the address of the specified event.
* @details This function can be used by the PPI module.
*
* @param[in] event CLOCK Event.
*
* @return Address of the specified event register.
*/
__STATIC_INLINE uint32_t nrf_clock_event_address_get(nrf_clock_event_t event);
/**
* @brief Function for clearing the specified event.
*
* @param[in] event Event to clear.
*/
__STATIC_INLINE void nrf_clock_event_clear(nrf_clock_event_t event);
/**
* @brief Function for retrieving the state of the specified event.
*
* @param[in] event Event to be checked.
*
* @retval true The event has been generated.
* @retval false The event has not been generated.
*/
__STATIC_INLINE bool nrf_clock_event_check(nrf_clock_event_t event);
/**
* @brief Function for changing the low-frequency clock source.
* @details This function cannot be called when the low-frequency clock is running.
*
* @param[in] source New low-frequency clock source.
*/
__STATIC_INLINE void nrf_clock_lf_src_set(nrf_clock_lfclk_t source);
/**
* @brief Function for retrieving the selected source for the low-frequency clock.
*
* @retval NRF_CLOCK_LFCLK_RC The internal 32 kHz RC oscillator
* is the selected source for the low-frequency clock.
* @retval NRF_CLOCK_LFCLK_Xtal An external 32 kHz crystal oscillator
* is the selected source for the low-frequency clock.
* @retval NRF_CLOCK_LFCLK_Synth The internal 32 kHz synthesizer from
* the HFCLK is the selected source for the low-frequency clock.
*/
__STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_src_get(void);
/**
* @brief Function for retrieving the active source of the low-frequency clock.
*
* @retval NRF_CLOCK_LFCLK_RC The internal 32 kHz RC oscillator
* is the active source of the low-frequency clock.
* @retval NRF_CLOCK_LFCLK_Xtal An external 32 kHz crystal oscillator
* is the active source of the low-frequency clock.
* @retval NRF_CLOCK_LFCLK_Synth The internal 32 kHz synthesizer from
* the HFCLK is the active source of the low-frequency clock.
*/
__STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_actv_src_get(void);
/**
* @brief Function for retrieving the clock source for the LFCLK clock when
* the task LKCLKSTART is triggered.
*
* @retval NRF_CLOCK_LFCLK_RC The internal 32 kHz RC oscillator
* is running and generating the LFCLK clock.
* @retval NRF_CLOCK_LFCLK_Xtal An external 32 kHz crystal oscillator
* is running and generating the LFCLK clock.
* @retval NRF_CLOCK_LFCLK_Synth The internal 32 kHz synthesizer from
* the HFCLK is running and generating the LFCLK clock.
*/
__STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_srccopy_get(void);
/**
* @brief Function for retrieving the state of the LFCLK clock.
*
* @retval false The LFCLK clock is not running.
* @retval true The LFCLK clock is running.
*/
__STATIC_INLINE bool nrf_clock_lf_is_running(void);
/**
* @brief Function for retrieving the trigger status of the task LFCLKSTART.
*
* @retval NRF_CLOCK_START_TASK_NOT_TRIGGERED The task LFCLKSTART has not been triggered.
* @retval NRF_CLOCK_START_TASK_TRIGGERED The task LFCLKSTART has been triggered.
*/
__STATIC_INLINE nrf_clock_start_task_status_t nrf_clock_lf_start_task_status_get(void);
/**
* @brief Function for retrieving the active source of the high-frequency clock.
*
* @retval NRF_CLOCK_HFCLK_LOW_ACCURACY The internal RC oscillator is the active
* source of the high-frequency clock.
* @retval NRF_CLOCK_HFCLK_HIGH_ACCURACY An external crystal oscillator is the active
* source of the high-frequency clock.
*/
__STATIC_INLINE nrf_clock_hfclk_t nrf_clock_hf_src_get(void);
/**
* @brief Function for retrieving the state of the HFCLK clock.
*
* @param[in] clk_src Clock source to be checked.
*
* @retval false The HFCLK clock is not running.
* @retval true The HFCLK clock is running.
*/
__STATIC_INLINE bool nrf_clock_hf_is_running(nrf_clock_hfclk_t clk_src);
/**
* @brief Function for retrieving the trigger status of the task HFCLKSTART.
*
* @retval NRF_CLOCK_START_TASK_NOT_TRIGGERED The task HFCLKSTART has not been triggered.
* @retval NRF_CLOCK_START_TASK_TRIGGERED The task HFCLKSTART has been triggered.
*/
__STATIC_INLINE nrf_clock_start_task_status_t nrf_clock_hf_start_task_status_get(void);
#if (NRF_CLOCK_HAS_CALIBRATION) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for changing the calibration timer interval.
*
* @param[in] interval New calibration timer interval in 0.25 s resolution
* (range: 0.25 seconds to 31.75 seconds).
*/
__STATIC_INLINE void nrf_clock_cal_timer_timeout_set(uint32_t interval);
#endif
#if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for setting the subscribe configuration for a given
* CLOCK task.
*
* @param[in] task Task for which to set the configuration.
* @param[in] channel Channel through which to subscribe events.
*/
__STATIC_INLINE void nrf_clock_subscribe_set(nrf_clock_task_t task,
uint8_t channel);
/**
* @brief Function for clearing the subscribe configuration for a given
* CLOCK task.
*
* @param[in] task Task for which to clear the configuration.
*/
__STATIC_INLINE void nrf_clock_subscribe_clear(nrf_clock_task_t task);
/**
* @brief Function for setting the publish configuration for a given
* CLOCK event.
*
* @param[in] event Event for which to set the configuration.
* @param[in] channel Channel through which to publish the event.
*/
__STATIC_INLINE void nrf_clock_publish_set(nrf_clock_event_t event,
uint8_t channel);
/**
* @brief Function for clearing the publish configuration for a given
* CLOCK event.
*
* @param[in] event Event for which to clear the configuration.
*/
__STATIC_INLINE void nrf_clock_publish_clear(nrf_clock_event_t event);
#endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE void nrf_clock_int_enable(uint32_t int_mask)
{
NRF_CLOCK->INTENSET = int_mask;
}
__STATIC_INLINE void nrf_clock_int_disable(uint32_t int_mask)
{
NRF_CLOCK->INTENCLR = int_mask;
}
__STATIC_INLINE bool nrf_clock_int_enable_check(nrf_clock_int_mask_t int_mask)
{
return (bool)(NRF_CLOCK->INTENCLR & int_mask);
}
__STATIC_INLINE uint32_t nrf_clock_task_address_get(nrf_clock_task_t task)
{
return ((uint32_t )NRF_CLOCK + task);
}
__STATIC_INLINE void nrf_clock_task_trigger(nrf_clock_task_t task)
{
*((volatile uint32_t *)((uint8_t *)NRF_CLOCK + task)) = 0x1UL;
}
__STATIC_INLINE uint32_t nrf_clock_event_address_get(nrf_clock_event_t event)
{
return ((uint32_t)NRF_CLOCK + event);
}
__STATIC_INLINE void nrf_clock_event_clear(nrf_clock_event_t event)
{
*((volatile uint32_t *)((uint8_t *)NRF_CLOCK + event)) = 0x0UL;
#if __CORTEX_M == 0x04
volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)NRF_CLOCK + (uint32_t)event));
(void)dummy;
#endif
}
__STATIC_INLINE bool nrf_clock_event_check(nrf_clock_event_t event)
{
return (bool)*((volatile uint32_t *)((uint8_t *)NRF_CLOCK + event));
}
__STATIC_INLINE void nrf_clock_lf_src_set(nrf_clock_lfclk_t source)
{
NRF_CLOCK->LFCLKSRC = (uint32_t)(source);
}
__STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_src_get(void)
{
return (nrf_clock_lfclk_t)(NRF_CLOCK->LFCLKSRC);
}
__STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_actv_src_get(void)
{
return (nrf_clock_lfclk_t)((NRF_CLOCK->LFCLKSTAT &
CLOCK_LFCLKSTAT_SRC_Msk) >> CLOCK_LFCLKSTAT_SRC_Pos);
}
__STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_srccopy_get(void)
{
return (nrf_clock_lfclk_t)((NRF_CLOCK->LFCLKSRCCOPY &
CLOCK_LFCLKSRCCOPY_SRC_Msk) >> CLOCK_LFCLKSRCCOPY_SRC_Pos);
}
__STATIC_INLINE bool nrf_clock_lf_is_running(void)
{
return ((NRF_CLOCK->LFCLKSTAT &
CLOCK_LFCLKSTAT_STATE_Msk) >> CLOCK_LFCLKSTAT_STATE_Pos);
}
__STATIC_INLINE nrf_clock_start_task_status_t nrf_clock_lf_start_task_status_get(void)
{
return (nrf_clock_start_task_status_t)((NRF_CLOCK->LFCLKRUN &
CLOCK_LFCLKRUN_STATUS_Msk) >> CLOCK_LFCLKRUN_STATUS_Pos);
}
__STATIC_INLINE nrf_clock_hfclk_t nrf_clock_hf_src_get(void)
{
return (nrf_clock_hfclk_t)((NRF_CLOCK->HFCLKSTAT &
CLOCK_HFCLKSTAT_SRC_Msk) >> CLOCK_HFCLKSTAT_SRC_Pos);
}
__STATIC_INLINE bool nrf_clock_hf_is_running(nrf_clock_hfclk_t clk_src)
{
return (NRF_CLOCK->HFCLKSTAT & (CLOCK_HFCLKSTAT_STATE_Msk | CLOCK_HFCLKSTAT_SRC_Msk)) ==
(CLOCK_HFCLKSTAT_STATE_Msk | (clk_src << CLOCK_HFCLKSTAT_SRC_Pos));
}
__STATIC_INLINE nrf_clock_start_task_status_t nrf_clock_hf_start_task_status_get(void)
{
return (nrf_clock_start_task_status_t)((NRF_CLOCK->HFCLKRUN &
CLOCK_HFCLKRUN_STATUS_Msk) >> CLOCK_HFCLKRUN_STATUS_Pos);
}
#if (NRF_CLOCK_HAS_CALIBRATION)
__STATIC_INLINE void nrf_clock_cal_timer_timeout_set(uint32_t interval)
{
NRF_CLOCK->CTIV = ((interval << CLOCK_CTIV_CTIV_Pos) & CLOCK_CTIV_CTIV_Msk);
}
#endif
#if defined(DPPI_PRESENT)
__STATIC_INLINE void nrf_clock_subscribe_set(nrf_clock_task_t task,
uint8_t channel)
{
*((volatile uint32_t *) ((uint8_t *) NRF_CLOCK + (uint32_t) task + 0x80uL)) =
((uint32_t)channel | CLOCK_SUBSCRIBE_HFCLKSTART_EN_Msk);
}
__STATIC_INLINE void nrf_clock_subscribe_clear(nrf_clock_task_t task)
{
*((volatile uint32_t *) ((uint8_t *) NRF_CLOCK + (uint32_t) task + 0x80uL)) = 0;
}
__STATIC_INLINE void nrf_clock_publish_set(nrf_clock_event_t event,
uint8_t channel)
{
*((volatile uint32_t *) ((uint8_t *) NRF_CLOCK + (uint32_t) event + 0x80uL)) =
((uint32_t)channel | CLOCK_PUBLISH_HFCLKSTARTED_EN_Msk);
}
__STATIC_INLINE void nrf_clock_publish_clear(nrf_clock_event_t event)
{
*((volatile uint32_t *) ((uint8_t *) NRF_CLOCK + (uint32_t) event + 0x80uL)) = 0;
}
#endif // defined(DPPI_PRESENT)
#endif // SUPPRESS_INLINE_IMPLEMENTATION
/** @} */
#ifdef __cplusplus
}
#endif
#endif // NRF_CLOCK_H__