blob: cc3a07cfec401e01e7f7bf8da2b881f8b94c8d30 [file] [log] [blame]
/**
* Copyright (c) 2016 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <nordic_common.h>
#include "nrf_drv_clock.h"
#if NRF_MODULE_ENABLED(NRF_CLOCK)
#ifdef SOFTDEVICE_PRESENT
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#endif
#define NRF_LOG_MODULE_NAME clock
#if CLOCK_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL CLOCK_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR CLOCK_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR CLOCK_CONFIG_DEBUG_COLOR
#else //CLOCK_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL 0
#endif //CLOCK_CONFIG_LOG_ENABLED
#include "nrf_log.h"
NRF_LOG_MODULE_REGISTER();
#define EVT_TO_STR(event) \
(event == NRF_CLOCK_EVENT_HFCLKSTARTED ? "NRF_CLOCK_EVENT_HFCLKSTARTED" : \
(event == NRF_CLOCK_EVENT_LFCLKSTARTED ? "NRF_CLOCK_EVENT_LFCLKSTARTED" : \
(event == NRF_CLOCK_EVENT_DONE ? "NRF_CLOCK_EVENT_DONE" : \
(event == NRF_CLOCK_EVENT_CTTO ? "NRF_CLOCK_EVENT_CTTO" : \
"UNKNOWN EVENT"))))
/*lint -save -e652 */
#define NRF_CLOCK_LFCLK_RC CLOCK_LFCLKSRC_SRC_RC
#define NRF_CLOCK_LFCLK_Xtal CLOCK_LFCLKSRC_SRC_Xtal
#define NRF_CLOCK_LFCLK_Synth CLOCK_LFCLKSRC_SRC_Synth
/*lint -restore */
#if (CLOCK_CONFIG_LF_SRC == NRF_CLOCK_LFCLK_RC) && !defined(SOFTDEVICE_PRESENT)
#define CALIBRATION_SUPPORT 1
#else
#define CALIBRATION_SUPPORT 0
#endif
typedef enum
{
CAL_STATE_IDLE,
CAL_STATE_CT,
CAL_STATE_HFCLK_REQ,
CAL_STATE_CAL,
CAL_STATE_ABORT,
} nrf_drv_clock_cal_state_t;
/**@brief CLOCK control block. */
typedef struct
{
bool module_initialized; /*< Indicate the state of module */
volatile bool hfclk_on; /*< High-frequency clock state. */
volatile bool lfclk_on; /*< Low-frequency clock state. */
volatile uint32_t hfclk_requests; /*< High-frequency clock request counter. */
volatile nrf_drv_clock_handler_item_t * p_hf_head;
volatile uint32_t lfclk_requests; /*< Low-frequency clock request counter. */
volatile nrf_drv_clock_handler_item_t * p_lf_head;
#if CALIBRATION_SUPPORT
nrf_drv_clock_handler_item_t cal_hfclk_started_handler_item;
nrf_drv_clock_event_handler_t cal_done_handler;
volatile nrf_drv_clock_cal_state_t cal_state;
#endif // CALIBRATION_SUPPORT
} nrf_drv_clock_cb_t;
static nrf_drv_clock_cb_t m_clock_cb;
static void clock_irq_handler(nrfx_clock_evt_type_t evt);
static void lfclk_stop(void)
{
#if CALIBRATION_SUPPORT
nrfx_clock_calibration_timer_stop();
#endif
#ifdef SOFTDEVICE_PRESENT
// If LFCLK is requested to stop while SD is still enabled,
// it indicates an error in the application.
// Enabling SD should increment the LFCLK request.
ASSERT(!nrf_sdh_is_enabled());
#endif // SOFTDEVICE_PRESENT
nrfx_clock_lfclk_stop();
m_clock_cb.lfclk_on = false;
}
static void hfclk_start(void)
{
#ifdef SOFTDEVICE_PRESENT
if (nrf_sdh_is_enabled())
{
(void)sd_clock_hfclk_request();
return;
}
#endif // SOFTDEVICE_PRESENT
nrfx_clock_hfclk_start();
}
static void hfclk_stop(void)
{
#ifdef SOFTDEVICE_PRESENT
if (nrf_sdh_is_enabled())
{
(void)sd_clock_hfclk_release();
m_clock_cb.hfclk_on = false;
return;
}
#endif // SOFTDEVICE_PRESENT
nrfx_clock_hfclk_stop();
m_clock_cb.hfclk_on = false;
}
bool nrf_drv_clock_init_check(void)
{
return m_clock_cb.module_initialized;
}
ret_code_t nrf_drv_clock_init(void)
{
ret_code_t err_code = NRF_SUCCESS;
if (m_clock_cb.module_initialized)
{
err_code = NRF_ERROR_MODULE_ALREADY_INITIALIZED;
}
else
{
m_clock_cb.p_hf_head = NULL;
m_clock_cb.hfclk_requests = 0;
m_clock_cb.p_lf_head = NULL;
m_clock_cb.lfclk_requests = 0;
err_code = nrfx_clock_init(clock_irq_handler);
#ifdef SOFTDEVICE_PRESENT
if (!nrf_sdh_is_enabled())
#endif
{
nrfx_clock_enable();
}
#if CALIBRATION_SUPPORT
m_clock_cb.cal_state = CAL_STATE_IDLE;
#endif
m_clock_cb.module_initialized = true;
}
NRF_LOG_INFO("Function: %s, error code: %s.",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrf_drv_clock_uninit(void)
{
ASSERT(m_clock_cb.module_initialized);
nrfx_clock_disable();
nrfx_clock_uninit();
m_clock_cb.module_initialized = false;
}
static void item_enqueue(nrf_drv_clock_handler_item_t ** p_head,
nrf_drv_clock_handler_item_t * p_item)
{
nrf_drv_clock_handler_item_t * p_next = *p_head;
while (p_next)
{
if (p_next == p_item)
{
return;
}
p_next = p_next->p_next;
}
p_item->p_next = (*p_head ? *p_head : NULL);
*p_head = p_item;
}
static nrf_drv_clock_handler_item_t * item_dequeue(nrf_drv_clock_handler_item_t ** p_head)
{
nrf_drv_clock_handler_item_t * p_item = *p_head;
if (p_item)
{
*p_head = p_item->p_next;
}
return p_item;
}
void nrf_drv_clock_lfclk_request(nrf_drv_clock_handler_item_t * p_handler_item)
{
ASSERT(m_clock_cb.module_initialized);
if (m_clock_cb.lfclk_on)
{
if (p_handler_item)
{
p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_LFCLK_STARTED);
}
CRITICAL_REGION_ENTER();
++(m_clock_cb.lfclk_requests);
CRITICAL_REGION_EXIT();
}
else
{
CRITICAL_REGION_ENTER();
if (p_handler_item)
{
item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head,
p_handler_item);
}
if (m_clock_cb.lfclk_requests == 0)
{
nrfx_clock_lfclk_start();
}
++(m_clock_cb.lfclk_requests);
CRITICAL_REGION_EXIT();
}
ASSERT(m_clock_cb.lfclk_requests > 0);
}
void nrf_drv_clock_lfclk_release(void)
{
ASSERT(m_clock_cb.module_initialized);
ASSERT(m_clock_cb.lfclk_requests > 0);
CRITICAL_REGION_ENTER();
--(m_clock_cb.lfclk_requests);
if (m_clock_cb.lfclk_requests == 0)
{
lfclk_stop();
}
CRITICAL_REGION_EXIT();
}
bool nrf_drv_clock_lfclk_is_running(void)
{
ASSERT(m_clock_cb.module_initialized);
#ifdef SOFTDEVICE_PRESENT
if (nrf_sdh_is_enabled())
{
return true;
}
#endif // SOFTDEVICE_PRESENT
return nrfx_clock_lfclk_is_running();
}
void nrf_drv_clock_hfclk_request(nrf_drv_clock_handler_item_t * p_handler_item)
{
ASSERT(m_clock_cb.module_initialized);
if (m_clock_cb.hfclk_on)
{
if (p_handler_item)
{
p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_HFCLK_STARTED);
}
CRITICAL_REGION_ENTER();
++(m_clock_cb.hfclk_requests);
CRITICAL_REGION_EXIT();
}
else
{
CRITICAL_REGION_ENTER();
if (p_handler_item)
{
item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head,
p_handler_item);
}
if (m_clock_cb.hfclk_requests == 0)
{
hfclk_start();
}
++(m_clock_cb.hfclk_requests);
CRITICAL_REGION_EXIT();
}
ASSERT(m_clock_cb.hfclk_requests > 0);
}
void nrf_drv_clock_hfclk_release(void)
{
ASSERT(m_clock_cb.module_initialized);
ASSERT(m_clock_cb.hfclk_requests > 0);
CRITICAL_REGION_ENTER();
--(m_clock_cb.hfclk_requests);
if (m_clock_cb.hfclk_requests == 0)
{
hfclk_stop();
}
CRITICAL_REGION_EXIT();
}
bool nrf_drv_clock_hfclk_is_running(void)
{
ASSERT(m_clock_cb.module_initialized);
#ifdef SOFTDEVICE_PRESENT
if (nrf_sdh_is_enabled())
{
uint32_t is_running;
UNUSED_VARIABLE(sd_clock_hfclk_is_running(&is_running));
return (is_running ? true : false);
}
#endif // SOFTDEVICE_PRESENT
return nrfx_clock_hfclk_is_running();
}
#if CALIBRATION_SUPPORT
static void clock_calibration_hf_started(nrf_drv_clock_evt_type_t event)
{
if (m_clock_cb.cal_state == CAL_STATE_ABORT)
{
nrf_drv_clock_hfclk_release();
m_clock_cb.cal_state = CAL_STATE_IDLE;
if (m_clock_cb.cal_done_handler)
{
m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED);
}
}
else
{
ASSERT(event == NRF_DRV_CLOCK_EVT_HFCLK_STARTED);
if (nrfx_clock_calibration_start() != NRFX_SUCCESS)
{
ASSERT(false);
}
}
}
#endif // CALIBRATION_SUPPORT
ret_code_t nrf_drv_clock_calibration_start(uint8_t interval, nrf_drv_clock_event_handler_t handler)
{
ret_code_t err_code = NRF_SUCCESS;
#if CALIBRATION_SUPPORT
ASSERT(m_clock_cb.cal_state == CAL_STATE_IDLE);
if (m_clock_cb.lfclk_on == false)
{
err_code = NRF_ERROR_INVALID_STATE;
}
else if (m_clock_cb.cal_state == CAL_STATE_IDLE)
{
m_clock_cb.cal_done_handler = handler;
m_clock_cb.cal_hfclk_started_handler_item.event_handler = clock_calibration_hf_started;
if (interval == 0)
{
m_clock_cb.cal_state = CAL_STATE_HFCLK_REQ;
nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item);
}
else
{
m_clock_cb.cal_state = CAL_STATE_CT;
nrfx_clock_calibration_timer_start(interval);
}
}
else
{
err_code = NRF_ERROR_BUSY;
}
NRF_LOG_WARNING("Function: %s, error code: %s.",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
#else
UNUSED_PARAMETER(interval);
UNUSED_PARAMETER(handler);
err_code = NRF_ERROR_FORBIDDEN;
NRF_LOG_WARNING("Function: %s, error code: %s.",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
#endif // CALIBRATION_SUPPORT
}
ret_code_t nrf_drv_clock_calibration_abort(void)
{
ret_code_t err_code = NRF_SUCCESS;
#if CALIBRATION_SUPPORT
CRITICAL_REGION_ENTER();
switch (m_clock_cb.cal_state)
{
case CAL_STATE_CT:
nrfx_clock_calibration_timer_stop();
m_clock_cb.cal_state = CAL_STATE_IDLE;
if (m_clock_cb.cal_done_handler)
{
m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED);
}
break;
case CAL_STATE_HFCLK_REQ:
/* fall through. */
case CAL_STATE_CAL:
m_clock_cb.cal_state = CAL_STATE_ABORT;
break;
default:
break;
}
CRITICAL_REGION_EXIT();
NRF_LOG_INFO("Function: %s, error code: %s.",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
#else
err_code = NRF_ERROR_FORBIDDEN;
NRF_LOG_WARNING("Function: %s, error code: %s.",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
#endif // CALIBRATION_SUPPORT
}
ret_code_t nrf_drv_clock_is_calibrating(bool * p_is_calibrating)
{
ret_code_t err_code = NRF_SUCCESS;
#if CALIBRATION_SUPPORT
ASSERT(m_clock_cb.module_initialized);
*p_is_calibrating = (m_clock_cb.cal_state != CAL_STATE_IDLE);
NRF_LOG_INFO("Function: %s, error code: %s.",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
#else
UNUSED_PARAMETER(p_is_calibrating);
err_code = NRF_ERROR_FORBIDDEN;
NRF_LOG_WARNING("Function: %s, error code: %s.",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
#endif // CALIBRATION_SUPPORT
}
__STATIC_INLINE void clock_clk_started_notify(nrf_drv_clock_evt_type_t evt_type)
{
nrf_drv_clock_handler_item_t **p_head;
if (evt_type == NRF_DRV_CLOCK_EVT_HFCLK_STARTED)
{
p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head;
}
else
{
p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head;
}
while (1)
{
nrf_drv_clock_handler_item_t * p_item = item_dequeue(p_head);
if (!p_item)
{
break;
}
p_item->event_handler(evt_type);
}
}
static void clock_irq_handler(nrfx_clock_evt_type_t evt)
{
if (evt == NRFX_CLOCK_EVT_HFCLK_STARTED)
{
m_clock_cb.hfclk_on = true;
clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED);
}
if (evt == NRFX_CLOCK_EVT_LFCLK_STARTED)
{
m_clock_cb.lfclk_on = true;
clock_clk_started_notify(NRF_DRV_CLOCK_EVT_LFCLK_STARTED);
}
#if CALIBRATION_SUPPORT
if (evt == NRFX_CLOCK_EVT_CTTO)
{
nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item);
}
if (evt == NRFX_CLOCK_EVT_CAL_DONE)
{
nrf_drv_clock_hfclk_release();
bool aborted = (m_clock_cb.cal_state == CAL_STATE_ABORT);
m_clock_cb.cal_state = CAL_STATE_IDLE;
if (m_clock_cb.cal_done_handler)
{
m_clock_cb.cal_done_handler(aborted ?
NRF_DRV_CLOCK_EVT_CAL_ABORTED : NRF_DRV_CLOCK_EVT_CAL_DONE);
}
}
#endif // CALIBRATION_SUPPORT
}
#ifdef SOFTDEVICE_PRESENT
/**
* @brief SoftDevice SoC event handler.
*
* @param[in] evt_id SoC event.
* @param[in] p_context Context.
*/
static void soc_evt_handler(uint32_t evt_id, void * p_context)
{
if (evt_id == NRF_EVT_HFCLKSTARTED)
{
m_clock_cb.hfclk_on = true;
clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED);
}
}
NRF_SDH_SOC_OBSERVER(m_soc_evt_observer, CLOCK_CONFIG_SOC_OBSERVER_PRIO, soc_evt_handler, NULL);
/**
* @brief SoftDevice enable/disable state handler.
*
* @param[in] state State.
* @param[in] p_context Context.
*/
static void sd_state_evt_handler(nrf_sdh_state_evt_t state, void * p_context)
{
switch (state)
{
case NRF_SDH_EVT_STATE_ENABLE_PREPARE:
NVIC_DisableIRQ(POWER_CLOCK_IRQn);
break;
case NRF_SDH_EVT_STATE_ENABLED:
CRITICAL_REGION_ENTER();
/* Make sure that nrf_drv_clock module is initialized */
if (!m_clock_cb.module_initialized)
{
(void)nrf_drv_clock_init();
}
/* SD is one of the LFCLK requesters, but it will enable it by itself. */
++(m_clock_cb.lfclk_requests);
m_clock_cb.lfclk_on = true;
CRITICAL_REGION_EXIT();
break;
case NRF_SDH_EVT_STATE_DISABLED:
/* Reinit interrupts */
ASSERT(m_clock_cb.module_initialized);
nrfx_clock_enable();
/* SD leaves LFCLK enabled - disable it if it is no longer required. */
nrf_drv_clock_lfclk_release();
break;
default:
break;
}
}
NRF_SDH_STATE_OBSERVER(m_sd_state_observer, CLOCK_CONFIG_STATE_OBSERVER_PRIO) =
{
.handler = sd_state_evt_handler,
.p_context = NULL,
};
#endif // SOFTDEVICE_PRESENT
#undef NRF_CLOCK_LFCLK_RC
#undef NRF_CLOCK_LFCLK_Xtal
#undef NRF_CLOCK_LFCLK_Synth
#endif // NRF_MODULE_ENABLED(NRF_CLOCK)