blob: 3c2af2ccbfd313fcc2123a38b58e821b74e1f0df [file] [log] [blame]
/*
* Copyright (c) 2019, Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef NRF_AAR_H__
#define NRF_AAR_H__
#include <nrfx.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup nrf_aar_hal AAR HAL
* @{
* @ingroup nrf_aar
* @brief Hardware access layer for managing the Accelerated Address Resolver (AAR) peripheral.
*/
/** @brief AAR events. */
typedef enum
{
NRF_AAR_EVENT_END = offsetof(NRF_AAR_Type, EVENTS_END), ///< Address resolution procedure complete.
NRF_AAR_EVENT_RESOLVED = offsetof(NRF_AAR_Type, EVENTS_RESOLVED), ///< Address resolved.
NRF_AAR_EVENT_NOTRESOLVED = offsetof(NRF_AAR_Type, EVENTS_NOTRESOLVED), ///< Address not resolved.
} nrf_aar_event_t;
/** @brief AAR interrupts. */
typedef enum
{
NRF_AAR_INT_END_MASK = AAR_INTENSET_END_Msk, ///< Interrupt on END event.
NRF_AAR_INT_RESOLVED_MASK = AAR_INTENSET_RESOLVED_Msk, ///< Interrupt on RESOLVED event.
NRF_AAR_INT_NOTRESOLVED_MASK = AAR_INTENSET_NOTRESOLVED_Msk, ///< Interrupt on NOTRESOLVED event.
} nrf_aar_int_mask_t;
/** @brief AAR tasks. */
typedef enum
{
NRF_AAR_TASK_START = offsetof(NRF_AAR_Type, TASKS_START), ///< Start address resolution procedure.
NRF_AAR_TASK_STOP = offsetof(NRF_AAR_Type, TASKS_STOP), ///< Stop address resolution procedure.
} nrf_aar_task_t;
/**
* @brief Function for retrieving the state of the AAR event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to be checked.
*
* @retval true Event is set.
* @retval false Event is not set.
*/
__STATIC_INLINE bool nrf_aar_event_check(NRF_AAR_Type const * p_reg,
nrf_aar_event_t event);
/**
* @brief Function for clearing the specified AAR event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to be cleared.
*/
__STATIC_INLINE void nrf_aar_event_clear(NRF_AAR_Type * p_reg,
nrf_aar_event_t event);
/**
* @brief Function for getting the address of the specified AAR event register.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to get the address of.
*
* @return Address of the specified event register.
*/
__STATIC_INLINE uint32_t nrf_aar_event_address_get(NRF_AAR_Type const * p_reg,
nrf_aar_event_t event);
/**
* @brief Function for enabling the specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be enabled.
*/
__STATIC_INLINE void nrf_aar_int_enable(NRF_AAR_Type * p_reg, uint32_t mask);
/**
* @brief Function for retrieving the state of the specified interrupt.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of the interrupt to be checked.
*
* @retval true Interrupt is enabled.
* @retval false Interrupt is not enabled.
*/
__STATIC_INLINE bool nrf_aar_int_enable_check(NRF_AAR_Type const * p_reg,
nrf_aar_int_mask_t mask);
/**
* @brief Function for disabling the specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be disabled.
*/
__STATIC_INLINE void nrf_aar_int_disable(NRF_AAR_Type * p_reg, uint32_t mask);
/**
* @brief Function for starting an AAR task.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
* @param task Task to be activated.
*/
__STATIC_INLINE void nrf_aar_task_trigger(NRF_AAR_Type * p_reg, nrf_aar_task_t task);
/**
* @brief Function for getting the address of a specific AAR task register.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
* @param task Requested AAR task.
*
* @return Address of the specified task register.
*/
__STATIC_INLINE uint32_t nrf_aar_task_address_get(NRF_AAR_Type const * p_reg,
nrf_aar_task_t task);
/**
* @brief Function for enabling AAR.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
*/
__STATIC_INLINE void nrf_aar_enable(NRF_AAR_Type * p_reg);
/**
* @brief Function for disabling AAR.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
*/
__STATIC_INLINE void nrf_aar_disable(NRF_AAR_Type * p_reg);
/**
* @brief Function for setting the pointer to the Identity Resolving Keys (IRK) data structure.
*
* The size of the provided data structure must correspond to the number of keys available.
* Each key occupies 16 bytes.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
* @param irk_ptr Pointer to the IRK data structure. Must point to the Data RAM region.
*
* @sa nrf_aar_irk_number_set
*/
__STATIC_INLINE void nrf_aar_irk_pointer_set(NRF_AAR_Type * p_reg, uint8_t const * irk_ptr);
/**
* @brief Function for getting the pointer to the Identity Resolving Keys
* data structure.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
*
* @return Pointer to the IRK data structure.
*/
__STATIC_INLINE uint8_t const * nrf_aar_irk_pointer_get(NRF_AAR_Type const * p_reg);
/**
* @brief Function for setting the number of keys available in the Identity Resolving Keys
* data structure.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
* @param irk_num Number of keys available in the IRK data structure. Maximum is 16.
* Must correspond to the size of the provided IRK data structure.
*
* @sa nrf_aar_irk_pointer_set
*/
__STATIC_INLINE void nrf_aar_irk_number_set(NRF_AAR_Type * p_reg, uint8_t irk_num);
/**
* @brief Function for getting the number of keys available in the Identity Resolving Keys
* data structure.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
*
* @return Number of keys in the IRK data structure.
*/
__STATIC_INLINE uint8_t nrf_aar_irk_number_get(NRF_AAR_Type const * p_reg);
/**
* @brief Function for setting the pointer to the resolvable address.
*
* The resolvable address must consist of 6 bytes.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
* @param addr_ptr Pointer to the address to resolve using the available IRK keys.
* Must point to the Data RAM region.
*/
__STATIC_INLINE void nrf_aar_addr_pointer_set(NRF_AAR_Type * p_reg, uint8_t const * addr_ptr);
/**
* @brief Function for getting the pointer to the resolvable address.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
*
* @return Pointer to the address to resolve.
*/
__STATIC_INLINE uint8_t const * nrf_aar_addr_pointer_get(NRF_AAR_Type const * p_reg);
/**
* @brief Function for setting the pointer to the scratch data area.
*
* The scratch data area is used for temporary storage during the address resolution procedure.
* A space of minimum 3 bytes must be reserved for the scratch data area.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
* @param scratch_ptr Pointer to the scratch data area. Must point to the Data RAM region.
*/
__STATIC_INLINE void nrf_aar_scratch_pointer_set(NRF_AAR_Type * p_reg, uint8_t * scratch_ptr);
/**
* @brief Function for getting the pointer to the scratch data area.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
*
* @return Pointer to the scratch data area.
*/
__STATIC_INLINE uint8_t * nrf_aar_scratch_pointer_get(NRF_AAR_Type const * p_reg);
/**
* @brief Function for getting the index of the Identity Resolving Key that was used
* the last time an address was resolved.
*
* This function can be used to get the IRK index that matched the resolvable address,
* provided that @ref NRF_AAR_EVENT_RESOLVED occured. Otherwise, it will return
* the index of the last IRK stored in the IRK data structure.
*
* @param p_reg Pointer to the structure of registers of the peripheral.
*
* @return The index of the IRK that was used the last time an address was resolved.
*/
__STATIC_INLINE uint8_t nrf_aar_resolution_status_get(NRF_AAR_Type const * p_reg);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE bool nrf_aar_event_check(NRF_AAR_Type const * p_reg,
nrf_aar_event_t aar_event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)aar_event);
}
__STATIC_INLINE void nrf_aar_event_clear(NRF_AAR_Type * p_reg,
nrf_aar_event_t aar_event)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)aar_event)) = 0;
#if __CORTEX_M == 0x04
volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)aar_event));
(void)dummy;
#endif
}
__STATIC_INLINE uint32_t nrf_aar_event_address_get(NRF_AAR_Type const * p_reg,
nrf_aar_event_t aar_event)
{
return (uint32_t)((uint8_t *)p_reg + (uint32_t)aar_event);
}
__STATIC_INLINE void nrf_aar_int_enable(NRF_AAR_Type * p_reg, uint32_t mask)
{
p_reg->INTENSET = mask;
}
__STATIC_INLINE bool nrf_aar_int_enable_check(NRF_AAR_Type const * p_reg,
nrf_aar_int_mask_t mask)
{
return (bool)(p_reg->INTENSET & mask);
}
__STATIC_INLINE void nrf_aar_int_disable(NRF_AAR_Type * p_reg, uint32_t mask)
{
p_reg->INTENCLR = mask;
}
__STATIC_INLINE void nrf_aar_task_trigger(NRF_AAR_Type * p_reg, nrf_aar_task_t task)
{
*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task) = 1;
}
__STATIC_INLINE uint32_t nrf_aar_task_address_get(NRF_AAR_Type const * p_reg,
nrf_aar_task_t task)
{
return (uint32_t)((uint8_t *)p_reg + (uint32_t)task);
}
__STATIC_INLINE void nrf_aar_enable(NRF_AAR_Type * p_reg)
{
p_reg->ENABLE = AAR_ENABLE_ENABLE_Enabled << AAR_ENABLE_ENABLE_Pos;
}
__STATIC_INLINE void nrf_aar_disable(NRF_AAR_Type * p_reg)
{
p_reg->ENABLE = AAR_ENABLE_ENABLE_Disabled << AAR_ENABLE_ENABLE_Pos;
}
__STATIC_INLINE void nrf_aar_irk_pointer_set(NRF_AAR_Type * p_reg, uint8_t const * irk_ptr)
{
p_reg->IRKPTR = (uint32_t)irk_ptr;
}
__STATIC_INLINE uint8_t const * nrf_aar_irk_pointer_get(NRF_AAR_Type const * p_reg)
{
return (uint8_t const *)(p_reg->IRKPTR);
}
__STATIC_INLINE void nrf_aar_irk_number_set(NRF_AAR_Type * p_reg, uint8_t irk_num)
{
p_reg->NIRK = irk_num;
}
__STATIC_INLINE uint8_t nrf_aar_irk_number_get(NRF_AAR_Type const * p_reg)
{
return (uint8_t)(p_reg->NIRK);
}
__STATIC_INLINE void nrf_aar_addr_pointer_set(NRF_AAR_Type * p_reg, uint8_t const * addr_ptr)
{
p_reg->ADDRPTR = (uint32_t)addr_ptr;
}
__STATIC_INLINE uint8_t const * nrf_aar_addr_pointer_get(NRF_AAR_Type const * p_reg)
{
return (uint8_t const *)(p_reg->ADDRPTR);
}
__STATIC_INLINE void nrf_aar_scratch_pointer_set(NRF_AAR_Type * p_reg, uint8_t * scratch_ptr)
{
p_reg->SCRATCHPTR = (uint32_t)scratch_ptr;
}
__STATIC_INLINE uint8_t * nrf_aar_scratch_pointer_get(NRF_AAR_Type const * p_reg)
{
return (uint8_t *)(p_reg->SCRATCHPTR);
}
__STATIC_INLINE uint8_t nrf_aar_resolution_status_get(NRF_AAR_Type const * p_reg)
{
return (uint8_t)(p_reg->STATUS);
}
#endif // SUPPRESS_INLINE_IMPLEMENTATION
/** @} */
#ifdef __cplusplus
}
#endif
#endif // NRF_AAR_H__