blob: 831ef87c929ca960cb69a00e019230498d41127c [file] [log] [blame]
/*
* Copyright (c) 2016, The OpenThread Authors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* This file implements MLE functionality required for the Thread Child, Router and Leader roles.
*/
#include "mle.hpp"
#include <openthread/platform/radio.h>
#include <openthread/platform/time.h>
#include "common/array.hpp"
#include "common/as_core_type.hpp"
#include "common/code_utils.hpp"
#include "common/debug.hpp"
#include "common/encoding.hpp"
#include "common/instance.hpp"
#include "common/locator_getters.hpp"
#include "common/random.hpp"
#include "common/serial_number.hpp"
#include "common/settings.hpp"
#include "meshcop/meshcop.hpp"
#include "meshcop/meshcop_tlvs.hpp"
#include "net/netif.hpp"
#include "net/udp6.hpp"
#include "thread/address_resolver.hpp"
#include "thread/key_manager.hpp"
#include "thread/link_metrics.hpp"
#include "thread/mle_router.hpp"
#include "thread/thread_netif.hpp"
#include "thread/time_sync_service.hpp"
using ot::Encoding::BigEndian::HostSwap16;
namespace ot {
namespace Mle {
RegisterLogModule("Mle");
Mle::Mle(Instance &aInstance)
: InstanceLocator(aInstance)
, mRetrieveNewNetworkData(false)
, mRole(kRoleDisabled)
, mNeighborTable(aInstance)
, mDeviceMode(DeviceMode::kModeRxOnWhenIdle)
, mAttachState(kAttachStateIdle)
, mReattachState(kReattachStop)
, mAttachCounter(0)
, mAnnounceDelay(kAnnounceTimeout)
, mAttachTimer(aInstance, Mle::HandleAttachTimer)
, mDelayedResponseTimer(aInstance, Mle::HandleDelayedResponseTimer)
, mMessageTransmissionTimer(aInstance, Mle::HandleMessageTransmissionTimer)
, mParentLeaderCost(0)
, mAttachMode(kAnyPartition)
, mParentPriority(0)
, mParentLinkQuality3(0)
, mParentLinkQuality2(0)
, mParentLinkQuality1(0)
, mParentSedBufferSize(0)
, mParentSedDatagramCount(0)
, mChildUpdateAttempts(0)
, mChildUpdateRequestState(kChildUpdateRequestNone)
, mDataRequestAttempts(0)
, mDataRequestState(kDataRequestNone)
, mAddressRegistrationMode(kAppendAllAddresses)
, mHasRestored(false)
, mParentLinkMargin(0)
, mParentIsSingleton(false)
, mReceivedResponseFromParent(false)
, mSocket(aInstance)
, mTimeout(kMleEndDeviceTimeout)
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
, mCslTimeout(OPENTHREAD_CONFIG_CSL_TIMEOUT)
#endif
, mPreviousParentRloc(Mac::kShortAddrInvalid)
#if OPENTHREAD_CONFIG_PARENT_SEARCH_ENABLE
, mParentSearchIsInBackoff(false)
, mParentSearchBackoffWasCanceled(false)
, mParentSearchRecentlyDetached(false)
, mParentSearchBackoffCancelTime(0)
, mParentSearchTimer(aInstance, Mle::HandleParentSearchTimer)
#endif
, mAnnounceChannel(0)
, mAlternateChannel(0)
, mAlternatePanId(Mac::kPanIdBroadcast)
, mAlternateTimestamp(0)
, mParentResponseCb(nullptr)
, mParentResponseCbContext(nullptr)
{
MeshLocalPrefix meshLocalPrefix;
mParent.Init(aInstance);
mParentCandidate.Init(aInstance);
mLeaderData.Clear();
mParentLeaderData.Clear();
mParent.Clear();
mParentCandidate.Clear();
ResetCounters();
mLinkLocal64.InitAsThreadOrigin(/* aPreferred */ true);
mLinkLocal64.GetAddress().SetToLinkLocalAddress(Get<Mac::Mac>().GetExtAddress());
mLeaderAloc.InitAsThreadOriginRealmLocalScope();
meshLocalPrefix.SetFromExtendedPanId(Get<MeshCoP::ExtendedPanIdManager>().GetExtPanId());
mMeshLocal64.InitAsThreadOriginRealmLocalScope();
mMeshLocal64.GetAddress().GetIid().GenerateRandom();
mMeshLocal16.InitAsThreadOriginRealmLocalScope();
mMeshLocal16.GetAddress().GetIid().SetToLocator(0);
mMeshLocal16.mRloc = true;
// Store RLOC address reference in MPL module.
Get<Ip6::Mpl>().SetMatchingAddress(mMeshLocal16.GetAddress());
mLinkLocalAllThreadNodes.Clear();
mLinkLocalAllThreadNodes.GetAddress().mFields.m16[0] = HostSwap16(0xff32);
mLinkLocalAllThreadNodes.GetAddress().mFields.m16[7] = HostSwap16(0x0001);
mRealmLocalAllThreadNodes.Clear();
mRealmLocalAllThreadNodes.GetAddress().mFields.m16[0] = HostSwap16(0xff33);
mRealmLocalAllThreadNodes.GetAddress().mFields.m16[7] = HostSwap16(0x0001);
SetMeshLocalPrefix(meshLocalPrefix);
// `SetMeshLocalPrefix()` also adds the Mesh-Local EID and subscribes
// to the Link- and Realm-Local All Thread Nodes multicast addresses.
}
Error Mle::Enable(void)
{
Error error = kErrorNone;
UpdateLinkLocalAddress();
SuccessOrExit(error = mSocket.Open(&Mle::HandleUdpReceive, this));
SuccessOrExit(error = mSocket.Bind(kUdpPort));
#if OPENTHREAD_CONFIG_PARENT_SEARCH_ENABLE
StartParentSearchTimer();
#endif
exit:
return error;
}
void Mle::ScheduleChildUpdateRequest(void)
{
mChildUpdateRequestState = kChildUpdateRequestPending;
ScheduleMessageTransmissionTimer();
}
Error Mle::Disable(void)
{
Error error = kErrorNone;
Stop(kKeepNetworkDatasets);
SuccessOrExit(error = mSocket.Close());
Get<ThreadNetif>().RemoveUnicastAddress(mLinkLocal64);
exit:
return error;
}
Error Mle::Start(StartMode aMode)
{
Error error = kErrorNone;
// cannot bring up the interface if IEEE 802.15.4 promiscuous mode is enabled
VerifyOrExit(!Get<Radio>().GetPromiscuous(), error = kErrorInvalidState);
VerifyOrExit(Get<ThreadNetif>().IsUp(), error = kErrorInvalidState);
if (Get<Mac::Mac>().GetPanId() == Mac::kPanIdBroadcast)
{
Get<Mac::Mac>().SetPanId(Mac::GenerateRandomPanId());
}
SetStateDetached();
ApplyMeshLocalPrefix();
SetRloc16(GetRloc16());
mAttachCounter = 0;
Get<KeyManager>().Start();
if (aMode == kNormalAttach)
{
mReattachState = kReattachStart;
}
if ((aMode == kAnnounceAttach) || (GetRloc16() == Mac::kShortAddrInvalid))
{
Attach(kAnyPartition);
}
#if OPENTHREAD_FTD
else if (IsActiveRouter(GetRloc16()))
{
if (Get<MleRouter>().BecomeRouter(ThreadStatusTlv::kTooFewRouters) != kErrorNone)
{
Attach(kAnyPartition);
}
}
#endif
else
{
mChildUpdateAttempts = 0;
IgnoreError(SendChildUpdateRequest());
}
exit:
return error;
}
void Mle::Stop(StopMode aMode)
{
if (aMode == kUpdateNetworkDatasets)
{
Get<MeshCoP::ActiveDatasetManager>().HandleDetach();
Get<MeshCoP::PendingDatasetManager>().HandleDetach();
}
VerifyOrExit(!IsDisabled());
Get<KeyManager>().Stop();
SetStateDetached();
Get<ThreadNetif>().UnsubscribeMulticast(mRealmLocalAllThreadNodes);
Get<ThreadNetif>().UnsubscribeMulticast(mLinkLocalAllThreadNodes);
Get<ThreadNetif>().RemoveUnicastAddress(mMeshLocal16);
Get<ThreadNetif>().RemoveUnicastAddress(mMeshLocal64);
SetRole(kRoleDisabled);
exit:
return;
}
void Mle::SetRole(DeviceRole aRole)
{
DeviceRole oldRole = mRole;
SuccessOrExit(Get<Notifier>().Update(mRole, aRole, kEventThreadRoleChanged));
LogNote("Role %s -> %s", RoleToString(oldRole), RoleToString(mRole));
switch (mRole)
{
case kRoleDisabled:
mCounters.mDisabledRole++;
break;
case kRoleDetached:
mCounters.mDetachedRole++;
break;
case kRoleChild:
mCounters.mChildRole++;
break;
case kRoleRouter:
mCounters.mRouterRole++;
break;
case kRoleLeader:
mCounters.mLeaderRole++;
break;
}
// If the previous state is disabled, the parent can be in kStateRestored.
if (!IsChild() && oldRole != kRoleDisabled)
{
mParent.SetState(Neighbor::kStateInvalid);
}
exit:
return;
}
void Mle::SetAttachState(AttachState aState)
{
VerifyOrExit(aState != mAttachState);
LogInfo("AttachState %s -> %s", AttachStateToString(mAttachState), AttachStateToString(aState));
mAttachState = aState;
exit:
return;
}
void Mle::Restore(void)
{
Settings::NetworkInfo networkInfo;
Settings::ParentInfo parentInfo;
IgnoreError(Get<MeshCoP::ActiveDatasetManager>().Restore());
IgnoreError(Get<MeshCoP::PendingDatasetManager>().Restore());
#if OPENTHREAD_CONFIG_DUA_ENABLE
Get<DuaManager>().Restore();
#endif
SuccessOrExit(Get<Settings>().Read(networkInfo));
Get<KeyManager>().SetCurrentKeySequence(networkInfo.GetKeySequence());
Get<KeyManager>().SetMleFrameCounter(networkInfo.GetMleFrameCounter());
Get<KeyManager>().SetAllMacFrameCounters(networkInfo.GetMacFrameCounter());
#if OPENTHREAD_MTD
mDeviceMode.Set(networkInfo.GetDeviceMode() & ~DeviceMode::kModeFullThreadDevice);
#else
mDeviceMode.Set(networkInfo.GetDeviceMode());
#endif
// force re-attach when version mismatch.
VerifyOrExit(networkInfo.GetVersion() == kThreadVersion);
switch (networkInfo.GetRole())
{
case kRoleChild:
case kRoleRouter:
case kRoleLeader:
break;
default:
ExitNow();
}
#if OPENTHREAD_MTD
if (!IsActiveRouter(networkInfo.GetRloc16()))
#endif
{
Get<Mac::Mac>().SetShortAddress(networkInfo.GetRloc16());
}
Get<Mac::Mac>().SetExtAddress(networkInfo.GetExtAddress());
mMeshLocal64.GetAddress().SetIid(networkInfo.GetMeshLocalIid());
if (networkInfo.GetRloc16() == Mac::kShortAddrInvalid)
{
ExitNow();
}
if (!IsActiveRouter(networkInfo.GetRloc16()))
{
if (Get<Settings>().Read(parentInfo) != kErrorNone)
{
// If the restored RLOC16 corresponds to an end-device, it
// is expected that the `ParentInfo` settings to be valid
// as well. The device can still recover from such an invalid
// setting by skipping the re-attach ("Child Update Request"
// exchange) and going through the full attach process.
LogWarn("Invalid settings - no saved parent info with valid end-device RLOC16 0x%04x",
networkInfo.GetRloc16());
ExitNow();
}
mParent.Clear();
mParent.SetExtAddress(parentInfo.GetExtAddress());
mParent.SetVersion(static_cast<uint8_t>(parentInfo.GetVersion()));
mParent.SetDeviceMode(DeviceMode(DeviceMode::kModeFullThreadDevice | DeviceMode::kModeRxOnWhenIdle |
DeviceMode::kModeFullNetworkData));
mParent.SetRloc16(Rloc16FromRouterId(RouterIdFromRloc16(networkInfo.GetRloc16())));
mParent.SetState(Neighbor::kStateRestored);
mPreviousParentRloc = mParent.GetRloc16();
}
#if OPENTHREAD_FTD
else
{
Get<MleRouter>().SetRouterId(RouterIdFromRloc16(GetRloc16()));
Get<MleRouter>().SetPreviousPartitionId(networkInfo.GetPreviousPartitionId());
Get<ChildTable>().Restore();
}
#endif
// Successfully restored the network information from non-volatile settings after boot.
mHasRestored = true;
exit:
return;
}
Error Mle::Store(void)
{
Error error = kErrorNone;
Settings::NetworkInfo networkInfo;
networkInfo.Init();
if (IsAttached())
{
// Only update network information while we are attached to
// avoid losing/overwriting previous information when a reboot
// occurs after a message is sent but before attaching.
networkInfo.SetRole(mRole);
networkInfo.SetRloc16(GetRloc16());
networkInfo.SetPreviousPartitionId(mLeaderData.GetPartitionId());
networkInfo.SetExtAddress(Get<Mac::Mac>().GetExtAddress());
networkInfo.SetMeshLocalIid(mMeshLocal64.GetAddress().GetIid());
networkInfo.SetVersion(kThreadVersion);
if (IsChild())
{
Settings::ParentInfo parentInfo;
parentInfo.Init();
parentInfo.SetExtAddress(mParent.GetExtAddress());
parentInfo.SetVersion(mParent.GetVersion());
SuccessOrExit(error = Get<Settings>().Save(parentInfo));
}
}
else
{
// When not attached, read out any previous saved `NetworkInfo`.
// If there is none, it indicates that device was never attached
// before. In that case, no need to save any info (note that on
// a device reset the MLE/MAC frame counters would reset but
// device also starts with a new randomly generated extended
// address. If there is a previously saved `NetworkInfo`, we
// just update the key sequence and MAC and MLE frame counters.
SuccessOrExit(Get<Settings>().Read(networkInfo));
}
networkInfo.SetKeySequence(Get<KeyManager>().GetCurrentKeySequence());
networkInfo.SetMleFrameCounter(Get<KeyManager>().GetMleFrameCounter() +
OPENTHREAD_CONFIG_STORE_FRAME_COUNTER_AHEAD);
networkInfo.SetMacFrameCounter(Get<KeyManager>().GetMaximumMacFrameCounter() +
OPENTHREAD_CONFIG_STORE_FRAME_COUNTER_AHEAD);
networkInfo.SetDeviceMode(mDeviceMode.Get());
SuccessOrExit(error = Get<Settings>().Save(networkInfo));
Get<KeyManager>().SetStoredMleFrameCounter(networkInfo.GetMleFrameCounter());
Get<KeyManager>().SetStoredMacFrameCounter(networkInfo.GetMacFrameCounter());
LogDebg("Store Network Information");
exit:
return error;
}
Error Mle::BecomeDetached(void)
{
Error error = kErrorNone;
VerifyOrExit(!IsDisabled(), error = kErrorInvalidState);
// In case role is already detached and attach state is `kAttachStateStart`
// (i.e., waiting to start an attach attempt), there is no need to make any
// changes.
VerifyOrExit(!IsDetached() || mAttachState != kAttachStateStart);
// not in reattach stage after reset
if (mReattachState == kReattachStop)
{
Get<MeshCoP::PendingDatasetManager>().HandleDetach();
}
#if OPENTHREAD_CONFIG_PARENT_SEARCH_ENABLE
mParentSearchRecentlyDetached = true;
#endif
SetStateDetached();
mParent.SetState(Neighbor::kStateInvalid);
SetRloc16(Mac::kShortAddrInvalid);
Attach(kAnyPartition);
exit:
return error;
}
Error Mle::BecomeChild(void)
{
Error error = kErrorNone;
VerifyOrExit(!IsDisabled(), error = kErrorInvalidState);
VerifyOrExit(!IsAttaching(), error = kErrorBusy);
Attach(kAnyPartition);
exit:
return error;
}
void Mle::Attach(AttachMode aMode)
{
VerifyOrExit(!IsDisabled() && !IsAttaching());
if (!IsDetached())
{
mAttachCounter = 0;
}
if (mReattachState == kReattachStart)
{
if (Get<MeshCoP::ActiveDatasetManager>().Restore() == kErrorNone)
{
mReattachState = kReattachActive;
}
else
{
mReattachState = kReattachStop;
}
}
mParentCandidate.Clear();
SetAttachState(kAttachStateStart);
mAttachMode = aMode;
if (aMode != kBetterPartition)
{
#if OPENTHREAD_FTD
if (IsFullThreadDevice())
{
Get<MleRouter>().StopAdvertiseTrickleTimer();
}
#endif
}
else
{
mCounters.mBetterPartitionAttachAttempts++;
}
mAttachTimer.Start(GetAttachStartDelay());
if (IsDetached())
{
mAttachCounter++;
if (mAttachCounter == 0)
{
mAttachCounter--;
}
mCounters.mAttachAttempts++;
if (!IsRxOnWhenIdle())
{
Get<Mac::Mac>().SetRxOnWhenIdle(false);
}
}
exit:
return;
}
uint32_t Mle::GetAttachStartDelay(void) const
{
uint32_t delay = 1;
uint32_t jitter;
VerifyOrExit(IsDetached());
if (mAttachCounter == 0)
{
delay = 1 + Random::NonCrypto::GetUint32InRange(0, kParentRequestRouterTimeout);
ExitNow();
}
#if OPENTHREAD_CONFIG_MLE_ATTACH_BACKOFF_ENABLE
else
{
uint16_t counter = mAttachCounter - 1;
const uint32_t ratio = kAttachBackoffMaxInterval / kAttachBackoffMinInterval;
if ((counter < sizeof(ratio) * CHAR_BIT) && ((1UL << counter) <= ratio))
{
delay = kAttachBackoffMinInterval;
delay <<= counter;
}
else
{
delay = Random::NonCrypto::AddJitter(kAttachBackoffMaxInterval, kAttachBackoffJitter);
}
}
#endif // OPENTHREAD_CONFIG_MLE_ATTACH_BACKOFF_ENABLE
jitter = Random::NonCrypto::GetUint32InRange(0, kAttachStartJitter);
if (jitter + delay > delay) // check for overflow
{
delay += jitter;
}
LogNote("Attach attempt %d unsuccessful, will try again in %u.%03u seconds", mAttachCounter, delay / 1000,
delay % 1000);
exit:
return delay;
}
bool Mle::IsAttached(void) const
{
return (IsChild() || IsRouter() || IsLeader());
}
bool Mle::IsRouterOrLeader(void) const
{
return (IsRouter() || IsLeader());
}
void Mle::SetStateDetached(void)
{
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
if (Get<Mac::Mac>().IsCslEnabled())
{
IgnoreError(Get<Radio>().EnableCsl(0, GetParent().GetRloc16(), &GetParent().GetExtAddress()));
}
#endif
#if OPENTHREAD_FTD && OPENTHREAD_CONFIG_BACKBONE_ROUTER_ENABLE
Get<BackboneRouter::Local>().Reset();
#endif
#if OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2
Get<BackboneRouter::Leader>().Reset();
#endif
if (IsLeader())
{
Get<ThreadNetif>().RemoveUnicastAddress(mLeaderAloc);
}
SetRole(kRoleDetached);
SetAttachState(kAttachStateIdle);
mAttachTimer.Stop();
mMessageTransmissionTimer.Stop();
mChildUpdateRequestState = kChildUpdateRequestNone;
mChildUpdateAttempts = 0;
mDataRequestState = kDataRequestNone;
mDataRequestAttempts = 0;
Get<MeshForwarder>().SetRxOnWhenIdle(true);
Get<Mac::Mac>().SetBeaconEnabled(false);
#if OPENTHREAD_FTD
Get<MleRouter>().HandleDetachStart();
#endif
Get<Ip6::Ip6>().SetForwardingEnabled(false);
#if OPENTHREAD_FTD
Get<Ip6::Mpl>().SetTimerExpirations(0);
#endif
}
void Mle::SetStateChild(uint16_t aRloc16)
{
if (IsLeader())
{
Get<ThreadNetif>().RemoveUnicastAddress(mLeaderAloc);
}
SetRloc16(aRloc16);
SetRole(kRoleChild);
SetAttachState(kAttachStateIdle);
mAttachTimer.Start(kAttachBackoffDelayToResetCounter);
mReattachState = kReattachStop;
mChildUpdateAttempts = 0;
mDataRequestAttempts = 0;
Get<Mac::Mac>().SetBeaconEnabled(false);
ScheduleMessageTransmissionTimer();
#if OPENTHREAD_FTD
if (IsFullThreadDevice())
{
Get<MleRouter>().HandleChildStart(mAttachMode);
}
#endif
Get<Ip6::Ip6>().SetForwardingEnabled(false);
#if OPENTHREAD_FTD
Get<Ip6::Mpl>().SetTimerExpirations(kMplChildDataMessageTimerExpirations);
#endif
// send announce after attached if needed
InformPreviousChannel();
#if OPENTHREAD_CONFIG_PARENT_SEARCH_ENABLE
UpdateParentSearchState();
#endif
if ((mPreviousParentRloc != Mac::kShortAddrInvalid) && (mPreviousParentRloc != mParent.GetRloc16()))
{
mCounters.mParentChanges++;
#if OPENTHREAD_CONFIG_MLE_INFORM_PREVIOUS_PARENT_ON_REATTACH
InformPreviousParent();
#endif
}
mPreviousParentRloc = mParent.GetRloc16();
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
if (Get<Mac::Mac>().IsCslCapable())
{
uint32_t period = IsRxOnWhenIdle() ? 0 : Get<Mac::Mac>().GetCslPeriod();
IgnoreError(Get<Radio>().EnableCsl(period, GetParent().GetRloc16(), &GetParent().GetExtAddress()));
ScheduleChildUpdateRequest();
}
#endif
}
void Mle::InformPreviousChannel(void)
{
VerifyOrExit(mAlternatePanId != Mac::kPanIdBroadcast);
VerifyOrExit(IsChild() || IsRouter());
#if OPENTHREAD_FTD
VerifyOrExit(!IsFullThreadDevice() || IsRouter() || Get<MleRouter>().GetRouterSelectionJitterTimeout() == 0);
#endif
mAlternatePanId = Mac::kPanIdBroadcast;
Get<AnnounceBeginServer>().SendAnnounce(1 << mAlternateChannel);
exit:
return;
}
void Mle::SetTimeout(uint32_t aTimeout)
{
VerifyOrExit(mTimeout != aTimeout);
if (aTimeout < kMinTimeout)
{
aTimeout = kMinTimeout;
}
mTimeout = aTimeout;
Get<DataPollSender>().RecalculatePollPeriod();
if (IsChild())
{
IgnoreError(SendChildUpdateRequest());
}
exit:
return;
}
Error Mle::SetDeviceMode(DeviceMode aDeviceMode)
{
Error error = kErrorNone;
DeviceMode oldMode = mDeviceMode;
#if OPENTHREAD_MTD
VerifyOrExit(!aDeviceMode.IsFullThreadDevice(), error = kErrorInvalidArgs);
#endif
VerifyOrExit(aDeviceMode.IsValid(), error = kErrorInvalidArgs);
VerifyOrExit(mDeviceMode != aDeviceMode);
mDeviceMode = aDeviceMode;
#if OPENTHREAD_CONFIG_HISTORY_TRACKER_ENABLE
Get<Utils::HistoryTracker>().RecordNetworkInfo();
#endif
#if OPENTHREAD_CONFIG_OTNS_ENABLE
Get<Utils::Otns>().EmitDeviceMode(mDeviceMode);
#endif
LogNote("Mode 0x%02x -> 0x%02x [%s]", oldMode.Get(), mDeviceMode.Get(), mDeviceMode.ToString().AsCString());
IgnoreError(Store());
switch (mRole)
{
case kRoleDisabled:
break;
case kRoleDetached:
mAttachCounter = 0;
SetStateDetached();
Attach(kAnyPartition);
break;
case kRoleChild:
SetStateChild(GetRloc16());
IgnoreError(SendChildUpdateRequest());
break;
case kRoleRouter:
case kRoleLeader:
if (oldMode.IsFullThreadDevice() && !mDeviceMode.IsFullThreadDevice())
{
IgnoreError(BecomeDetached());
}
break;
}
exit:
return error;
}
void Mle::UpdateLinkLocalAddress(void)
{
Get<ThreadNetif>().RemoveUnicastAddress(mLinkLocal64);
mLinkLocal64.GetAddress().GetIid().SetFromExtAddress(Get<Mac::Mac>().GetExtAddress());
Get<ThreadNetif>().AddUnicastAddress(mLinkLocal64);
Get<Notifier>().Signal(kEventThreadLinkLocalAddrChanged);
}
void Mle::SetMeshLocalPrefix(const MeshLocalPrefix &aMeshLocalPrefix)
{
VerifyOrExit(GetMeshLocalPrefix() != aMeshLocalPrefix,
Get<Notifier>().SignalIfFirst(kEventThreadMeshLocalAddrChanged));
if (Get<ThreadNetif>().IsUp())
{
Get<ThreadNetif>().RemoveUnicastAddress(mLeaderAloc);
// We must remove the old addresses before adding the new ones.
Get<ThreadNetif>().RemoveUnicastAddress(mMeshLocal64);
Get<ThreadNetif>().RemoveUnicastAddress(mMeshLocal16);
Get<ThreadNetif>().UnsubscribeMulticast(mLinkLocalAllThreadNodes);
Get<ThreadNetif>().UnsubscribeMulticast(mRealmLocalAllThreadNodes);
}
mMeshLocal64.GetAddress().SetPrefix(aMeshLocalPrefix);
mMeshLocal16.GetAddress().SetPrefix(aMeshLocalPrefix);
mLeaderAloc.GetAddress().SetPrefix(aMeshLocalPrefix);
// Just keep mesh local prefix if network interface is down
VerifyOrExit(Get<ThreadNetif>().IsUp());
ApplyMeshLocalPrefix();
exit:
return;
}
#if OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE
Error Mle::SetMeshLocalIid(const Ip6::InterfaceIdentifier &aMlIid)
{
Error error = kErrorNone;
VerifyOrExit(!Get<ThreadNetif>().HasUnicastAddress(mMeshLocal64), error = kErrorInvalidState);
mMeshLocal64.GetAddress().SetIid(aMlIid);
exit:
return error;
}
#endif
void Mle::ApplyMeshLocalPrefix(void)
{
mLinkLocalAllThreadNodes.GetAddress().SetMulticastNetworkPrefix(GetMeshLocalPrefix());
mRealmLocalAllThreadNodes.GetAddress().SetMulticastNetworkPrefix(GetMeshLocalPrefix());
VerifyOrExit(!IsDisabled());
// Add the addresses back into the table.
Get<ThreadNetif>().AddUnicastAddress(mMeshLocal64);
Get<ThreadNetif>().SubscribeMulticast(mLinkLocalAllThreadNodes);
Get<ThreadNetif>().SubscribeMulticast(mRealmLocalAllThreadNodes);
if (IsAttached())
{
Get<ThreadNetif>().AddUnicastAddress(mMeshLocal16);
}
// update Leader ALOC
if (IsLeader())
{
Get<ThreadNetif>().AddUnicastAddress(mLeaderAloc);
}
#if OPENTHREAD_FTD && OPENTHREAD_CONFIG_COMMISSIONER_ENABLE
Get<MeshCoP::Commissioner>().ApplyMeshLocalPrefix();
#endif
#if OPENTHREAD_CONFIG_BORDER_AGENT_ENABLE
Get<MeshCoP::BorderAgent>().ApplyMeshLocalPrefix();
#endif
#if OPENTHREAD_CONFIG_DHCP6_SERVER_ENABLE
Get<Dhcp6::Server>().ApplyMeshLocalPrefix();
#endif
#if OPENTHREAD_CONFIG_NEIGHBOR_DISCOVERY_AGENT_ENABLE
Get<NeighborDiscovery::Agent>().ApplyMeshLocalPrefix();
#endif
#if OPENTHREAD_CONFIG_TMF_NETDATA_SERVICE_ENABLE
for (ServiceAloc &serviceAloc : mServiceAlocs)
{
if (serviceAloc.IsInUse())
{
Get<ThreadNetif>().RemoveUnicastAddress(serviceAloc);
}
serviceAloc.ApplyMeshLocalPrefix(GetMeshLocalPrefix());
if (serviceAloc.IsInUse())
{
Get<ThreadNetif>().AddUnicastAddress(serviceAloc);
}
}
#endif
#if OPENTHREAD_FTD && OPENTHREAD_CONFIG_BACKBONE_ROUTER_ENABLE
Get<BackboneRouter::Local>().ApplyMeshLocalPrefix();
#endif
exit:
// Changing the prefix also causes the mesh local address to be different.
Get<Notifier>().Signal(kEventThreadMeshLocalAddrChanged);
}
uint16_t Mle::GetRloc16(void) const
{
return Get<Mac::Mac>().GetShortAddress();
}
void Mle::SetRloc16(uint16_t aRloc16)
{
uint16_t oldRloc16 = GetRloc16();
if (aRloc16 != oldRloc16)
{
LogNote("RLOC16 %04x -> %04x", oldRloc16, aRloc16);
}
if (Get<ThreadNetif>().HasUnicastAddress(mMeshLocal16) &&
(mMeshLocal16.GetAddress().GetIid().GetLocator() != aRloc16))
{
Get<ThreadNetif>().RemoveUnicastAddress(mMeshLocal16);
Get<Tmf::Agent>().ClearRequests(mMeshLocal16.GetAddress());
}
Get<Mac::Mac>().SetShortAddress(aRloc16);
Get<Ip6::Mpl>().SetSeedId(aRloc16);
if (aRloc16 != Mac::kShortAddrInvalid)
{
// We can always call `AddUnicastAddress(mMeshLocat16)` and if
// the address is already added, it will perform no action.
mMeshLocal16.GetAddress().GetIid().SetLocator(aRloc16);
Get<ThreadNetif>().AddUnicastAddress(mMeshLocal16);
#if OPENTHREAD_FTD
Get<AddressResolver>().RestartAddressQueries();
#endif
}
}
void Mle::SetLeaderData(uint32_t aPartitionId, uint8_t aWeighting, uint8_t aLeaderRouterId)
{
if (mLeaderData.GetPartitionId() != aPartitionId)
{
#if OPENTHREAD_FTD
Get<MleRouter>().HandlePartitionChange();
#endif
Get<Notifier>().Signal(kEventThreadPartitionIdChanged);
mCounters.mPartitionIdChanges++;
}
else
{
Get<Notifier>().SignalIfFirst(kEventThreadPartitionIdChanged);
}
mLeaderData.SetPartitionId(aPartitionId);
mLeaderData.SetWeighting(aWeighting);
mLeaderData.SetLeaderRouterId(aLeaderRouterId);
}
Error Mle::GetLeaderAddress(Ip6::Address &aAddress) const
{
Error error = kErrorNone;
VerifyOrExit(GetRloc16() != Mac::kShortAddrInvalid, error = kErrorDetached);
aAddress.SetToRoutingLocator(GetMeshLocalPrefix(), Rloc16FromRouterId(mLeaderData.GetLeaderRouterId()));
exit:
return error;
}
Error Mle::GetLocatorAddress(Ip6::Address &aAddress, uint16_t aLocator) const
{
Error error = kErrorNone;
VerifyOrExit(GetRloc16() != Mac::kShortAddrInvalid, error = kErrorDetached);
memcpy(&aAddress, &mMeshLocal16.GetAddress(), 14);
aAddress.GetIid().SetLocator(aLocator);
exit:
return error;
}
Error Mle::GetServiceAloc(uint8_t aServiceId, Ip6::Address &aAddress) const
{
Error error = kErrorNone;
VerifyOrExit(GetRloc16() != Mac::kShortAddrInvalid, error = kErrorDetached);
aAddress.SetToAnycastLocator(GetMeshLocalPrefix(), ServiceAlocFromId(aServiceId));
exit:
return error;
}
const LeaderData &Mle::GetLeaderData(void)
{
mLeaderData.SetDataVersion(Get<NetworkData::Leader>().GetVersion(NetworkData::kFullSet));
mLeaderData.SetStableDataVersion(Get<NetworkData::Leader>().GetVersion(NetworkData::kStableSubset));
return mLeaderData;
}
Message *Mle::NewMleMessage(Command aCommand)
{
Error error = kErrorNone;
Message * message;
Message::Settings settings(Message::kNoLinkSecurity, Message::kPriorityNet);
Message::SubType subType;
uint8_t securitySuite;
message = mSocket.NewMessage(0, settings);
VerifyOrExit(message != nullptr, error = kErrorNoBufs);
securitySuite = k154Security;
subType = Message::kSubTypeMleGeneral;
switch (aCommand)
{
case kCommandAnnounce:
subType = Message::kSubTypeMleAnnounce;
break;
case kCommandDiscoveryRequest:
subType = Message::kSubTypeMleDiscoverRequest;
securitySuite = kNoSecurity;
break;
case kCommandDiscoveryResponse:
subType = Message::kSubTypeMleDiscoverResponse;
securitySuite = kNoSecurity;
break;
case kCommandChildUpdateRequest:
subType = Message::kSubTypeMleChildUpdateRequest;
break;
case kCommandDataResponse:
subType = Message::kSubTypeMleDataResponse;
break;
case kCommandChildIdRequest:
subType = Message::kSubTypeMleChildIdRequest;
break;
case kCommandDataRequest:
subType = Message::kSubTypeMleDataRequest;
break;
default:
break;
}
message->SetSubType(subType);
SuccessOrExit(error = message->Append(securitySuite));
if (securitySuite == k154Security)
{
SecurityHeader securityHeader;
// The other fields in security header are updated in the
// message in `SendMessage()` before message is sent.
securityHeader.InitSecurityControl();
SuccessOrExit(error = message->Append(securityHeader));
}
error = message->Append<uint8_t>(aCommand);
exit:
FreeAndNullMessageOnError(message, error);
return message;
}
Error Mle::AppendSourceAddress(Message &aMessage) const
{
return Tlv::Append<SourceAddressTlv>(aMessage, GetRloc16());
}
Error Mle::AppendStatus(Message &aMessage, StatusTlv::Status aStatus)
{
return Tlv::Append<StatusTlv>(aMessage, aStatus);
}
Error Mle::AppendMode(Message &aMessage, DeviceMode aMode)
{
return Tlv::Append<ModeTlv>(aMessage, aMode.Get());
}
Error Mle::AppendTimeout(Message &aMessage, uint32_t aTimeout)
{
return Tlv::Append<TimeoutTlv>(aMessage, aTimeout);
}
Error Mle::AppendChallenge(Message &aMessage, const Challenge &aChallenge)
{
return Tlv::Append<ChallengeTlv>(aMessage, aChallenge.mBuffer, aChallenge.mLength);
}
Error Mle::AppendChallenge(Message &aMessage, const uint8_t *aChallenge, uint8_t aChallengeLength)
{
return Tlv::Append<ChallengeTlv>(aMessage, aChallenge, aChallengeLength);
}
Error Mle::AppendResponse(Message &aMessage, const Challenge &aResponse)
{
return Tlv::Append<ResponseTlv>(aMessage, aResponse.mBuffer, aResponse.mLength);
}
Error Mle::ReadChallengeOrResponse(const Message &aMessage, uint8_t aTlvType, Challenge &aBuffer)
{
Error error;
uint16_t offset;
uint16_t length;
SuccessOrExit(error = Tlv::FindTlvValueOffset(aMessage, aTlvType, offset, length));
VerifyOrExit(length >= kMinChallengeSize, error = kErrorParse);
if (length > kMaxChallengeSize)
{
length = kMaxChallengeSize;
}
aMessage.ReadBytes(offset, aBuffer.mBuffer, length);
aBuffer.mLength = static_cast<uint8_t>(length);
exit:
return error;
}
Error Mle::ReadChallenge(const Message &aMessage, Challenge &aChallenge)
{
return ReadChallengeOrResponse(aMessage, Tlv::kChallenge, aChallenge);
}
Error Mle::ReadResponse(const Message &aMessage, Challenge &aResponse)
{
return ReadChallengeOrResponse(aMessage, Tlv::kResponse, aResponse);
}
Error Mle::AppendLinkFrameCounter(Message &aMessage)
{
uint32_t counter;
// When including Link-layer Frame Counter TLV in an MLE message
// the value is set to the maximum MAC frame counter on all
// supported radio links. All radio links must also start using
// the same counter value as the value included in the TLV.
counter = Get<KeyManager>().GetMaximumMacFrameCounter();
#if OPENTHREAD_CONFIG_MULTI_RADIO
Get<KeyManager>().SetAllMacFrameCounters(counter);
#endif
return Tlv::Append<LinkFrameCounterTlv>(aMessage, counter);
}
Error Mle::AppendMleFrameCounter(Message &aMessage)
{
return Tlv::Append<MleFrameCounterTlv>(aMessage, Get<KeyManager>().GetMleFrameCounter());
}
Error Mle::ReadFrameCounters(const Message &aMessage, uint32_t &aLinkFrameCounter, uint32_t &aMleFrameCounter) const
{
Error error;
SuccessOrExit(error = Tlv::Find<LinkFrameCounterTlv>(aMessage, aLinkFrameCounter));
switch (Tlv::Find<MleFrameCounterTlv>(aMessage, aMleFrameCounter))
{
case kErrorNone:
break;
case kErrorNotFound:
aMleFrameCounter = aLinkFrameCounter;
break;
default:
error = kErrorParse;
break;
}
exit:
return error;
}
Error Mle::AppendAddress16(Message &aMessage, uint16_t aRloc16)
{
return Tlv::Append<Address16Tlv>(aMessage, aRloc16);
}
Error Mle::AppendLeaderData(Message &aMessage)
{
LeaderDataTlv leaderDataTlv;
mLeaderData.SetDataVersion(Get<NetworkData::Leader>().GetVersion(NetworkData::kFullSet));
mLeaderData.SetStableDataVersion(Get<NetworkData::Leader>().GetVersion(NetworkData::kStableSubset));
leaderDataTlv.Init();
leaderDataTlv.Set(mLeaderData);
return leaderDataTlv.AppendTo(aMessage);
}
Error Mle::ReadLeaderData(const Message &aMessage, LeaderData &aLeaderData)
{
Error error;
LeaderDataTlv leaderDataTlv;
SuccessOrExit(error = Tlv::FindTlv(aMessage, leaderDataTlv));
VerifyOrExit(leaderDataTlv.IsValid(), error = kErrorParse);
leaderDataTlv.Get(aLeaderData);
exit:
return error;
}
Error Mle::AppendNetworkData(Message &aMessage, NetworkData::Type aType)
{
Error error = kErrorNone;
uint8_t networkData[NetworkData::NetworkData::kMaxSize];
uint8_t length;
VerifyOrExit(!mRetrieveNewNetworkData, error = kErrorInvalidState);
length = sizeof(networkData);
IgnoreError(Get<NetworkData::Leader>().CopyNetworkData(aType, networkData, length));
error = Tlv::Append<NetworkDataTlv>(aMessage, networkData, length);
exit:
return error;
}
Error Mle::AppendTlvRequest(Message &aMessage, const uint8_t *aTlvs, uint8_t aTlvsLength)
{
return Tlv::Append<TlvRequestTlv>(aMessage, aTlvs, aTlvsLength);
}
Error Mle::FindTlvRequest(const Message &aMessage, RequestedTlvs &aRequestedTlvs)
{
Error error;
uint16_t offset;
uint16_t length;
SuccessOrExit(error = Tlv::FindTlvValueOffset(aMessage, Tlv::kTlvRequest, offset, length));
if (length > sizeof(aRequestedTlvs.mTlvs))
{
length = sizeof(aRequestedTlvs.mTlvs);
}
aMessage.ReadBytes(offset, aRequestedTlvs.mTlvs, length);
aRequestedTlvs.mNumTlvs = static_cast<uint8_t>(length);
exit:
return error;
}
Error Mle::AppendScanMask(Message &aMessage, uint8_t aScanMask)
{
return Tlv::Append<ScanMaskTlv>(aMessage, aScanMask);
}
Error Mle::AppendLinkMargin(Message &aMessage, uint8_t aLinkMargin)
{
return Tlv::Append<LinkMarginTlv>(aMessage, aLinkMargin);
}
Error Mle::AppendVersion(Message &aMessage)
{
return Tlv::Append<VersionTlv>(aMessage, kThreadVersion);
}
bool Mle::HasUnregisteredAddress(void)
{
bool retval = false;
// Checks whether there are any addresses in addition to the mesh-local
// address that need to be registered.
for (const Ip6::Netif::UnicastAddress &addr : Get<ThreadNetif>().GetUnicastAddresses())
{
if (!addr.GetAddress().IsLinkLocal() && !IsRoutingLocator(addr.GetAddress()) &&
!IsAnycastLocator(addr.GetAddress()) && addr.GetAddress() != GetMeshLocal64())
{
ExitNow(retval = true);
}
}
if (!IsRxOnWhenIdle())
{
// For sleepy end-device, we register any external multicast
// addresses.
retval = Get<ThreadNetif>().HasAnyExternalMulticastAddress();
}
exit:
return retval;
}
Error Mle::AppendAddressRegistration(Message &aMessage, AddressRegistrationMode aMode)
{
Error error = kErrorNone;
Tlv tlv;
AddressRegistrationEntry entry;
Lowpan::Context context;
uint8_t length = 0;
uint8_t counter = 0;
uint16_t startOffset = aMessage.GetLength();
#if OPENTHREAD_CONFIG_DUA_ENABLE
Ip6::Address domainUnicastAddress;
#endif
tlv.SetType(Tlv::kAddressRegistration);
SuccessOrExit(error = aMessage.Append(tlv));
// Prioritize ML-EID
entry.SetContextId(kMeshLocalPrefixContextId);
entry.SetIid(GetMeshLocal64().GetIid());
SuccessOrExit(error = aMessage.AppendBytes(&entry, entry.GetLength()));
length += entry.GetLength();
// Continue to append the other addresses if not `kAppendMeshLocalOnly` mode
VerifyOrExit(aMode != kAppendMeshLocalOnly);
counter++;
#if OPENTHREAD_CONFIG_DUA_ENABLE
// Cache Domain Unicast Address.
domainUnicastAddress = Get<DuaManager>().GetDomainUnicastAddress();
if (Get<ThreadNetif>().HasUnicastAddress(domainUnicastAddress))
{
SuccessOrAssert(Get<NetworkData::Leader>().GetContext(domainUnicastAddress, context));
// Prioritize DUA, compressed entry
entry.SetContextId(context.mContextId);
entry.SetIid(domainUnicastAddress.GetIid());
SuccessOrExit(error = aMessage.AppendBytes(&entry, entry.GetLength()));
length += entry.GetLength();
counter++;
}
#endif // OPENTHREAD_CONFIG_DUA_ENABLE
for (const Ip6::Netif::UnicastAddress &addr : Get<ThreadNetif>().GetUnicastAddresses())
{
if (addr.GetAddress().IsLinkLocal() || IsRoutingLocator(addr.GetAddress()) ||
IsAnycastLocator(addr.GetAddress()) || addr.GetAddress() == GetMeshLocal64())
{
continue;
}
#if OPENTHREAD_CONFIG_DUA_ENABLE
// Skip DUA that was already appended above.
if (addr.GetAddress() == domainUnicastAddress)
{
continue;
}
#endif
if (Get<NetworkData::Leader>().GetContext(addr.GetAddress(), context) == kErrorNone)
{
// compressed entry
entry.SetContextId(context.mContextId);
entry.SetIid(addr.GetAddress().GetIid());
}
else
{
// uncompressed entry
entry.SetUncompressed();
entry.SetIp6Address(addr.GetAddress());
}
SuccessOrExit(error = aMessage.AppendBytes(&entry, entry.GetLength()));
length += entry.GetLength();
counter++;
// only continue to append if there is available entry.
VerifyOrExit(counter < OPENTHREAD_CONFIG_MLE_IP_ADDRS_TO_REGISTER);
}
// Append external multicast addresses. For sleepy end device,
// register all external multicast addresses with the parent for
// indirect transmission. Since Thread 1.2, non-sleepy MED should
// also register external multicast addresses of scope larger than
// realm with a 1.2 or higher parent.
if (!IsRxOnWhenIdle()
#if (OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2)
|| !GetParent().IsThreadVersion1p1()
#endif
)
{
for (const Ip6::Netif::MulticastAddress &addr : Get<ThreadNetif>().IterateExternalMulticastAddresses())
{
#if (OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2)
// For Thread 1.2 MED, skip multicast address with scope not
// larger than realm local when registering.
if (IsRxOnWhenIdle() && !addr.GetAddress().IsMulticastLargerThanRealmLocal())
{
continue;
}
#endif
entry.SetUncompressed();
entry.SetIp6Address(addr.GetAddress());
SuccessOrExit(error = aMessage.AppendBytes(&entry, entry.GetLength()));
length += entry.GetLength();
counter++;
// only continue to append if there is available entry.
VerifyOrExit(counter < OPENTHREAD_CONFIG_MLE_IP_ADDRS_TO_REGISTER);
}
}
exit:
if (error == kErrorNone && length > 0)
{
tlv.SetLength(length);
aMessage.Write(startOffset, tlv);
}
return error;
}
#if OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
Error Mle::AppendTimeRequest(Message &aMessage)
{
// `TimeRequestTlv` has no value.
return Tlv::Append<TimeRequestTlv>(aMessage, nullptr, 0);
}
Error Mle::AppendTimeParameter(Message &aMessage)
{
TimeParameterTlv tlv;
tlv.Init();
tlv.SetTimeSyncPeriod(Get<TimeSync>().GetTimeSyncPeriod());
tlv.SetXtalThreshold(Get<TimeSync>().GetXtalThreshold());
return tlv.AppendTo(aMessage);
}
Error Mle::AppendXtalAccuracy(Message &aMessage)
{
return Tlv::Append<XtalAccuracyTlv>(aMessage, otPlatTimeGetXtalAccuracy());
}
#endif // OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
Error Mle::AppendActiveTimestamp(Message &aMessage)
{
Error error = kErrorNone;
const MeshCoP::Timestamp *timestamp = Get<MeshCoP::ActiveDatasetManager>().GetTimestamp();
VerifyOrExit(timestamp != nullptr);
error = Tlv::Append<ActiveTimestampTlv>(aMessage, *timestamp);
exit:
return error;
}
Error Mle::AppendPendingTimestamp(Message &aMessage)
{
Error error = kErrorNone;
const MeshCoP::Timestamp *timestamp = Get<MeshCoP::PendingDatasetManager>().GetTimestamp();
VerifyOrExit(timestamp != nullptr && timestamp->GetSeconds() != 0);
error = Tlv::Append<PendingTimestampTlv>(aMessage, *timestamp);
exit:
return error;
}
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
Error Mle::AppendCslChannel(Message &aMessage)
{
Error error = kErrorNone;
CslChannelTlv cslChannel;
// In current implementation, it's allowed to set CSL Channel unspecified. As `0` is not valid for Channel value
// in CSL Channel TLV, if CSL channel is not specified, we don't append CSL Channel TLV.
// And on transmitter side, it would also set CSL Channel for the child to `0` if it doesn't find a CSL Channel
// TLV.
VerifyOrExit(Get<Mac::Mac>().IsCslChannelSpecified());
cslChannel.Init();
cslChannel.SetChannelPage(0);
cslChannel.SetChannel(Get<Mac::Mac>().GetCslChannel());
SuccessOrExit(error = aMessage.Append(cslChannel));
exit:
return error;
}
Error Mle::AppendCslTimeout(Message &aMessage)
{
OT_ASSERT(Get<Mac::Mac>().IsCslEnabled());
return Tlv::Append<CslTimeoutTlv>(aMessage, mCslTimeout == 0 ? mTimeout : mCslTimeout);
}
void Mle::SetCslTimeout(uint32_t aTimeout)
{
VerifyOrExit(mCslTimeout != aTimeout);
mCslTimeout = aTimeout;
Get<DataPollSender>().RecalculatePollPeriod();
if (Get<Mac::Mac>().IsCslEnabled())
{
ScheduleChildUpdateRequest();
}
exit:
return;
}
#endif // OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
#if OPENTHREAD_CONFIG_MAC_CSL_TRANSMITTER_ENABLE
Error Mle::AppendCslClockAccuracy(Message &aMessage)
{
Error error = kErrorNone;
CslClockAccuracyTlv cslClockAccuracy;
cslClockAccuracy.Init();
cslClockAccuracy.SetCslClockAccuracy(Get<Radio>().GetCslAccuracy());
cslClockAccuracy.SetCslUncertainty(Get<Radio>().GetCslClockUncertainty());
SuccessOrExit(error = aMessage.Append(cslClockAccuracy));
exit:
return error;
}
#endif
void Mle::HandleNotifierEvents(Events aEvents)
{
VerifyOrExit(!IsDisabled());
if (aEvents.Contains(kEventThreadRoleChanged))
{
if (IsChild() && !IsFullThreadDevice() && mAddressRegistrationMode == kAppendMeshLocalOnly)
{
// If only mesh-local address was registered in the "Child
// ID Request" message, after device is attached, trigger a
// "Child Update Request" to register the remaining
// addresses.
mAddressRegistrationMode = kAppendAllAddresses;
mChildUpdateRequestState = kChildUpdateRequestPending;
ScheduleMessageTransmissionTimer();
}
}
if (aEvents.ContainsAny(kEventIp6AddressAdded | kEventIp6AddressRemoved))
{
if (!Get<ThreadNetif>().HasUnicastAddress(mMeshLocal64.GetAddress()))
{
// Mesh Local EID was removed, choose a new one and add it back
mMeshLocal64.GetAddress().GetIid().GenerateRandom();
Get<ThreadNetif>().AddUnicastAddress(mMeshLocal64);
Get<Notifier>().Signal(kEventThreadMeshLocalAddrChanged);
}
if (IsChild() && !IsFullThreadDevice())
{
mChildUpdateRequestState = kChildUpdateRequestPending;
ScheduleMessageTransmissionTimer();
}
}
if (aEvents.ContainsAny(kEventIp6MulticastSubscribed | kEventIp6MulticastUnsubscribed))
{
// When multicast subscription changes, SED always notifies its parent as it depends on its
// parent for indirect transmission. Since Thread 1.2, MED MAY also notify its parent of 1.2
// or higher version as it could depend on its parent to perform Multicast Listener Report.
if (IsChild() && !IsFullThreadDevice() &&
(!IsRxOnWhenIdle()
#if (OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2)
|| !GetParent().IsThreadVersion1p1()
#endif
))
{
mChildUpdateRequestState = kChildUpdateRequestPending;
ScheduleMessageTransmissionTimer();
}
}
if (aEvents.Contains(kEventThreadNetdataChanged))
{
#if OPENTHREAD_FTD
if (IsFullThreadDevice())
{
Get<MleRouter>().HandleNetworkDataUpdateRouter();
}
else
#endif
{
if (!aEvents.Contains(kEventThreadRoleChanged))
{
mChildUpdateRequestState = kChildUpdateRequestPending;
ScheduleMessageTransmissionTimer();
}
}
#if (OPENTHREAD_CONFIG_THREAD_VERSION >= OT_THREAD_VERSION_1_2)
Get<BackboneRouter::Leader>().Update();
#endif
#if OPENTHREAD_CONFIG_TMF_NETDATA_SERVICE_ENABLE
UpdateServiceAlocs();
#endif
#if OPENTHREAD_CONFIG_DHCP6_SERVER_ENABLE
IgnoreError(Get<Dhcp6::Server>().UpdateService());
#endif
#if OPENTHREAD_CONFIG_NEIGHBOR_DISCOVERY_AGENT_ENABLE
Get<NeighborDiscovery::Agent>().UpdateService();
#endif
#if OPENTHREAD_CONFIG_DHCP6_CLIENT_ENABLE
Get<Dhcp6::Client>().UpdateAddresses();
#endif
}
if (aEvents.ContainsAny(kEventThreadRoleChanged | kEventThreadKeySeqCounterChanged))
{
// Store the settings on a key seq change, or when role changes and device
// is attached (i.e., skip `Store()` on role change to detached).
if (aEvents.Contains(kEventThreadKeySeqCounterChanged) || IsAttached())
{
IgnoreError(Store());
}
}
exit:
return;
}
#if OPENTHREAD_CONFIG_TMF_NETDATA_SERVICE_ENABLE
Mle::ServiceAloc::ServiceAloc(void)
{
InitAsThreadOriginRealmLocalScope();
GetAddress().GetIid().SetToLocator(kNotInUse);
}
Mle::ServiceAloc *Mle::FindInServiceAlocs(uint16_t aAloc16)
{
// Search in `mServiceAlocs` for an entry matching `aAloc16`.
// Can be used with `aAloc16 = ServerAloc::kNotInUse` to find
// an unused entry in the array.
ServiceAloc *match = nullptr;
for (ServiceAloc &serviceAloc : mServiceAlocs)
{
if (serviceAloc.GetAloc16() == aAloc16)
{
match = &serviceAloc;
break;
}
}
return match;
}
void Mle::UpdateServiceAlocs(void)
{
NetworkData::Iterator iterator;
NetworkData::ServiceConfig service;
VerifyOrExit(!IsDisabled());
// First remove all ALOCs which are no longer in the Network
// Data to free up space in `mServiceAlocs` array.
for (ServiceAloc &serviceAloc : mServiceAlocs)
{
bool found = false;
if (!serviceAloc.IsInUse())
{
continue;
}
iterator = NetworkData::kIteratorInit;
while (Get<NetworkData::Leader>().GetNextService(iterator, GetRloc16(), service) == kErrorNone)
{
if (service.mServiceId == ServiceIdFromAloc(serviceAloc.GetAloc16()))
{
found = true;
break;
}
}
if (!found)
{
Get<ThreadNetif>().RemoveUnicastAddress(serviceAloc);
serviceAloc.MarkAsNotInUse();
}
}
// Now add any new ALOCs if there is space in `mServiceAlocs`.
iterator = NetworkData::kIteratorInit;
while (Get<NetworkData::Leader>().GetNextService(iterator, GetRloc16(), service) == kErrorNone)
{
uint16_t aloc16 = ServiceAlocFromId(service.mServiceId);
if (FindInServiceAlocs(aloc16) == nullptr)
{
// No matching ALOC in `mServiceAlocs`, so we try to add it.
ServiceAloc *newServiceAloc = FindInServiceAlocs(ServiceAloc::kNotInUse);
VerifyOrExit(newServiceAloc != nullptr);
newServiceAloc->SetAloc16(aloc16);
Get<ThreadNetif>().AddUnicastAddress(*newServiceAloc);
}
}
exit:
return;
}
#endif // OPENTHREAD_CONFIG_TMF_NETDATA_SERVICE_ENABLE
void Mle::HandleAttachTimer(Timer &aTimer)
{
aTimer.Get<Mle>().HandleAttachTimer();
}
bool Mle::HasAcceptableParentCandidate(void) const
{
bool hasAcceptableParent = false;
LinkQuality linkQuality;
VerifyOrExit(mParentCandidate.IsStateParentResponse());
switch (mAttachState)
{
case kAttachStateAnnounce:
VerifyOrExit(!HasMoreChannelsToAnnouce());
break;
case kAttachStateParentRequestRouter:
// If we cannot find a parent with best link quality (3) when
// in `kAttachStateParentRequestRouter` state we will keep the
// candidate and forward to REED stage to potentially find a
// better parent.
linkQuality = OT_MIN(mParentCandidate.GetLinkInfo().GetLinkQuality(), mParentCandidate.GetLinkQualityOut());
VerifyOrExit(linkQuality == kLinkQuality3);
break;
case kAttachStateParentRequestReed:
break;
default:
ExitNow();
}
if (IsChild())
{
// If already attached, accept the parent candidate if
// we are trying to attach to a better partition or if a
// Parent Response was also received from the current parent
// to which the device is attached. This ensures that the
// new parent candidate is compared with the current parent
// and that it is indeed preferred over the current one.
VerifyOrExit(mReceivedResponseFromParent || (mAttachMode == kBetterPartition));
}
hasAcceptableParent = true;
exit:
return hasAcceptableParent;
}
void Mle::HandleAttachTimer(void)
{
uint32_t delay = 0;
bool shouldAnnounce = true;
// First, check if we are waiting to receive parent responses and
// found an acceptable parent candidate.
if (HasAcceptableParentCandidate() && (SendChildIdRequest() == kErrorNone))
{
SetAttachState(kAttachStateChildIdRequest);
delay = kParentRequestReedTimeout;
ExitNow();
}
switch (mAttachState)
{
case kAttachStateIdle:
mAttachCounter = 0;
break;
case kAttachStateProcessAnnounce:
ProcessAnnounce();
break;
case kAttachStateStart:
if (mAttachCounter > 0)
{
LogNote("Attempt to attach - attempt %d, %s %s", mAttachCounter, AttachModeToString(mAttachMode),
ReattachStateToString(mReattachState));
}
else
{
LogNote("Attempt to attach - %s %s", AttachModeToString(mAttachMode),
ReattachStateToString(mReattachState));
}
SetAttachState(kAttachStateParentRequestRouter);
mParentCandidate.SetState(Neighbor::kStateInvalid);
mReceivedResponseFromParent = false;
Get<MeshForwarder>().SetRxOnWhenIdle(true);
// initial MLE Parent Request has both E and R flags set in Scan Mask TLV
// during reattach when losing connectivity.
if (mAttachMode == kSamePartition || mAttachMode == kSamePartitionRetry)
{
SendParentRequest(kToRoutersAndReeds);
delay = kParentRequestReedTimeout;
}
// initial MLE Parent Request has only R flag set in Scan Mask TLV for
// during initial attach or downgrade process
else
{
SendParentRequest(kToRouters);
delay = kParentRequestRouterTimeout;
}
break;
case kAttachStateParentRequestRouter:
SetAttachState(kAttachStateParentRequestReed);
SendParentRequest(kToRoutersAndReeds);
delay = kParentRequestReedTimeout;
break;
case kAttachStateParentRequestReed:
shouldAnnounce = PrepareAnnounceState();
if (shouldAnnounce)
{
// We send an extra "Parent Request" as we switch to
// `kAttachStateAnnounce` and start sending Announce on
// all channels. This gives an additional chance to find
// a parent during this phase. Note that we can stay in
// `kAttachStateAnnounce` for multiple iterations, each
// time sending an Announce on a different channel
// (with `mAnnounceDelay` wait between them).
SetAttachState(kAttachStateAnnounce);
SendParentRequest(kToRoutersAndReeds);
mAnnounceChannel = Mac::ChannelMask::kChannelIteratorFirst;
delay = mAnnounceDelay;
break;
}
OT_FALL_THROUGH;
case kAttachStateAnnounce:
if (shouldAnnounce && (GetNextAnnouceChannel(mAnnounceChannel) == kErrorNone))
{
SendAnnounce(mAnnounceChannel, kOrphanAnnounce);
delay = mAnnounceDelay;
break;
}
OT_FALL_THROUGH;
case kAttachStateChildIdRequest:
SetAttachState(kAttachStateIdle);
mParentCandidate.Clear();
delay = Reattach();
break;
}
exit:
if (delay != 0)
{
mAttachTimer.Start(delay);
}
}
bool Mle::PrepareAnnounceState(void)
{
bool shouldAnnounce = false;
Mac::ChannelMask channelMask;
VerifyOrExit(!IsChild() && (mReattachState == kReattachStop) &&
(Get<MeshCoP::ActiveDatasetManager>().IsPartiallyComplete() || !IsFullThreadDevice()));
if (Get<MeshCoP::ActiveDatasetManager>().GetChannelMask(channelMask) != kErrorNone)
{
channelMask = Get<Mac::Mac>().GetSupportedChannelMask();
}
mAnnounceDelay = kAnnounceTimeout / (channelMask.GetNumberOfChannels() + 1);
if (mAnnounceDelay < kMinAnnounceDelay)
{
mAnnounceDelay = kMinAnnounceDelay;
}
shouldAnnounce = true;
exit:
return shouldAnnounce;
}
uint32_t Mle::Reattach(void)
{
uint32_t delay = 0;
if (mReattachState == kReattachActive)
{
if (Get<MeshCoP::PendingDatasetManager>().Restore() == kErrorNone)
{
IgnoreError(Get<MeshCoP::PendingDatasetManager>().ApplyConfiguration());
mReattachState = kReattachPending;
SetAttachState(kAttachStateStart);
delay = 1 + Random::NonCrypto::GetUint32InRange(0, kAttachStartJitter);
}
else
{
mReattachState = kReattachStop;
}
}
else if (mReattachState == kReattachPending)
{
mReattachState = kReattachStop;
IgnoreError(Get<MeshCoP::ActiveDatasetManager>().Restore());
}
VerifyOrExit(mReattachState == kReattachStop);
switch (mAttachMode)
{
case kAnyPartition:
case kBetterParent:
if (!IsChild())
{
if (mAlternatePanId != Mac::kPanIdBroadcast)
{
IgnoreError(Get<Mac::Mac>().SetPanChannel(mAlternateChannel));
Get<Mac::Mac>().SetPanId(mAlternatePanId);
mAlternatePanId = Mac::kPanIdBroadcast;
IgnoreError(BecomeDetached());
}
#if OPENTHREAD_FTD
else if (IsFullThreadDevice() && Get<MleRouter>().BecomeLeader() == kErrorNone)
{
// do nothing
}
#endif
else
{
IgnoreError(BecomeDetached());
}
}
else if (!IsRxOnWhenIdle())
{
// return to sleepy operation
Get<DataPollSender>().SetAttachMode(false);
Get<MeshForwarder>().SetRxOnWhenIdle(false);
}
break;
case kSamePartition:
Attach(kSamePartitionRetry);
break;
case kSamePartitionRetry:
case kDowngradeToReed:
Attach(kAnyPartition);
break;
case kBetterPartition:
break;
}
exit:
return delay;
}
void Mle::HandleDelayedResponseTimer(Timer &aTimer)
{
aTimer.Get<Mle>().HandleDelayedResponseTimer();
}
void Mle::HandleDelayedResponseTimer(void)
{
TimeMilli now = TimerMilli::GetNow();
TimeMilli nextSendTime = now.GetDistantFuture();
for (Message &message : mDelayedResponses)
{
DelayedResponseMetadata metadata;
metadata.ReadFrom(message);
if (now < metadata.mSendTime)
{
if (nextSendTime > metadata.mSendTime)
{
nextSendTime = metadata.mSendTime;
}
}
else
{
mDelayedResponses.Dequeue(message);
SendDelayedResponse(message, metadata);
}
}
if (nextSendTime < now.GetDistantFuture())
{
mDelayedResponseTimer.FireAt(nextSendTime);
}
}
void Mle::SendDelayedResponse(Message &aMessage, const DelayedResponseMetadata &aMetadata)
{
Error error = kErrorNone;
aMetadata.RemoveFrom(aMessage);
if (aMessage.GetSubType() == Message::kSubTypeMleDataRequest)
{
SuccessOrExit(error = AppendActiveTimestamp(aMessage));
SuccessOrExit(error = AppendPendingTimestamp(aMessage));
}
SuccessOrExit(error = SendMessage(aMessage, aMetadata.mDestination));
Log(kMessageSend, kTypeGenericDelayed, aMetadata.mDestination);
if (!IsRxOnWhenIdle())
{
// Start fast poll mode, assuming enqueued msg is MLE Data Request.
// Note: Finer-grade check may be required when deciding whether or
// not to enter fast poll mode for other type of delayed message.
Get<DataPollSender>().SendFastPolls(DataPollSender::kDefaultFastPolls);
}
exit:
FreeMessageOnError(&aMessage, error);
}
void Mle::RemoveDelayedDataResponseMessage(void)
{
RemoveDelayedMessage(Message::kSubTypeMleDataResponse, kTypeDataResponse, nullptr);
}
void Mle::RemoveDelayedDataRequestMessage(const Ip6::Address &aDestination)
{
RemoveDelayedMessage(Message::kSubTypeMleDataRequest, kTypeDataRequest, &aDestination);
}
void Mle::RemoveDelayedMessage(Message::SubType aSubType, MessageType aMessageType, const Ip6::Address *aDestination)
{
for (Message &message : mDelayedResponses)
{
DelayedResponseMetadata metadata;
metadata.ReadFrom(message);
if ((message.GetSubType() == aSubType) &&
((aDestination == nullptr) || (metadata.mDestination == *aDestination)))
{
mDelayedResponses.DequeueAndFree(message);
Log(kMessageRemoveDelayed, aMessageType, metadata.mDestination);
}
}
}
void Mle::SendParentRequest(ParentRequestType aType)
{
Error error = kErrorNone;
Message * message;
uint8_t scanMask = 0;
Ip6::Address destination;
mParentRequestChallenge.GenerateRandom();
switch (aType)
{
case kToRouters:
scanMask = ScanMaskTlv::kRouterFlag;
break;
case kToRoutersAndReeds:
scanMask = ScanMaskTlv::kRouterFlag | ScanMaskTlv::kEndDeviceFlag;
break;
}
VerifyOrExit((message = NewMleMessage(kCommandParentRequest)) != nullptr, error = kErrorNoBufs);
SuccessOrExit(error = AppendMode(*message, mDeviceMode));
SuccessOrExit(error = AppendChallenge(*message, mParentRequestChallenge));
SuccessOrExit(error = AppendScanMask(*message, scanMask));
SuccessOrExit(error = AppendVersion(*message));
#if OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
SuccessOrExit(error = AppendTimeRequest(*message));
#endif
destination.SetToLinkLocalAllRoutersMulticast();
SuccessOrExit(error = SendMessage(*message, destination));
switch (aType)
{
case kToRouters:
Log(kMessageSend, kTypeParentRequestToRouters, destination);
break;
case kToRoutersAndReeds:
Log(kMessageSend, kTypeParentRequestToRoutersReeds, destination);
break;
}
exit:
FreeMessageOnError(message, error);
}
void Mle::RequestShorterChildIdRequest(void)
{
if (mAttachState == kAttachStateChildIdRequest)
{
mAddressRegistrationMode = kAppendMeshLocalOnly;
IgnoreError(SendChildIdRequest());
}
}
Error Mle::SendChildIdRequest(void)
{
Error error = kErrorNone;
uint8_t tlvs[] = {Tlv::kAddress16, Tlv::kNetworkData, Tlv::kRoute};
uint8_t tlvsLen = sizeof(tlvs);
Message * message = nullptr;
Ip6::Address destination;
if (mParent.GetExtAddress() == mParentCandidate.GetExtAddress())
{
if (IsChild())
{
LogInfo("Already attached to candidate parent");
ExitNow(error = kErrorAlready);
}
else
{
// Invalidate stale parent state.
//
// Parent state is not normally invalidated after becoming a Router/Leader (see #1875). When trying to
// attach to a better partition, invalidating old parent state (especially when in kStateRestored) ensures
// that FindNeighbor() returns mParentCandidate when processing the Child ID Response.
mParent.SetState(Neighbor::kStateInvalid);
}
}
VerifyOrExit((message = NewMleMessage(kCommandChildIdRequest)) != nullptr, error = kErrorNoBufs);
SuccessOrExit(error = AppendResponse(*message, mParentCandidateChallenge));
SuccessOrExit(error = AppendLinkFrameCounter(*message));
SuccessOrExit(error = AppendMleFrameCounter(*message));
SuccessOrExit(error = AppendMode(*message, mDeviceMode));
SuccessOrExit(error = AppendTimeout(*message, mTimeout));
SuccessOrExit(error = AppendVersion(*message));
if (!IsFullThreadDevice())
{
SuccessOrExit(error = AppendAddressRegistration(*message, mAddressRegistrationMode));
// no need to request the last Route64 TLV for MTD
tlvsLen -= 1;
}
SuccessOrExit(error = AppendTlvRequest(*message, tlvs, tlvsLen));
SuccessOrExit(error = AppendActiveTimestamp(*message));
SuccessOrExit(error = AppendPendingTimestamp(*message));
mParentCandidate.SetState(Neighbor::kStateValid);
destination.SetToLinkLocalAddress(mParentCandidate.GetExtAddress());
SuccessOrExit(error = SendMessage(*message, destination));
Log(kMessageSend,
(mAddressRegistrationMode == kAppendMeshLocalOnly) ? kTypeChildIdRequestShort : kTypeChildIdRequest,
destination);
if (!IsRxOnWhenIdle())
{
Get<DataPollSender>().SetAttachMode(true);
Get<MeshForwarder>().SetRxOnWhenIdle(false);
}
exit:
FreeMessageOnError(message, error);
return error;
}
Error Mle::SendDataRequest(const Ip6::Address &aDestination,
const uint8_t * aTlvs,
uint8_t aTlvsLength,
uint16_t aDelay,
const uint8_t * aExtraTlvs,
uint8_t aExtraTlvsLength)
{
Error error = kErrorNone;
Message *message;
RemoveDelayedDataRequestMessage(aDestination);
VerifyOrExit((message = NewMleMessage(kCommandDataRequest)) != nullptr, error = kErrorNoBufs);
SuccessOrExit(error = AppendTlvRequest(*message, aTlvs, aTlvsLength));
if (aExtraTlvs != nullptr && aExtraTlvsLength > 0)
{
SuccessOrExit(error = message->AppendBytes(aExtraTlvs, aExtraTlvsLength));
}
if (aDelay)
{
SuccessOrExit(error = AddDelayedResponse(*message, aDestination, aDelay));
Log(kMessageDelay, kTypeDataRequest, aDestination);
}
else
{
SuccessOrExit(error = AppendActiveTimestamp(*message));
SuccessOrExit(error = AppendPendingTimestamp(*message));
SuccessOrExit(error = SendMessage(*message, aDestination));
Log(kMessageSend, kTypeDataRequest, aDestination);
if (!IsRxOnWhenIdle())
{
Get<DataPollSender>().SendFastPolls(DataPollSender::kDefaultFastPolls);
}
}
exit:
FreeMessageOnError(message, error);
if (IsChild() && !IsRxOnWhenIdle())
{
mDataRequestState = kDataRequestActive;
if (mChildUpdateRequestState == kChildUpdateRequestNone)
{
ScheduleMessageTransmissionTimer();
}
}
return error;
}
void Mle::ScheduleMessageTransmissionTimer(void)
{
uint32_t interval = 0;
switch (mChildUpdateRequestState)
{
case kChildUpdateRequestNone:
break;
case kChildUpdateRequestPending:
ExitNow(interval = kChildUpdateRequestPendingDelay);
case kChildUpdateRequestActive:
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
// CSL transmitter may respond in next CSL cycle.
// This condition IsCslCapable() && !IsRxOnWhenIdle() is used instead of
// IsCslEnabled because during transitions SSED -> MED and MED -> SSED
// there is a delay in synchronisation of IsRxOnWhenIdle residing in MAC
// and in MLE, which causes below datapoll interval to be calculated incorrectly.
if (Get<Mac::Mac>().IsCslCapable() && !IsRxOnWhenIdle())
{
ExitNow(interval = Get<Mac::Mac>().GetCslPeriod() * kUsPerTenSymbols / 1000 +
static_cast<uint32_t>(kUnicastRetransmissionDelay));
}
else
#endif
{
ExitNow(interval = kUnicastRetransmissionDelay);
}
}
switch (mDataRequestState)
{
case kDataRequestNone:
break;
case kDataRequestActive:
ExitNow(interval = kUnicastRetransmissionDelay);
}
if (IsChild() && IsRxOnWhenIdle())
{
interval =
Time::SecToMsec(mTimeout) - static_cast<uint32_t>(kUnicastRetransmissionDelay) * kMaxChildKeepAliveAttempts;
}
exit:
if (interval != 0)
{
mMessageTransmissionTimer.Start(interval);
}
else
{
mMessageTransmissionTimer.Stop();
}
}
void Mle::HandleMessageTransmissionTimer(Timer &aTimer)
{
aTimer.Get<Mle>().HandleMessageTransmissionTimer();
}
void Mle::HandleMessageTransmissionTimer(void)
{
// The `mMessageTransmissionTimer` is used for:
//
// - Delaying kEvent notification triggered "Child Update Request" transmission (to allow aggregation),
// - Retransmission of "Child Update Request",
// - Retransmission of "Data Request" on a child,
// - Sending periodic keep-alive "Child Update Request" messages on a non-sleepy (rx-on) child.
switch (mChildUpdateRequestState)
{
case kChildUpdateRequestNone:
if (mDataRequestState == kDataRequestActive)
{
static const uint8_t tlvs[] = {Tlv::kNetworkData};
Ip6::Address destination;
VerifyOrExit(mDataRequestAttempts < kMaxChildKeepAliveAttempts, IgnoreError(BecomeDetached()));
destination.SetToLinkLocalAddress(mParent.GetExtAddress());
if (SendDataRequest(destination, tlvs, sizeof(tlvs), 0) == kErrorNone)
{
mDataRequestAttempts++;
}
ExitNow();
}
// Keep-alive "Child Update Request" only on a non-sleepy child
VerifyOrExit(IsChild() && IsRxOnWhenIdle());
break;
case kChildUpdateRequestPending:
if (Get<Notifier>().IsPending())
{
// Here intentionally delay another kChildUpdateRequestPendingDelay
// cycle to ensure we only send a Child Update Request after we
// know there are no more pending changes.
ScheduleMessageTransmissionTimer();
ExitNow();
}
mChildUpdateAttempts = 0;
break;
case kChildUpdateRequestActive:
break;
}
VerifyOrExit(mChildUpdateAttempts < kMaxChildKeepAliveAttempts, IgnoreError(BecomeDetached()));
if (SendChildUpdateRequest() == kErrorNone)
{
mChildUpdateAttempts++;
}
exit:
return;
}
Error Mle::SendChildUpdateRequest(void)
{
Error error = kErrorNone;
Ip6::Address destination;
Message * message = nullptr;
AddressRegistrationMode mode = kAppendAllAddresses;
if (!mParent.IsStateValidOrRestoring())
{
LogWarn("No valid parent when sending Child Update Request");
IgnoreError(BecomeDetached());
ExitNow();
}
mChildUpdateRequestState = kChildUpdateRequestActive;
ScheduleMessageTransmissionTimer();
VerifyOrExit((message = NewMleMessage(kCommandChildUpdateRequest)) != nullptr, error = kErrorNoBufs);
SuccessOrExit(error = AppendMode(*message, mDeviceMode));
switch (mRole)
{
case kRoleDetached:
mParentRequestChallenge.GenerateRandom();
SuccessOrExit(error = AppendChallenge(*message, mParentRequestChallenge));
mode = kAppendMeshLocalOnly;
break;
case kRoleChild:
SuccessOrExit(error = AppendSourceAddress(*message));
SuccessOrExit(error = AppendLeaderData(*message));
SuccessOrExit(error = AppendTimeout(*message, mTimeout));
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
if (Get<Mac::Mac>().IsCslEnabled())
{
SuccessOrExit(error = AppendCslChannel(*message));
SuccessOrExit(error = AppendCslTimeout(*message));
}
#endif
break;
case kRoleDisabled:
case kRoleRouter:
case kRoleLeader:
OT_ASSERT(false);
OT_UNREACHABLE_CODE(break);
}
if (!IsFullThreadDevice())
{
SuccessOrExit(error = AppendAddressRegistration(*message, mode));
}
destination.SetToLinkLocalAddress(mParent.GetExtAddress());
SuccessOrExit(error = SendMessage(*message, destination));
Log(kMessageSend, kTypeChildUpdateRequestOfParent, destination);
if (!IsRxOnWhenIdle())
{
Get<MeshForwarder>().SetRxOnWhenIdle(false);
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
Get<DataPollSender>().SetAttachMode(!Get<Mac::Mac>().IsCslEnabled());
#else
Get<DataPollSender>().SetAttachMode(true);
#endif
}
else
{
Get<MeshForwarder>().SetRxOnWhenIdle(true);
}
exit:
FreeMessageOnError(message, error);
return error;
}
Error Mle::SendChildUpdateResponse(const uint8_t *aTlvs, uint8_t aNumTlvs, const Challenge &aChallenge)
{
Error error = kErrorNone;
Ip6::Address destination;
Message * message;
bool checkAddress = false;
VerifyOrExit((message = NewMleMessage(kCommandChildUpdateResponse)) != nullptr, error = kErrorNoBufs);
SuccessOrExit(error = AppendSourceAddress(*message));
SuccessOrExit(error = AppendLeaderData(*message));
for (int i = 0; i < aNumTlvs; i++)
{
switch (aTlvs[i])
{
case Tlv::kTimeout:
SuccessOrExit(error = AppendTimeout(*message, mTimeout));
break;
case Tlv::kStatus:
SuccessOrExit(error = AppendStatus(*message, StatusTlv::kError));
break;
case Tlv::kAddressRegistration:
if (!IsFullThreadDevice())
{
// We only register the mesh-local address in the "Child
// Update Response" message and if there are additional
// addresses to register we follow up with a "Child Update
// Request".
SuccessOrExit(error = AppendAddressRegistration(*message, kAppendMeshLocalOnly));
checkAddress = true;
}
break;
case Tlv::kResponse:
SuccessOrExit(error = AppendResponse(*message, aChallenge));
break;
case Tlv::kLinkFrameCounter:
SuccessOrExit(error = AppendLinkFrameCounter(*message));
break;
case Tlv::kMleFrameCounter:
SuccessOrExit(error = AppendMleFrameCounter(*message));
break;
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
case Tlv::kCslTimeout:
if (Get<Mac::Mac>().IsCslEnabled())
{
SuccessOrExit(error = AppendCslTimeout(*message));
}
break;
#endif
}
}
destination.SetToLinkLocalAddress(mParent.GetExtAddress());
SuccessOrExit(error = SendMessage(*message, destination));
Log(kMessageSend, kTypeChildUpdateResponseOfParent, destination);
if (checkAddress && HasUnregisteredAddress())
{
IgnoreError(SendChildUpdateRequest());
}
exit:
FreeMessageOnError(message, error);
return error;
}
void Mle::SendAnnounce(uint8_t aChannel, AnnounceMode aMode)
{
Ip6::Address destination;
destination.SetToLinkLocalAllNodesMulticast();
SendAnnounce(aChannel, destination, aMode);
}
void Mle::SendAnnounce(uint8_t aChannel, const Ip6::Address &aDestination, AnnounceMode aMode)
{
Error error = kErrorNone;
ChannelTlv channel;
MeshCoP::Timestamp activeTimestamp;
Message * message = nullptr;
VerifyOrExit(Get<Mac::Mac>().GetSupportedChannelMask().ContainsChannel(aChannel), error = kErrorInvalidArgs);
VerifyOrExit((message = NewMleMessage(kCommandAnnounce)) != nullptr, error = kErrorNoBufs);
message->SetLinkSecurityEnabled(true);
message->SetChannel(aChannel);
channel.Init();
channel.SetChannelPage(0);
channel.SetChannel(Get<Mac::Mac>().GetPanChannel());
SuccessOrExit(error = channel.AppendTo(*message));
switch (aMode)
{
case kOrphanAnnounce:
activeTimestamp.Clear();
activeTimestamp.SetAuthoritative(true);
SuccessOrExit(error = Tlv::Append<ActiveTimestampTlv>(*message, activeTimestamp));
break;
case kNormalAnnounce:
SuccessOrExit(error = AppendActiveTimestamp(*message));
break;
}
SuccessOrExit(error = Tlv::Append<PanIdTlv>(*message, Get<Mac::Mac>().GetPanId()));
SuccessOrExit(error = SendMessage(*message, aDestination));
LogInfo("Send Announce on channel %d", aChannel);
exit:
FreeMessageOnError(message, error);
}
Error Mle::GetNextAnnouceChannel(uint8_t &aChannel) const
{
// This method gets the next channel to send announce on after
// `aChannel`. Returns `kErrorNotFound` if no more channel in the
// channel mask after `aChannel`.
Mac::ChannelMask channelMask;
if (Get<MeshCoP::ActiveDatasetManager>().GetChannelMask(channelMask) != kErrorNone)
{
channelMask = Get<Mac::Mac>().GetSupportedChannelMask();
}
return channelMask.GetNextChannel(aChannel);
}
bool Mle::HasMoreChannelsToAnnouce(void) const
{
uint8_t channel = mAnnounceChannel;
return GetNextAnnouceChannel(channel) == kErrorNone;
}
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
Error Mle::SendLinkMetricsManagementResponse(const Ip6::Address &aDestination, LinkMetrics::Status aStatus)
{
Error error = kErrorNone;
Message *message;
Tlv tlv;
ot::Tlv statusSubTlv;
VerifyOrExit((message = NewMleMessage(kCommandLinkMetricsManagementResponse)) != nullptr, error = kErrorNoBufs);
tlv.SetType(Tlv::kLinkMetricsManagement);
statusSubTlv.SetType(LinkMetrics::SubTlv::kStatus);
statusSubTlv.SetLength(sizeof(aStatus));
tlv.SetLength(statusSubTlv.GetSize());
SuccessOrExit(error = message->Append(tlv));
SuccessOrExit(error = message->Append(statusSubTlv));
SuccessOrExit(error = message->Append(aStatus));
SuccessOrExit(error = SendMessage(*message, aDestination));
exit:
FreeMessageOnError(message, error);
return error;
}
#endif
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_INITIATOR_ENABLE
Error Mle::SendLinkProbe(const Ip6::Address &aDestination, uint8_t aSeriesId, uint8_t *aBuf, uint8_t aLength)
{
Error error = kErrorNone;
Message *message;
Tlv tlv;
VerifyOrExit((message = NewMleMessage(kCommandLinkProbe)) != nullptr, error = kErrorNoBufs);
tlv.SetType(Tlv::kLinkProbe);
tlv.SetLength(sizeof(aSeriesId) + aLength);
SuccessOrExit(error = message->Append(tlv));
SuccessOrExit(error = message->Append(aSeriesId));
SuccessOrExit(error = message->AppendBytes(aBuf, aLength));
SuccessOrExit(error = SendMessage(*message, aDestination));
exit:
FreeMessageOnError(message, error);
return error;
}
#endif
Error Mle::ProcessMessageSecurity(Crypto::AesCcm::Mode aMode,
Message & aMessage,
const Ip6::MessageInfo &aMessageInfo,
uint16_t aCmdOffset,
const SecurityHeader & aHeader)
{
// This method performs MLE message security. Based on `aMode` it
// can be used to encrypt and append tag to `aMessage` or to
// decrypt and validate the tag in a received `aMessage` (which is
// then removed from `aMessage`).
//
// `aCmdOffset` in both cases specifies the offset in `aMessage`
// to the start of MLE payload (i.e., the command field).
//
// When decrypting, possible errors are:
// `kErrorNone` decrypted and verified tag, tag is also removed.
// `kErrorParse` message does not contain the tag
// `kErrorSecurity` message tag is invalid.
//
// When encrypting, possible errors are:
// `kErrorNone` message encrypted and tag appended to message.
// `kErrorNoBufs` could not grow the message to append the tag.
Error error = kErrorNone;
Crypto::AesCcm aesCcm;
uint8_t nonce[Crypto::AesCcm::kNonceSize];
uint8_t tag[kMleSecurityTagSize];
Mac::ExtAddress extAddress;
uint32_t keySequence;
uint16_t payloadLength = aMessage.GetLength() - aCmdOffset;
const Ip6::Address *senderAddress = &aMessageInfo.GetSockAddr();
const Ip6::Address *receiverAddress = &aMessageInfo.GetPeerAddr();
switch (aMode)
{
case Crypto::AesCcm::kEncrypt:
// Use the initialized values for `senderAddress`,
// `receiverAddress` and `payloadLength`
break;
case Crypto::AesCcm::kDecrypt:
senderAddress = &aMessageInfo.GetPeerAddr();
receiverAddress = &aMessageInfo.GetSockAddr();
// Ensure message contains command field (uint8_t) and
// tag. Then exclude the tag from payload to decrypt.
VerifyOrExit(aCmdOffset + sizeof(uint8_t) + kMleSecurityTagSize <= aMessage.GetLength(), error = kErrorParse);
payloadLength -= kMleSecurityTagSize;
break;
}
senderAddress->GetIid().ConvertToExtAddress(extAddress);
Crypto::AesCcm::GenerateNonce(extAddress, aHeader.GetFrameCounter(), Mac::Frame::kSecEncMic32, nonce);
keySequence = aHeader.GetKeyId();
aesCcm.SetKey(keySequence == Get<KeyManager>().GetCurrentKeySequence()
? Get<KeyManager>().GetCurrentMleKey()
: Get<KeyManager>().GetTemporaryMleKey(keySequence));
aesCcm.Init(sizeof(Ip6::Address) + sizeof(Ip6::Address) + sizeof(SecurityHeader), payloadLength,
kMleSecurityTagSize, nonce, sizeof(nonce));
aesCcm.Header(*senderAddress);
aesCcm.Header(*receiverAddress);
aesCcm.Header(aHeader);
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if (aMode == Crypto::AesCcm::kDecrypt)
{
// Skip decrypting the message under fuzz build mode
IgnoreError(aMessage.SetLength(aMessage.GetLength() - kMleSecurityTagSize));
ExitNow();
}
#endif
aesCcm.Payload(aMessage, aCmdOffset, payloadLength, aMode);
aesCcm.Finalize(tag);
if (aMode == Crypto::AesCcm::kEncrypt)
{
SuccessOrExit(error = aMessage.Append(tag));
}
else
{
VerifyOrExit(aMessage.Compare(aMessage.GetLength() - kMleSecurityTagSize, tag), error = kErrorSecurity);
IgnoreError(aMessage.SetLength(aMessage.GetLength() - kMleSecurityTagSize));
}
exit:
return error;
}
Error Mle::SendMessage(Message &aMessage, const Ip6::Address &aDestination)
{
Error error = kErrorNone;
uint16_t offset = 0;
uint8_t securitySuite;
Ip6::MessageInfo messageInfo;
messageInfo.SetPeerAddr(aDestination);
messageInfo.SetSockAddr(mLinkLocal64.GetAddress());
messageInfo.SetPeerPort(kUdpPort);
messageInfo.SetHopLimit(kMleHopLimit);
IgnoreError(aMessage.Read(offset, securitySuite));
offset += sizeof(securitySuite);
if (securitySuite == k154Security)
{
SecurityHeader header;
// Update the fields in the security header
IgnoreError(aMessage.Read(offset, header));
header.SetFrameCounter(Get<KeyManager>().GetMleFrameCounter());
header.SetKeyId(Get<KeyManager>().GetCurrentKeySequence());
aMessage.Write(offset, header);
offset += sizeof(SecurityHeader);
SuccessOrExit(error = ProcessMessageSecurity(Crypto::AesCcm::kEncrypt, aMessage, messageInfo, offset, header));
Get<KeyManager>().IncrementMleFrameCounter();
}
SuccessOrExit(error = mSocket.SendTo(aMessage, messageInfo));
exit:
return error;
}
Error Mle::AddDelayedResponse(Message &aMessage, const Ip6::Address &aDestination, uint16_t aDelay)
{
Error error = kErrorNone;
DelayedResponseMetadata metadata;
metadata.mSendTime = TimerMilli::GetNow() + aDelay;
metadata.mDestination = aDestination;
SuccessOrExit(error = metadata.AppendTo(aMessage));
mDelayedResponses.Enqueue(aMessage);
mDelayedResponseTimer.FireAtIfEarlier(metadata.mSendTime);
exit:
return error;
}
void Mle::HandleUdpReceive(void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo)
{
static_cast<Mle *>(aContext)->HandleUdpReceive(AsCoreType(aMessage), AsCoreType(aMessageInfo));
}
void Mle::HandleUdpReceive(Message &aMessage, const Ip6::MessageInfo &aMessageInfo)
{
Error error = kErrorNone;
RxInfo rxInfo(aMessage, aMessageInfo);
uint8_t securitySuite;
SecurityHeader header;
uint32_t keySequence;
uint32_t frameCounter;
Mac::ExtAddress extAddr;
uint8_t command;
Neighbor * neighbor;
LogDebg("Receive MLE message");
VerifyOrExit(aMessageInfo.GetLinkInfo() != nullptr);
VerifyOrExit(aMessageInfo.GetHopLimit() == kMleHopLimit, error = kErrorParse);
SuccessOrExit(error = aMessage.Read(aMessage.GetOffset(), securitySuite));
aMessage.MoveOffset(sizeof(securitySuite));
if (securitySuite == kNoSecurity)
{
SuccessOrExit(error = aMessage.Read(aMessage.GetOffset(), command));
aMessage.MoveOffset(sizeof(command));
switch (command)
{
#if OPENTHREAD_FTD
case kCommandDiscoveryRequest:
Get<MleRouter>().HandleDiscoveryRequest(rxInfo);
break;
#endif
case kCommandDiscoveryResponse:
Get<DiscoverScanner>().HandleDiscoveryResponse(rxInfo);
break;
default:
break;
}
ExitNow();
}
VerifyOrExit(!IsDisabled(), error = kErrorInvalidState);
VerifyOrExit(securitySuite == k154Security, error = kErrorParse);
SuccessOrExit(error = aMessage.Read(aMessage.GetOffset(), header));
aMessage.MoveOffset(sizeof(header));
VerifyOrExit(header.IsSecurityControlValid(), error = kErrorParse);
keySequence = header.GetKeyId();
frameCounter = header.GetFrameCounter();
SuccessOrExit(
error = ProcessMessageSecurity(Crypto::AesCcm::kDecrypt, aMessage, aMessageInfo, aMessage.GetOffset(), header));
if (keySequence > Get<KeyManager>().GetCurrentKeySequence())
{
Get<KeyManager>().SetCurrentKeySequence(keySequence);
}
IgnoreError(aMessage.Read(aMessage.GetOffset(), command));
aMessage.MoveOffset(sizeof(command));
aMessageInfo.GetPeerAddr().GetIid().ConvertToExtAddress(extAddr);
neighbor = (command == kCommandChildIdResponse) ? mNeighborTable.FindParent(extAddr)
: mNeighborTable.FindNeighbor(extAddr);
if (neighbor != nullptr && neighbor->IsStateValid())
{
if (keySequence == neighbor->GetKeySequence())
{
#if OPENTHREAD_CONFIG_MULTI_RADIO
// Only when counter is exactly one off, we allow it to be
// used for updating radio link info (by `RadioSelector`)
// before message is dropped as a duplicate. This handles
// the common case where a broadcast MLE message (such as
// Link Advertisement) is received over multiple radio
// links.
if ((frameCounter + 1) == neighbor->GetMleFrameCounter())
{
OT_ASSERT(aMessage.IsRadioTypeSet());
Get<RadioSelector>().UpdateOnReceive(*neighbor, aMessage.GetRadioType(), /* IsDuplicate */ true);
// We intentionally exit without setting the error to
// skip logging "Failed to process UDP" at the exit
// label. Note that in multi-radio mode, receiving
// duplicate MLE message (with one-off counter) would
// be common and ok for broadcast MLE messages (e.g.
// MLE Link Advertisements).
ExitNow();
}
#endif
VerifyOrExit(frameCounter >= neighbor->GetMleFrameCounter(), error = kErrorDuplicated);
}
else
{
VerifyOrExit(keySequence > neighbor->GetKeySequence(), error = kErrorDuplicated);
neighbor->SetKeySequence(keySequence);
neighbor->GetLinkFrameCounters().Reset();
neighbor->SetLinkAckFrameCounter(0);
}
neighbor->SetMleFrameCounter(frameCounter + 1);
}
#if OPENTHREAD_CONFIG_MULTI_RADIO
if (neighbor != nullptr)
{
OT_ASSERT(aMessage.IsRadioTypeSet());
Get<RadioSelector>().UpdateOnReceive(*neighbor, aMessage.GetRadioType(), /* IsDuplicate */ false);
}
#endif
rxInfo.mKeySequence = keySequence;
rxInfo.mFrameCounter = frameCounter;
rxInfo.mNeighbor = neighbor;
switch (command)
{
case kCommandAdvertisement:
HandleAdvertisement(rxInfo);
break;
case kCommandDataResponse:
HandleDataResponse(rxInfo);
break;
case kCommandParentResponse:
HandleParentResponse(rxInfo);
break;
case kCommandChildIdResponse:
HandleChildIdResponse(rxInfo);
break;
case kCommandAnnounce:
HandleAnnounce(rxInfo);
break;
case kCommandChildUpdateRequest:
#if OPENTHREAD_FTD
if (IsRouterOrLeader())
{
Get<MleRouter>().HandleChildUpdateRequest(rxInfo);
}
else
#endif
{
HandleChildUpdateRequest(rxInfo);
}
break;
case kCommandChildUpdateResponse:
#if OPENTHREAD_FTD
if (IsRouterOrLeader())
{
Get<MleRouter>().HandleChildUpdateResponse(rxInfo);
}
else
#endif
{
HandleChildUpdateResponse(rxInfo);
}
break;
#if OPENTHREAD_FTD
case kCommandLinkRequest:
Get<MleRouter>().HandleLinkRequest(rxInfo);
break;
case kCommandLinkAccept:
Get<MleRouter>().HandleLinkAccept(rxInfo);
break;
case kCommandLinkAcceptAndRequest:
Get<MleRouter>().HandleLinkAcceptAndRequest(rxInfo);
break;
case kCommandDataRequest:
Get<MleRouter>().HandleDataRequest(rxInfo);
break;
case kCommandParentRequest:
Get<MleRouter>().HandleParentRequest(rxInfo);
break;
case kCommandChildIdRequest:
Get<MleRouter>().HandleChildIdRequest(rxInfo);
break;
#if OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
case kCommandTimeSync:
Get<MleRouter>().HandleTimeSync(rxInfo);
break;
#endif
#endif // OPENTHREAD_FTD
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
case kCommandLinkMetricsManagementRequest:
HandleLinkMetricsManagementRequest(rxInfo);
break;
#endif
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_INITIATOR_ENABLE
case kCommandLinkMetricsManagementResponse:
HandleLinkMetricsManagementResponse(rxInfo);
break;
#endif
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
case kCommandLinkProbe:
HandleLinkProbe(rxInfo);
break;
#endif
default:
ExitNow(error = kErrorDrop);
}
#if OPENTHREAD_CONFIG_MULTI_RADIO
// If we could not find a neighbor matching the MAC address of the
// received MLE messages, or if the neighbor is now invalid, we
// check again after the message is handled with a relaxed neighbor
// state filer. The processing of the received MLE message may
// create a new neighbor or change the neighbor table (e.g.,
// receiving a "Parent Request" from a new child, or processing a
// "Link Request" from a previous child which is being promoted to a
// router).
if ((neighbor == nullptr) || neighbor->IsStateInvalid())
{
neighbor = Get<NeighborTable>().FindNeighbor(extAddr, Neighbor::kInStateAnyExceptInvalid);
if (neighbor != nullptr)
{
Get<RadioSelector>().UpdateOnReceive(*neighbor, aMessage.GetRadioType(), /* aIsDuplicate */ false);
}
}
#endif
exit:
// We skip logging failures for broadcast MLE messages since it
// can be common to receive such messages from adjacent Thread
// networks.
if (!aMessageInfo.GetSockAddr().IsMulticast() || !aMessageInfo.GetThreadLinkInfo()->IsDstPanIdBroadcast())
{
LogProcessError(kTypeGenericUdp, error);
}
}
void Mle::HandleAdvertisement(RxInfo &aRxInfo)
{
Error error = kErrorNone;
uint16_t sourceAddress;
LeaderData leaderData;
uint8_t tlvs[] = {Tlv::kNetworkData};
uint16_t delay;
// Source Address
SuccessOrExit(error = Tlv::Find<SourceAddressTlv>(aRxInfo.mMessage, sourceAddress));
Log(kMessageReceive, kTypeAdvertisement, aRxInfo.mMessageInfo.GetPeerAddr(), sourceAddress);
// Leader Data
SuccessOrExit(error = ReadLeaderData(aRxInfo.mMessage, leaderData));
if (!IsDetached())
{
#if OPENTHREAD_FTD
if (IsFullThreadDevice())
{
SuccessOrExit(error = Get<MleRouter>().HandleAdvertisement(aRxInfo));
}
else
#endif
{
if ((aRxInfo.mNeighbor == &mParent) && (mParent.GetRloc16() != sourceAddress))
{
// Remove stale parent.
IgnoreError(BecomeDetached());
}
}
}
switch (mRole)
{
case kRoleDisabled:
case kRoleDetached:
ExitNow();
case kRoleChild:
VerifyOrExit(aRxInfo.mNeighbor == &mParent);
if ((mParent.GetRloc16() == sourceAddress) && (leaderData.GetPartitionId() != mLeaderData.GetPartitionId() ||
leaderData.GetLeaderRouterId() != GetLeaderId()))
{
SetLeaderData(leaderData.GetPartitionId(), leaderData.GetWeighting(), leaderData.GetLeaderRouterId());
#if OPENTHREAD_FTD
if (IsFullThreadDevice())
{
switch (Get<MleRouter>().ProcessRouteTlv(aRxInfo))
{
case kErrorNone:
case kErrorNotFound:
break;
default:
ExitNow(error = kErrorParse);
}
}
#endif
mRetrieveNewNetworkData = true;
}
mParent.SetLastHeard(TimerMilli::GetNow());
break;
case kRoleRouter:
case kRoleLeader:
VerifyOrExit(aRxInfo.mNeighbor && aRxInfo.mNeighbor->IsStateValid());
break;
}
if (mRetrieveNewNetworkData || IsNetworkDataNewer(leaderData))
{
delay = Random::NonCrypto::GetUint16InRange(0, kMleMaxResponseDelay);
IgnoreError(SendDataRequest(aRxInfo.mMessageInfo.GetPeerAddr(), tlvs, sizeof(tlvs), delay));
}
exit:
LogProcessError(kTypeAdvertisement, error);
}
void Mle::HandleDataResponse(RxInfo &aRxInfo)
{
Error error;
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_INITIATOR_ENABLE
uint16_t metricsReportValueOffset;
uint16_t length;
#endif
Log(kMessageReceive, kTypeDataResponse, aRxInfo.mMessageInfo.GetPeerAddr());
VerifyOrExit(aRxInfo.mNeighbor && aRxInfo.mNeighbor->IsStateValid(), error = kErrorDrop);
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_INITIATOR_ENABLE
if (Tlv::FindTlvValueOffset(aRxInfo.mMessage, Tlv::kLinkMetricsReport, metricsReportValueOffset, length) ==
kErrorNone)
{
Get<LinkMetrics::LinkMetrics>().HandleReport(aRxInfo.mMessage, metricsReportValueOffset, length,
aRxInfo.mMessageInfo.GetPeerAddr());
}
#endif
error = HandleLeaderData(aRxInfo);
if (mDataRequestState == kDataRequestNone && !IsRxOnWhenIdle())
{
// Here simply stops fast data poll request by Mle Data Request.
// Note that in some cases fast data poll may continue after below stop operation until
// running out the specified number. E.g. other component also trigger fast poll, and
// is waiting for response; or the corner case where multiple Mle Data Request attempts
// happened due to the retransmission mechanism.
Get<DataPollSender>().StopFastPolls();
}
exit:
LogProcessError(kTypeDataResponse, error);
}
bool Mle::IsNetworkDataNewer(const LeaderData &aLeaderData)
{
return SerialNumber::IsGreater(aLeaderData.GetDataVersion(GetNetworkDataType()),
Get<NetworkData::Leader>().GetVersion(GetNetworkDataType()));
}
Error Mle::HandleLeaderData(RxInfo &aRxInfo)
{
Error error = kErrorNone;
LeaderData leaderData;
MeshCoP::Timestamp activeTimestamp;
MeshCoP::Timestamp pendingTimestamp;
const MeshCoP::Timestamp *timestamp;
bool hasActiveTimestamp = false;
bool hasPendingTimestamp = false;
uint16_t networkDataOffset = 0;
uint16_t activeDatasetOffset = 0;
uint16_t pendingDatasetOffset = 0;
bool dataRequest = false;
Tlv tlv;
// Leader Data
SuccessOrExit(error = ReadLeaderData(aRxInfo.mMessage, leaderData));
if ((leaderData.GetPartitionId() != mLeaderData.GetPartitionId()) ||
(leaderData.GetWeighting() != mLeaderData.GetWeighting()) || (leaderData.GetLeaderRouterId() != GetLeaderId()))
{
if (IsChild())
{
SetLeaderData(leaderData.GetPartitionId(), leaderData.GetWeighting(), leaderData.GetLeaderRouterId());
mRetrieveNewNetworkData = true;
}
else
{
ExitNow(error = kErrorDrop);
}
}
else if (!mRetrieveNewNetworkData)
{
VerifyOrExit(IsNetworkDataNewer(leaderData));
}
// Active Timestamp
switch (Tlv::Find<ActiveTimestampTlv>(aRxInfo.mMessage, activeTimestamp))
{
case kErrorNone:
hasActiveTimestamp = true;
timestamp = Get<MeshCoP::ActiveDatasetManager>().GetTimestamp();
// if received timestamp does not match the local value and message does not contain the dataset,
// send MLE Data Request
if (!IsLeader() && (MeshCoP::Timestamp::Compare(&activeTimestamp, timestamp) != 0) &&
(Tlv::FindTlvOffset(aRxInfo.mMessage, Tlv::kActiveDataset, activeDatasetOffset) != kErrorNone))
{
ExitNow(dataRequest = true);
}
break;
case kErrorNotFound:
break;
default:
ExitNow(error = kErrorParse);
}
// Pending Timestamp
switch (Tlv::Find<PendingTimestampTlv>(aRxInfo.mMessage, pendingTimestamp))
{
case kErrorNone:
hasPendingTimestamp = true;
timestamp = Get<MeshCoP::PendingDatasetManager>().GetTimestamp();
// if received timestamp does not match the local value and message does not contain the dataset,
// send MLE Data Request
if (!IsLeader() && (MeshCoP::Timestamp::Compare(&pendingTimestamp, timestamp) != 0) &&
(Tlv::FindTlvOffset(aRxInfo.mMessage, Tlv::kPendingDataset, pendingDatasetOffset) != kErrorNone))
{
ExitNow(dataRequest = true);
}
break;
case kErrorNotFound:
break;
default:
ExitNow(error = kErrorParse);
}
if (Tlv::FindTlvOffset(aRxInfo.mMessage, Tlv::kNetworkData, networkDataOffset) == kErrorNone)
{
error = Get<NetworkData::Leader>().SetNetworkData(leaderData.GetDataVersion(NetworkData::kFullSet),
leaderData.GetDataVersion(NetworkData::kStableSubset),
GetNetworkDataType(), aRxInfo.mMessage, networkDataOffset);
SuccessOrExit(error);
}
else
{
ExitNow(dataRequest = true);
}
#if OPENTHREAD_FTD
if (IsLeader())
{
Get<NetworkData::Leader>().IncrementVersionAndStableVersion();
}
else
#endif
{
// Active Dataset
if (hasActiveTimestamp)
{
if (activeDatasetOffset > 0)
{
IgnoreError(aRxInfo.mMessage.Read(activeDatasetOffset, tlv));
IgnoreError(Get<MeshCoP::ActiveDatasetManager>().Save(
activeTimestamp, aRxInfo.mMessage, activeDatasetOffset + sizeof(tlv), tlv.GetLength()));
}
}
// Pending Dataset
if (hasPendingTimestamp)
{
if (pendingDatasetOffset > 0)
{
IgnoreError(aRxInfo.mMessage.Read(pendingDatasetOffset, tlv));
IgnoreError(Get<MeshCoP::PendingDatasetManager>().Save(
pendingTimestamp, aRxInfo.mMessage, pendingDatasetOffset + sizeof(tlv), tlv.GetLength()));
}
}
}
mRetrieveNewNetworkData = false;
exit:
if (dataRequest)
{
static const uint8_t tlvs[] = {Tlv::kNetworkData};
uint16_t delay;
if (aRxInfo.mMessageInfo.GetSockAddr().IsMulticast())
{
delay = Random::NonCrypto::GetUint16InRange(0, kMleMaxResponseDelay);
}
else
{
// This method may have been called from an MLE request
// handler. We add a minimum delay here so that the MLE
// response is enqueued before the MLE Data Request.
delay = 10;
}
IgnoreError(SendDataRequest(aRxInfo.mMessageInfo.GetPeerAddr(), tlvs, sizeof(tlvs), delay));
}
else if (error == kErrorNone)
{
mDataRequestAttempts = 0;
mDataRequestState = kDataRequestNone;
// Here the `mMessageTransmissionTimer` is intentionally not canceled
// so that when it fires from its callback a "Child Update" is sent
// if the device is a rx-on child. This way, even when the timer is
// reused for retransmission of "Data Request" messages, it is ensured
// that keep-alive "Child Update Request" messages are send within the
// child's timeout.
}
return error;
}
bool Mle::IsBetterParent(uint16_t aRloc16,
LinkQuality aLinkQuality,
uint8_t aLinkMargin,
const ConnectivityTlv &aConnectivityTlv,
uint8_t aVersion,
uint8_t aCslClockAccuracy,
uint8_t aCslUncertainty)
{
bool rval = false;
LinkQuality candidateLinkQualityIn = mParentCandidate.GetLinkInfo().GetLinkQuality();
LinkQuality candidateTwoWayLinkQuality = OT_MIN(candidateLinkQualityIn, mParentCandidate.GetLinkQualityOut());
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
uint64_t candidateCslMetric = 0;
uint64_t cslMetric = 0;
#else
OT_UNUSED_VARIABLE(aCslClockAccuracy);
OT_UNUSED_VARIABLE(aCslUncertainty);
#endif
// Mesh Impacting Criteria
if (aLinkQuality != candidateTwoWayLinkQuality)
{
ExitNow(rval = (aLinkQuality > candidateTwoWayLinkQuality));
}
if (IsActiveRouter(aRloc16) != IsActiveRouter(mParentCandidate.GetRloc16()))
{
ExitNow(rval = IsActiveRouter(aRloc16));
}
if (aConnectivityTlv.GetParentPriority() != mParentPriority)
{
ExitNow(rval = (aConnectivityTlv.GetParentPriority() > mParentPriority));
}
// Prefer the parent with highest quality links (Link Quality 3 field in Connectivity TLV) to neighbors
if (aConnectivityTlv.GetLinkQuality3() != mParentLinkQuality3)
{
ExitNow(rval = (aConnectivityTlv.GetLinkQuality3() > mParentLinkQuality3));
}
// Thread 1.2 Specification 4.5.2.1.2 Child Impacting Criteria
if (aVersion != mParentCandidate.GetVersion())
{
ExitNow(rval = (aVersion > mParentCandidate.GetVersion()));
}
if (aConnectivityTlv.GetSedBufferSize() != mParentSedBufferSize)
{
ExitNow(rval = (aConnectivityTlv.GetSedBufferSize() > mParentSedBufferSize));
}
if (aConnectivityTlv.GetSedDatagramCount() != mParentSedDatagramCount)
{
ExitNow(rval = (aConnectivityTlv.GetSedDatagramCount() > mParentSedDatagramCount));
}
// Extra rules
if (aConnectivityTlv.GetLinkQuality2() != mParentLinkQuality2)
{
ExitNow(rval = (aConnectivityTlv.GetLinkQuality2() > mParentLinkQuality2));
}
if (aConnectivityTlv.GetLinkQuality1() != mParentLinkQuality1)
{
ExitNow(rval = (aConnectivityTlv.GetLinkQuality1() > mParentLinkQuality1));
}
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
// CSL metric
if (!IsRxOnWhenIdle())
{
cslMetric = CalcParentCslMetric(aCslClockAccuracy, aCslUncertainty);
candidateCslMetric =
CalcParentCslMetric(mParentCandidate.GetCslClockAccuracy(), mParentCandidate.GetCslClockUncertainty());
if (candidateCslMetric != cslMetric)
{
ExitNow(rval = (cslMetric < candidateCslMetric));
}
}
#endif
rval = (aLinkMargin > mParentLinkMargin);
exit:
return rval;
}
void Mle::HandleParentResponse(RxInfo &aRxInfo)
{
Error error = kErrorNone;
const ThreadLinkInfo *linkInfo = aRxInfo.mMessageInfo.GetThreadLinkInfo();
Challenge response;
uint16_t version;
uint16_t sourceAddress;
LeaderData leaderData;
uint8_t linkMarginFromTlv;
uint8_t linkMargin;
LinkQuality linkQuality;
ConnectivityTlv connectivity;
uint32_t linkFrameCounter;
uint32_t mleFrameCounter;
Mac::ExtAddress extAddress;
#if OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
TimeParameterTlv timeParameter;
#endif
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
CslClockAccuracyTlv clockAccuracy;
#endif
// Source Address
SuccessOrExit(error = Tlv::Find<SourceAddressTlv>(aRxInfo.mMessage, sourceAddress));
Log(kMessageReceive, kTypeParentResponse, aRxInfo.mMessageInfo.GetPeerAddr(), sourceAddress);
// Version
SuccessOrExit(error = Tlv::Find<VersionTlv>(aRxInfo.mMessage, version));
VerifyOrExit(version >= OT_THREAD_VERSION_1_1, error = kErrorParse);
// Response
SuccessOrExit(error = ReadResponse(aRxInfo.mMessage, response));
VerifyOrExit(response == mParentRequestChallenge, error = kErrorParse);
aRxInfo.mMessageInfo.GetPeerAddr().GetIid().ConvertToExtAddress(extAddress);
if (IsChild() && mParent.GetExtAddress() == extAddress)
{
mReceivedResponseFromParent = true;
}
// Leader Data
SuccessOrExit(error = ReadLeaderData(aRxInfo.mMessage, leaderData));
// Link Margin
SuccessOrExit(error = Tlv::Find<LinkMarginTlv>(aRxInfo.mMessage, linkMarginFromTlv));
linkMargin = LinkQualityInfo::ConvertRssToLinkMargin(Get<Mac::Mac>().GetNoiseFloor(), linkInfo->GetRss());
if (linkMargin > linkMarginFromTlv)
{
linkMargin = linkMarginFromTlv;
}
linkQuality = LinkQualityInfo::ConvertLinkMarginToLinkQuality(linkMargin);
// Connectivity
SuccessOrExit(error = Tlv::FindTlv(aRxInfo.mMessage, connectivity));
VerifyOrExit(connectivity.IsValid(), error = kErrorParse);
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
// CSL Accuracy
if (Tlv::FindTlv(aRxInfo.mMessage, clockAccuracy) != kErrorNone)
{
clockAccuracy.SetCslClockAccuracy(kCslWorstCrystalPpm);
clockAccuracy.SetCslUncertainty(kCslWorstUncertainty);
}
#endif
// Share data with application, if requested.
if (mParentResponseCb)
{
otThreadParentResponseInfo parentinfo;
parentinfo.mExtAddr = extAddress;
parentinfo.mRloc16 = sourceAddress;
parentinfo.mRssi = linkInfo->GetRss();
parentinfo.mPriority = connectivity.GetParentPriority();
parentinfo.mLinkQuality3 = connectivity.GetLinkQuality3();
parentinfo.mLinkQuality2 = connectivity.GetLinkQuality2();
parentinfo.mLinkQuality1 = connectivity.GetLinkQuality1();
parentinfo.mIsAttached = IsAttached();
mParentResponseCb(&parentinfo, mParentResponseCbContext);
}
#if OPENTHREAD_FTD
if (IsFullThreadDevice() && !IsDetached())
{
bool isPartitionIdSame = (leaderData.GetPartitionId() == mLeaderData.GetPartitionId());
bool isIdSequenceSame = (connectivity.GetIdSequence() == Get<RouterTable>().GetRouterIdSequence());
bool isIdSequenceGreater =
SerialNumber::IsGreater(connectivity.GetIdSequence(), Get<RouterTable>().GetRouterIdSequence());
switch (mAttachMode)
{
case kAnyPartition:
case kBetterParent:
VerifyOrExit(!isPartitionIdSame || isIdSequenceGreater);
break;
case kSamePartition:
case kSamePartitionRetry:
VerifyOrExit(isPartitionIdSame && isIdSequenceGreater);
break;
case kDowngradeToReed:
VerifyOrExit(isPartitionIdSame && (isIdSequenceSame || isIdSequenceGreater));
break;
case kBetterPartition:
VerifyOrExit(!isPartitionIdSame);
VerifyOrExit(MleRouter::ComparePartitions(connectivity.GetActiveRouters() <= 1, leaderData,
Get<MleRouter>().IsSingleton(), mLeaderData) > 0);
break;
}
}
#endif
// Continue to process the "ParentResponse" if it is from current
// parent candidate to update the challenge and frame counters.
if (mParentCandidate.IsStateParentResponse() && (mParentCandidate.GetExtAddress() != extAddress))
{
// if already have a candidate parent, only seek a better parent
int compare = 0;
#if OPENTHREAD_FTD
if (IsFullThreadDevice())
{
compare = MleRouter::ComparePartitions(connectivity.GetActiveRouters() <= 1, leaderData, mParentIsSingleton,
mParentLeaderData);
}
// only consider partitions that are the same or better
VerifyOrExit(compare >= 0);
#endif
// only consider better parents if the partitions are the same
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
VerifyOrExit(compare != 0 ||
IsBetterParent(sourceAddress, linkQuality, linkMargin, connectivity, static_cast<uint8_t>(version),
clockAccuracy.GetCslClockAccuracy(), clockAccuracy.GetCslUncertainty()));
#else
VerifyOrExit(compare != 0 || IsBetterParent(sourceAddress, linkQuality, linkMargin, connectivity,
static_cast<uint8_t>(version), 0, 0));
#endif
}
// Link/MLE Frame Counters
SuccessOrExit(error = ReadFrameCounters(aRxInfo.mMessage, linkFrameCounter, mleFrameCounter));
#if OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
// Time Parameter
if (Tlv::FindTlv(aRxInfo.mMessage, timeParameter) == kErrorNone)
{
VerifyOrExit(timeParameter.IsValid());
Get<TimeSync>().SetTimeSyncPeriod(timeParameter.GetTimeSyncPeriod());
Get<TimeSync>().SetXtalThreshold(timeParameter.GetXtalThreshold());
}
#if OPENTHREAD_CONFIG_TIME_SYNC_REQUIRED
else
{
// If the time sync feature is required, don't choose the parent which doesn't support it.
ExitNow();
}
#endif // OPENTHREAD_CONFIG_TIME_SYNC_REQUIRED
#endif // OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
// Challenge
SuccessOrExit(error = ReadChallenge(aRxInfo.mMessage, mParentCandidateChallenge));
mParentCandidate.SetExtAddress(extAddress);
mParentCandidate.SetRloc16(sourceAddress);
mParentCandidate.GetLinkFrameCounters().SetAll(linkFrameCounter);
mParentCandidate.SetLinkAckFrameCounter(linkFrameCounter);
mParentCandidate.SetMleFrameCounter(mleFrameCounter);
mParentCandidate.SetVersion(static_cast<uint8_t>(version));
mParentCandidate.SetDeviceMode(DeviceMode(DeviceMode::kModeFullThreadDevice | DeviceMode::kModeRxOnWhenIdle |
DeviceMode::kModeFullNetworkData));
mParentCandidate.GetLinkInfo().Clear();
mParentCandidate.GetLinkInfo().AddRss(linkInfo->GetRss());
mParentCandidate.ResetLinkFailures();
mParentCandidate.SetLinkQualityOut(LinkQualityInfo::ConvertLinkMarginToLinkQuality(linkMarginFromTlv));
mParentCandidate.SetState(Neighbor::kStateParentResponse);
mParentCandidate.SetKeySequence(aRxInfo.mKeySequence);
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
mParentCandidate.SetCslClockAccuracy(clockAccuracy.GetCslClockAccuracy());
mParentCandidate.SetCslClockUncertainty(clockAccuracy.GetCslUncertainty());
#endif
mParentPriority = connectivity.GetParentPriority();
mParentLinkQuality3 = connectivity.GetLinkQuality3();
mParentLinkQuality2 = connectivity.GetLinkQuality2();
mParentLinkQuality1 = connectivity.GetLinkQuality1();
mParentLeaderCost = connectivity.GetLeaderCost();
mParentSedBufferSize = connectivity.GetSedBufferSize();
mParentSedDatagramCount = connectivity.GetSedDatagramCount();
mParentLeaderData = leaderData;
mParentIsSingleton = connectivity.GetActiveRouters() <= 1;
mParentLinkMargin = linkMargin;
exit:
LogProcessError(kTypeParentResponse, error);
}
void Mle::HandleChildIdResponse(RxInfo &aRxInfo)
{
Error error = kErrorNone;
LeaderData leaderData;
uint16_t sourceAddress;
uint16_t shortAddress;
MeshCoP::Timestamp timestamp;
Tlv tlv;
uint16_t networkDataOffset;
uint16_t offset;
// Source Address
SuccessOrExit(error = Tlv::Find<SourceAddressTlv>(aRxInfo.mMessage, sourceAddress));
Log(kMessageReceive, kTypeChildIdResponse, aRxInfo.mMessageInfo.GetPeerAddr(), sourceAddress);
VerifyOrExit(aRxInfo.mNeighbor && aRxInfo.mNeighbor->IsStateValid(), error = kErrorSecurity);
VerifyOrExit(mAttachState == kAttachStateChildIdRequest);
// ShortAddress
SuccessOrExit(error = Tlv::Find<Address16Tlv>(aRxInfo.mMessage, shortAddress));
VerifyOrExit(RouterIdMatch(sourceAddress, shortAddress), error = kErrorRejected);
// Leader Data
SuccessOrExit(error = ReadLeaderData(aRxInfo.mMessage, leaderData));
// Network Data
error = Tlv::FindTlvOffset(aRxInfo.mMessage, Tlv::kNetworkData, networkDataOffset);
SuccessOrExit(error);
// Active Timestamp
switch (Tlv::Find<ActiveTimestampTlv>(aRxInfo.mMessage, timestamp))
{
case kErrorNone:
// Active Dataset
if (Tlv::FindTlvOffset(aRxInfo.mMessage, Tlv::kActiveDataset, offset) == kErrorNone)
{
IgnoreError(aRxInfo.mMessage.Read(offset, tlv));
SuccessOrExit(error = Get<MeshCoP::ActiveDatasetManager>().Save(timestamp, aRxInfo.mMessage,
offset + sizeof(tlv), tlv.GetLength()));
}
break;
case kErrorNotFound:
break;
default:
ExitNow(error = kErrorParse);
}
// clear Pending Dataset if device succeed to reattach using stored Pending Dataset
if (mReattachState == kReattachPending)
{
Get<MeshCoP::PendingDatasetManager>().Clear();
}
// Pending Timestamp
switch (Tlv::Find<PendingTimestampTlv>(aRxInfo.mMessage, timestamp))
{
case kErrorNone:
// Pending Dataset
if (Tlv::FindTlvOffset(aRxInfo.mMessage, Tlv::kPendingDataset, offset) == kErrorNone)
{
IgnoreError(aRxInfo.mMessage.Read(offset, tlv));
IgnoreError(Get<MeshCoP::PendingDatasetManager>().Save(timestamp, aRxInfo.mMessage, offset + sizeof(tlv),
tlv.GetLength()));
}
break;
case kErrorNotFound:
Get<MeshCoP::PendingDatasetManager>().ClearNetwork();
break;
default:
ExitNow(error = kErrorParse);
}
#if OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
// Sync to Thread network time
if (aRxInfo.mMessage.GetTimeSyncSeq() != OT_TIME_SYNC_INVALID_SEQ)
{
Get<TimeSync>().HandleTimeSyncMessage(aRxInfo.mMessage);
}
#endif
// Parent Attach Success
SetStateDetached();
SetLeaderData(leaderData.GetPartitionId(), leaderData.GetWeighting(), leaderData.GetLeaderRouterId());
#if OPENTHREAD_FTD
if (IsFullThreadDevice())
{
switch (Get<MleRouter>().ProcessRouteTlv(aRxInfo))
{
case kErrorNone:
case kErrorNotFound:
break;
default:
ExitNow(error = kErrorParse);
}
}
#endif
mParent = mParentCandidate;
mParentCandidate.Clear();
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
Get<Mac::Mac>().SetCslParentUncertainty(mParent.GetCslClockUncertainty());
Get<Mac::Mac>().SetCslParentClockAccuracy(mParent.GetCslClockAccuracy());
#endif
mParent.SetRloc16(sourceAddress);
IgnoreError(Get<NetworkData::Leader>().SetNetworkData(leaderData.GetDataVersion(NetworkData::kFullSet),
leaderData.GetDataVersion(NetworkData::kStableSubset),
GetNetworkDataType(), aRxInfo.mMessage, networkDataOffset));
SetStateChild(shortAddress);
if (!IsRxOnWhenIdle())
{
Get<DataPollSender>().SetAttachMode(false);
Get<MeshForwarder>().SetRxOnWhenIdle(false);
}
else
{
Get<MeshForwarder>().SetRxOnWhenIdle(true);
}
exit:
LogProcessError(kTypeChildIdResponse, error);
}
void Mle::HandleChildUpdateRequest(RxInfo &aRxInfo)
{
static const uint8_t kMaxResponseTlvs = 6;
Error error = kErrorNone;
uint16_t sourceAddress;
Challenge challenge;
RequestedTlvs requestedTlvs;
uint8_t tlvs[kMaxResponseTlvs] = {};
uint8_t numTlvs = 0;
// Source Address
SuccessOrExit(error = Tlv::Find<SourceAddressTlv>(aRxInfo.mMessage, sourceAddress));
Log(kMessageReceive, kTypeChildUpdateRequestOfParent, aRxInfo.mMessageInfo.GetPeerAddr(), sourceAddress);
// Challenge
switch (ReadChallenge(aRxInfo.mMessage, challenge))
{
case kErrorNone:
tlvs[numTlvs++] = Tlv::kResponse;
tlvs[numTlvs++] = Tlv::kMleFrameCounter;
tlvs[numTlvs++] = Tlv::kLinkFrameCounter;
break;
case kErrorNotFound:
challenge.mLength = 0;
break;
default:
ExitNow(error = kErrorParse);
}
if (aRxInfo.mNeighbor == &mParent)
{
uint8_t status;
switch (Tlv::Find<StatusTlv>(aRxInfo.mMessage, status))
{
case kErrorNone:
VerifyOrExit(status != StatusTlv::kError, IgnoreError(BecomeDetached()));
break;
case kErrorNotFound:
break;
default:
ExitNow(error = kErrorParse);
}
if (mParent.GetRloc16() != sourceAddress)
{
IgnoreError(BecomeDetached());
ExitNow();
}
// Leader Data, Network Data, Active Timestamp, Pending Timestamp
SuccessOrExit(error = HandleLeaderData(aRxInfo));
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
CslClockAccuracyTlv cslClockAccuracyTlv;
if (Tlv::FindTlv(aRxInfo.mMessage, cslClockAccuracyTlv) == kErrorNone)
{
// MUST include CSL timeout TLV when request includes CSL accuracy
tlvs[numTlvs++] = Tlv::kCslTimeout;
}
#endif
}
else
{
// this device is not a child of the Child Update Request source
tlvs[numTlvs++] = Tlv::kStatus;
}
// TLV Request
switch (FindTlvRequest(aRxInfo.mMessage, requestedTlvs))
{
case kErrorNone:
for (uint8_t i = 0; i < requestedTlvs.mNumTlvs; i++)
{
if (numTlvs >= sizeof(tlvs))
{
LogWarn("Failed to respond with TLVs: %d of %d", i, requestedTlvs.mNumTlvs);
break;
}
tlvs[numTlvs++] = requestedTlvs.mTlvs[i];
}
break;
case kErrorNotFound:
break;
default:
ExitNow(error = kErrorParse);
}
#if OPENTHREAD_CONFIG_MULTI_RADIO
if ((aRxInfo.mNeighbor != nullptr) && (challenge.mLength != 0))
{
aRxInfo.mNeighbor->ClearLastRxFragmentTag();
}
#endif
SuccessOrExit(error = SendChildUpdateResponse(tlvs, numTlvs, challenge));
exit:
LogProcessError(kTypeChildUpdateRequestOfParent, error);
}
void Mle::HandleChildUpdateResponse(RxInfo &aRxInfo)
{
Error error = kErrorNone;
uint8_t status;
uint8_t mode;
Challenge response;
uint32_t linkFrameCounter;
uint32_t mleFrameCounter;
uint16_t sourceAddress;
uint32_t timeout;
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
CslClockAccuracyTlv clockAccuracy;
#endif
Log(kMessageReceive, kTypeChildUpdateResponseOfParent, aRxInfo.mMessageInfo.GetPeerAddr());
switch (mRole)
{
case kRoleDetached:
SuccessOrExit(error = ReadResponse(aRxInfo.mMessage, response));
VerifyOrExit(response == mParentRequestChallenge, error = kErrorSecurity);
break;
case kRoleChild:
VerifyOrExit((aRxInfo.mNeighbor == &mParent) && mParent.IsStateValid(), error = kErrorSecurity);
break;
default:
OT_ASSERT(false);
OT_UNREACHABLE_CODE(break);
}
// Status
if (Tlv::Find<StatusTlv>(aRxInfo.mMessage, status) == kErrorNone)
{
IgnoreError(BecomeDetached());
ExitNow();
}
// Mode
SuccessOrExit(error = Tlv::Find<ModeTlv>(aRxInfo.mMessage, mode));
VerifyOrExit(DeviceMode(mode) == mDeviceMode, error = kErrorDrop);
switch (mRole)
{
case kRoleDetached:
SuccessOrExit(error = ReadFrameCounters(aRxInfo.mMessage, linkFrameCounter, mleFrameCounter));
mParent.GetLinkFrameCounters().SetAll(linkFrameCounter);
mParent.SetLinkAckFrameCounter(linkFrameCounter);
mParent.SetMleFrameCounter(mleFrameCounter);
mParent.SetState(Neighbor::kStateValid);
SetStateChild(GetRloc16());
mRetrieveNewNetworkData = true;
OT_FALL_THROUGH;
case kRoleChild:
// Source Address
SuccessOrExit(error = Tlv::Find<SourceAddressTlv>(aRxInfo.mMessage, sourceAddress));
if (RouterIdFromRloc16(sourceAddress) != RouterIdFromRloc16(GetRloc16()))
{
IgnoreError(BecomeDetached());
ExitNow();
}
// Leader Data, Network Data, Active Timestamp, Pending Timestamp
SuccessOrExit(error = HandleLeaderData(aRxInfo));
// Timeout optional
switch (Tlv::Find<TimeoutTlv>(aRxInfo.mMessage, timeout))
{
case kErrorNone:
mTimeout = timeout;
break;
case kErrorNotFound:
break;
default:
ExitNow(error = kErrorParse);
}
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
// CSL Accuracy
if (Tlv::FindTlv(aRxInfo.mMessage, clockAccuracy) != kErrorNone)
{
Get<Mac::Mac>().SetCslParentClockAccuracy(clockAccuracy.GetCslClockAccuracy());
Get<Mac::Mac>().SetCslParentUncertainty(clockAccuracy.GetCslUncertainty());
}
#endif
if (!IsRxOnWhenIdle())
{
Get<DataPollSender>().SetAttachMode(false);
Get<MeshForwarder>().SetRxOnWhenIdle(false);
}
else
{
Get<MeshForwarder>().SetRxOnWhenIdle(true);
}
break;
default:
OT_ASSERT(false);
OT_UNREACHABLE_CODE(break);
}
exit:
if (error == kErrorNone)
{
if (mChildUpdateRequestState == kChildUpdateRequestActive)
{
mChildUpdateAttempts = 0;
mChildUpdateRequestState = kChildUpdateRequestNone;
ScheduleMessageTransmissionTimer();
}
}
LogProcessError(kTypeChildUpdateResponseOfParent, error);
}
void Mle::HandleAnnounce(RxInfo &aRxInfo)
{
Error error = kErrorNone;
ChannelTlv channelTlv;
MeshCoP::Timestamp timestamp;
const MeshCoP::Timestamp *localTimestamp;
uint8_t channel;
uint16_t panId;
Log(kMessageReceive, kTypeAnnounce, aRxInfo.mMessageInfo.GetPeerAddr());
SuccessOrExit(error = Tlv::FindTlv(aRxInfo.mMessage, channelTlv));
VerifyOrExit(channelTlv.IsValid(), error = kErrorParse);
channel = static_cast<uint8_t>(channelTlv.GetChannel());
SuccessOrExit(error = Tlv::Find<ActiveTimestampTlv>(aRxInfo.mMessage, timestamp));
SuccessOrExit(error = Tlv::Find<PanIdTlv>(aRxInfo.mMessage, panId));
localTimestamp = Get<MeshCoP::ActiveDatasetManager>().GetTimestamp();
if (MeshCoP::Timestamp::Compare(&timestamp, localTimestamp) > 0)
{
// No action is required if device is detached, and current
// channel and pan-id match the values from the received MLE
// Announce message.
VerifyOrExit(!IsDetached() || (Get<Mac::Mac>().GetPanChannel() != channel) ||
(Get<Mac::Mac>().GetPanId() != panId));
if (mAttachState == kAttachStateProcessAnnounce)
{
VerifyOrExit(mAlternateTimestamp < timestamp.GetSeconds());
}
mAlternateTimestamp = timestamp.GetSeconds();
mAlternateChannel = channel;
mAlternatePanId = panId;
SetAttachState(kAttachStateProcessAnnounce);
mAttachTimer.Start(kAnnounceProcessTimeout);
mAttachCounter = 0;
LogNote("Delay processing Announce - channel %d, panid 0x%02x", channel, panId);
}
else if (MeshCoP::Timestamp::Compare(&timestamp, localTimestamp) < 0)
{
SendAnnounce(channel);
#if OPENTHREAD_CONFIG_MLE_SEND_UNICAST_ANNOUNCE_RESPONSE
SendAnnounce(channel, aRxInfo.mMessageInfo.GetPeerAddr());
#endif
}
else
{
// Timestamps are equal.
#if OPENTHREAD_CONFIG_ANNOUNCE_SENDER_ENABLE
// Notify `AnnounceSender` of the received Announce
// message so it can update its state to determine
// whether to send Announce or not.
Get<AnnounceSender>().UpdateOnReceivedAnnounce();
#endif
}
exit:
LogProcessError(kTypeAnnounce, error);
}
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
void Mle::HandleLinkMetricsManagementRequest(RxInfo &aRxInfo)
{
Error error = kErrorNone;
LinkMetrics::Status status;
Log(kMessageReceive, kTypeLinkMetricsManagementRequest, aRxInfo.mMessageInfo.GetPeerAddr());
VerifyOrExit(aRxInfo.mNeighbor != nullptr, error = kErrorInvalidState);
SuccessOrExit(
error = Get<LinkMetrics::LinkMetrics>().HandleManagementRequest(aRxInfo.mMessage, *aRxInfo.mNeighbor, status));
error = SendLinkMetricsManagementResponse(aRxInfo.mMessageInfo.GetPeerAddr(), status);
exit:
LogProcessError(kTypeLinkMetricsManagementRequest, error);
}
#endif // OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_INITIATOR_ENABLE
void Mle::HandleLinkMetricsManagementResponse(RxInfo &aRxInfo)
{
Error error = kErrorNone;
Log(kMessageReceive, kTypeLinkMetricsManagementResponse, aRxInfo.mMessageInfo.GetPeerAddr());
VerifyOrExit(aRxInfo.mNeighbor != nullptr, error = kErrorInvalidState);
error =
Get<LinkMetrics::LinkMetrics>().HandleManagementResponse(aRxInfo.mMessage, aRxInfo.mMessageInfo.GetPeerAddr());
exit:
LogProcessError(kTypeLinkMetricsManagementResponse, error);
}
#endif // OPENTHREAD_CONFIG_MLE_LINK_METRICS_INITIATOR_ENABLE
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
void Mle::HandleLinkProbe(RxInfo &aRxInfo)
{
Error error = kErrorNone;
uint8_t seriesId;
Log(kMessageReceive, kTypeLinkProbe, aRxInfo.mMessageInfo.GetPeerAddr());
SuccessOrExit(error = Get<LinkMetrics::LinkMetrics>().HandleLinkProbe(aRxInfo.mMessage, seriesId));
aRxInfo.mNeighbor->AggregateLinkMetrics(seriesId, LinkMetrics::SeriesInfo::kSeriesTypeLinkProbe,
aRxInfo.mMessage.GetAverageLqi(), aRxInfo.mMessage.GetAverageRss());
exit:
LogProcessError(kTypeLinkProbe, error);
}
#endif // OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
void Mle::ProcessAnnounce(void)
{
uint8_t newChannel = mAlternateChannel;
uint16_t newPanId = mAlternatePanId;
OT_ASSERT(mAttachState == kAttachStateProcessAnnounce);
LogNote("Processing Announce - channel %d, panid 0x%02x", newChannel, newPanId);
Stop(kKeepNetworkDatasets);
// Save the current/previous channel and pan-id
mAlternateChannel = Get<Mac::Mac>().GetPanChannel();
mAlternatePanId = Get<Mac::Mac>().GetPanId();
mAlternateTimestamp = 0;
IgnoreError(Get<Mac::Mac>().SetPanChannel(newChannel));
Get<Mac::Mac>().SetPanId(newPanId);
IgnoreError(Start(kAnnounceAttach));
}
uint16_t Mle::GetNextHop(uint16_t aDestination) const
{
OT_UNUSED_VARIABLE(aDestination);
return (mParent.IsStateValid()) ? mParent.GetRloc16() : static_cast<uint16_t>(Mac::kShortAddrInvalid);
}
bool Mle::IsRoutingLocator(const Ip6::Address &aAddress) const
{
return IsMeshLocalAddress(aAddress) && aAddress.GetIid().IsRoutingLocator();
}
bool Mle::IsAnycastLocator(const Ip6::Address &aAddress) const
{
return IsMeshLocalAddress(aAddress) && aAddress.GetIid().IsAnycastLocator();
}
bool Mle::IsMeshLocalAddress(const Ip6::Address &aAddress) const
{
return (aAddress.GetPrefix() == GetMeshLocalPrefix());
}
Error Mle::CheckReachability(uint16_t aMeshDest, Ip6::Header &aIp6Header)
{
Error error;
if ((aMeshDest != GetRloc16()) || Get<ThreadNetif>().HasUnicastAddress(aIp6Header.GetDestination()))
{
error = kErrorNone;
}
else
{
error = kErrorNoRoute;
}
return error;
}
#if OPENTHREAD_CONFIG_MLE_INFORM_PREVIOUS_PARENT_ON_REATTACH
void Mle::InformPreviousParent(void)
{
Error error = kErrorNone;
Message * message = nullptr;
Ip6::MessageInfo messageInfo;
VerifyOrExit((message = Get<Ip6::Ip6>().NewMessage(0)) != nullptr, error = kErrorNoBufs);
SuccessOrExit(error = message->SetLength(0));
messageInfo.SetSockAddr(GetMeshLocal64());
messageInfo.SetPeerAddr(GetMeshLocal16());
messageInfo.GetPeerAddr().GetIid().SetLocator(mPreviousParentRloc);
SuccessOrExit(error = Get<Ip6::Ip6>().SendDatagram(*message, messageInfo, Ip6::kProtoNone));
LogNote("Sending message to inform previous parent 0x%04x", mPreviousParentRloc);
exit:
if (error != kErrorNone)
{
LogWarn("Failed to inform previous parent: %s", ErrorToString(error));
FreeMessage(message);
}
}
#endif // OPENTHREAD_CONFIG_MLE_INFORM_PREVIOUS_PARENT_ON_REATTACH
#if OPENTHREAD_CONFIG_PARENT_SEARCH_ENABLE
void Mle::HandleParentSearchTimer(Timer &aTimer)
{
aTimer.Get<Mle>().HandleParentSearchTimer();
}
void Mle::HandleParentSearchTimer(void)
{
int8_t parentRss;
LogInfo("PeriodicParentSearch: %s interval passed", mParentSearchIsInBackoff ? "Backoff" : "Check");
if (mParentSearchBackoffWasCanceled)
{
// Backoff can be canceled if the device switches to a new parent.
// from `UpdateParentSearchState()`. We want to limit this to happen
// only once within a backoff interval.
if (TimerMilli::GetNow() - mParentSearchBackoffCancelTime >= kParentSearchBackoffInterval)
{
mParentSearchBackoffWasCanceled = false;
LogInfo("PeriodicParentSearch: Backoff cancellation is allowed on parent switch");
}
}
mParentSearchIsInBackoff = false;
VerifyOrExit(IsChild());
parentRss = GetParent().GetLinkInfo().GetAverageRss();
LogInfo("PeriodicParentSearch: Parent RSS %d", parentRss);
VerifyOrExit(parentRss != OT_RADIO_RSSI_INVALID);
if (parentRss < kParentSearchRssThreadhold)
{
LogInfo("PeriodicParentSearch: Parent RSS less than %d, searching for new parents", kParentSearchRssThreadhold);
mParentSearchIsInBackoff = true;
Attach(kBetterParent);
}
exit:
StartParentSearchTimer();
}
void Mle::StartParentSearchTimer(void)
{
uint32_t interval;
interval = Random::NonCrypto::GetUint32InRange(0, kParentSearchJitterInterval);
if (mParentSearchIsInBackoff)
{
interval += kParentSearchBackoffInterval;
}
else
{
interval += kParentSearchCheckInterval;
}
mParentSearchTimer.Start(interval);
LogInfo("PeriodicParentSearch: (Re)starting timer for %s interval", mParentSearchIsInBackoff ? "backoff" : "check");
}
void Mle::UpdateParentSearchState(void)
{
#if OPENTHREAD_CONFIG_MLE_INFORM_PREVIOUS_PARENT_ON_REATTACH
// If we are in middle of backoff and backoff was not canceled
// recently and we recently detached from a previous parent,
// then we check if the new parent is different from the previous
// one, and if so, we cancel the backoff mode and also remember
// the backoff cancel time. This way the canceling of backoff
// is allowed only once within a backoff window.
//
// The reason behind the canceling of the backoff is to handle
// the scenario where a previous parent is not available for a
// short duration (e.g., it is going through a software update)
// and the child switches to a less desirable parent. With this
// model the child will check for other parents sooner and have
// the chance to switch back to the original (and possibly
// preferred) parent more quickly.
if (mParentSearchIsInBackoff && !mParentSearchBackoffWasCanceled && mParentSearchRecentlyDetached)
{
if ((mPreviousParentRloc != Mac::kShortAddrInvalid) && (mPreviousParentRloc != mParent.GetRloc16()))
{
mParentSearchIsInBackoff = false;
mParentSearchBackoffWasCanceled = true;
mParentSearchBackoffCancelTime = TimerMilli::GetNow();
LogInfo("PeriodicParentSearch: Canceling backoff on switching to a new parent");
}
}
#endif // OPENTHREAD_CONFIG_MLE_INFORM_PREVIOUS_PARENT_ON_REATTACH
mParentSearchRecentlyDetached = false;
if (!mParentSearchIsInBackoff)
{
StartParentSearchTimer();
}
}
#endif // OPENTHREAD_CONFIG_PARENT_SEARCH_ENABLE
#if OT_SHOULD_LOG_AT(OT_LOG_LEVEL_INFO)
void Mle::Log(MessageAction aAction, MessageType aType, const Ip6::Address &aAddress)
{
Log(aAction, aType, aAddress, Mac::kShortAddrInvalid);
}
void Mle::Log(MessageAction aAction, MessageType aType, const Ip6::Address &aAddress, uint16_t aRloc)
{
enum : uint8_t
{
kRlocStringSize = 17,
};
String<kRlocStringSize> rlocString;
if (aRloc != Mac::kShortAddrInvalid)
{
rlocString.Append(",0x%04x", aRloc);
}
LogInfo("%s %s%s (%s%s)", MessageActionToString(aAction), MessageTypeToString(aType),
MessageTypeActionToSuffixString(aType, aAction), aAddress.ToString().AsCString(), rlocString.AsCString());
}
#endif
#if OT_SHOULD_LOG_AT(OT_LOG_LEVEL_WARN)
void Mle::LogProcessError(MessageType aType, Error aError)
{
LogError(kMessageReceive, aType, aError);
}
void Mle::LogSendError(MessageType aType, Error aError)
{
LogError(kMessageSend, aType, aError);
}
void Mle::LogError(MessageAction aAction, MessageType aType, Error aError)
{
if (aError != kErrorNone)
{
if (aAction == kMessageReceive && (aError == kErrorDrop || aError == kErrorNoRoute))
{
LogInfo("Failed to %s %s%s: %s", "process", MessageTypeToString(aType),
MessageTypeActionToSuffixString(aType, aAction), ErrorToString(aError));
}
else
{
LogWarn("Failed to %s %s%s: %s", aAction == kMessageSend ? "send" : "process", MessageTypeToString(aType),
MessageTypeActionToSuffixString(aType, aAction), ErrorToString(aError));
}
}
}
const char *Mle::MessageActionToString(MessageAction aAction)
{
static const char *const kMessageActionStrings[] = {
"Send", // (0) kMessageSend
"Receive", // (1) kMessageReceive
"Delay", // (2) kMessageDelay
"Remove Delayed", // (3) kMessageRemoveDelayed
};
static_assert(kMessageSend == 0, "kMessageSend value is incorrect");
static_assert(kMessageReceive == 1, "kMessageReceive value is incorrect");
static_assert(kMessageDelay == 2, "kMessageDelay value is incorrect");
static_assert(kMessageRemoveDelayed == 3, "kMessageRemoveDelayed value is incorrect");
return kMessageActionStrings[aAction];
}
const char *Mle::MessageTypeToString(MessageType aType)
{
static const char *const kMessageTypeStrings[] = {
"Advertisement", // (0) kTypeAdvertisement
"Announce", // (1) kTypeAnnounce
"Child ID Request", // (2) kTypeChildIdRequest
"Child ID Request", // (3) kTypeChildIdRequestShort
"Child ID Response", // (4) kTypeChildIdResponse
"Child Update Request", // (5) kTypeChildUpdateRequestOfParent
"Child Update Response", // (6) kTypeChildUpdateResponseOfParent
"Data Request", // (7) kTypeDataRequest
"Data Response", // (8) kTypeDataResponse
"Discovery Request", // (9) kTypeDiscoveryRequest
"Discovery Response", // (10) kTypeDiscoveryResponse
"delayed message", // (11) kTypeGenericDelayed
"UDP", // (12) kTypeGenericUdp
"Parent Request", // (13) kTypeParentRequestToRouters
"Parent Request", // (14) kTypeParentRequestToRoutersReeds
"Parent Response", // (15) kTypeParentResponse
#if OPENTHREAD_FTD
"Address Release", // (16) kTypeAddressRelease
"Address Release Reply", // (17) kTypeAddressReleaseReply
"Address Reply", // (18) kTypeAddressReply
"Address Solicit", // (19) kTypeAddressSolicit
"Child Update Request", // (20) kTypeChildUpdateRequestOfChild
"Child Update Response", // (21) kTypeChildUpdateResponseOfChild
"Child Update Response", // (22) kTypeChildUpdateResponseOfUnknownChild
"Link Accept", // (23) kTypeLinkAccept
"Link Accept and Request", // (24) kTypeLinkAcceptAndRequest
"Link Reject", // (25) kTypeLinkReject
"Link Request", // (26) kTypeLinkRequest
"Parent Request", // (27) kTypeParentRequest
#if OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
"Time Sync", // (28) kTypeTimeSync
#endif
#endif
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_INITIATOR_ENABLE || OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
"Link Metrics Management Request", // (29) kTypeLinkMetricsManagementRequest
"Link Metrics Management Response", // (30) kTypeLinkMetricsManagementResponse
"Link Probe", // (31) kTypeLinkProbe
#endif
};
static_assert(kTypeAdvertisement == 0, "kTypeAdvertisement value is incorrect");
static_assert(kTypeAnnounce == 1, "kTypeAnnounce value is incorrect");
static_assert(kTypeChildIdRequest == 2, "kTypeChildIdRequest value is incorrect");
static_assert(kTypeChildIdRequestShort == 3, "kTypeChildIdRequestShort value is incorrect");
static_assert(kTypeChildIdResponse == 4, "kTypeChildIdResponse value is incorrect");
static_assert(kTypeChildUpdateRequestOfParent == 5, "kTypeChildUpdateRequestOfParent value is incorrect");
static_assert(kTypeChildUpdateResponseOfParent == 6, "kTypeChildUpdateResponseOfParent value is incorrect");
static_assert(kTypeDataRequest == 7, "kTypeDataRequest value is incorrect");
static_assert(kTypeDataResponse == 8, "kTypeDataResponse value is incorrect");
static_assert(kTypeDiscoveryRequest == 9, "kTypeDiscoveryRequest value is incorrect");
static_assert(kTypeDiscoveryResponse == 10, "kTypeDiscoveryResponse value is incorrect");
static_assert(kTypeGenericDelayed == 11, "kTypeGenericDelayed value is incorrect");
static_assert(kTypeGenericUdp == 12, "kTypeGenericUdp value is incorrect");
static_assert(kTypeParentRequestToRouters == 13, "kTypeParentRequestToRouters value is incorrect");
static_assert(kTypeParentRequestToRoutersReeds == 14, "kTypeParentRequestToRoutersReeds value is incorrect");
static_assert(kTypeParentResponse == 15, "kTypeParentResponse value is incorrect");
#if OPENTHREAD_FTD
static_assert(kTypeAddressRelease == 16, "kTypeAddressRelease value is incorrect");
static_assert(kTypeAddressReleaseReply == 17, "kTypeAddressReleaseReply value is incorrect");
static_assert(kTypeAddressReply == 18, "kTypeAddressReply value is incorrect");
static_assert(kTypeAddressSolicit == 19, "kTypeAddressSolicit value is incorrect");
static_assert(kTypeChildUpdateRequestOfChild == 20, "kTypeChildUpdateRequestOfChild value is incorrect");
static_assert(kTypeChildUpdateResponseOfChild == 21, "kTypeChildUpdateResponseOfChild value is incorrect");
static_assert(kTypeChildUpdateResponseOfUnknownChild == 22, "kTypeChildUpdateResponseOfUnknownChild is incorrect");
static_assert(kTypeLinkAccept == 23, "kTypeLinkAccept value is incorrect");
static_assert(kTypeLinkAcceptAndRequest == 24, "kTypeLinkAcceptAndRequest value is incorrect");
static_assert(kTypeLinkReject == 25, "kTypeLinkReject value is incorrect");
static_assert(kTypeLinkRequest == 26, "kTypeLinkRequest value is incorrect");
static_assert(kTypeParentRequest == 27, "kTypeParentRequest value is incorrect");
#if OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
static_assert(kTypeTimeSync == 28, "kTypeTimeSync value is incorrect");
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_INITIATOR_ENABLE || OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
static_assert(kTypeLinkMetricsManagementRequest == 29, "kTypeLinkMetricsManagementRequest value is incorrect)");
static_assert(kTypeLinkMetricsManagementResponse == 30, "kTypeLinkMetricsManagementResponse value is incorrect)");
static_assert(kTypeLinkProbe == 31, "kTypeLinkProbe value is incorrect)");
#endif
#else // OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_INITIATOR_ENABLE || OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
static_assert(kTypeLinkMetricsManagementRequest == 28, "kTypeLinkMetricsManagementRequest value is incorrect)");
static_assert(kTypeLinkMetricsManagementResponse == 29, "kTypeLinkMetricsManagementResponse value is incorrect)");
static_assert(kTypeLinkProbe == 30, "kTypeLinkProbe value is incorrect)");
#endif
#endif // OPENTHREAD_CONFIG_TIME_SYNC_ENABLE
#else // OPENTHREAD_FTD
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_INITIATOR_ENABLE || OPENTHREAD_CONFIG_MLE_LINK_METRICS_SUBJECT_ENABLE
static_assert(kTypeLinkMetricsManagementRequest == 16, "kTypeLinkMetricsManagementRequest value is incorrect)");
static_assert(kTypeLinkMetricsManagementResponse == 17, "kTypeLinkMetricsManagementResponse value is incorrect)");
static_assert(kTypeLinkProbe == 18, "kTypeLinkProbe value is incorrect)");
#endif
#endif // OPENTHREAD_FTD
return kMessageTypeStrings[aType];
}
const char *Mle::MessageTypeActionToSuffixString(MessageType aType, MessageAction aAction)
{
const char *str = "";
switch (aType)
{
case kTypeChildIdRequestShort:
str = " - short";
break;
case kTypeChildUpdateRequestOfParent:
case kTypeChildUpdateResponseOfParent:
str = (aAction == kMessageReceive) ? " from parent" : " to parent";
break;
case kTypeParentRequestToRouters:
str = " to routers";
break;
case kTypeParentRequestToRoutersReeds:
str = " to routers and REEDs";
break;
#if OPENTHREAD_FTD
case kTypeChildUpdateRequestOfChild:
case kTypeChildUpdateResponseOfChild:
str = (aAction == kMessageReceive) ? " from child" : " to child";
break;
case kTypeChildUpdateResponseOfUnknownChild:
str = (aAction == kMessageReceive) ? " from unknown child" : " to child";
break;
#endif // OPENTHREAD_FTD
default:
break;
}
return str;
}
#endif // #if OT_SHOULD_LOG_AT( OT_LOG_LEVEL_WARN)
const char *Mle::RoleToString(DeviceRole aRole)
{
static const char *const kRoleStrings[] = {
"disabled", // (0) kRoleDisabled
"detached", // (1) kRoleDetached
"child", // (2) kRoleChild
"router", // (3) kRoleRouter
"leader", // (4) kRoleLeader
};
static_assert(kRoleDisabled == 0, "kRoleDisabled value is incorrect");
static_assert(kRoleDetached == 1, "kRoleDetached value is incorrect");
static_assert(kRoleChild == 2, "kRoleChild value is incorrect");
static_assert(kRoleRouter == 3, "kRoleRouter value is incorrect");
static_assert(kRoleLeader == 4, "kRoleLeader value is incorrect");
return (aRole < GetArrayLength(kRoleStrings)) ? kRoleStrings[aRole] : "invalid";
}
// LCOV_EXCL_START
#if OT_SHOULD_LOG_AT(OT_LOG_LEVEL_NOTE)
const char *Mle::AttachModeToString(AttachMode aMode)
{
static const char *const kAttachModeStrings[] = {
"AnyPartition", // (0) kAnyPartition
"SamePartition", // (1) kSamePartition
"SamePartitionRetry", // (2) kSamePartitionRetry
"BetterPartition", // (3) kBetterPartition
"DowngradeToReed", // (4) kDowngradeToReed
"BetterParent", // (5) kBetterParent
};
static_assert(kAnyPartition == 0, "kAnyPartition value is incorrect");
static_assert(kSamePartition == 1, "kSamePartition value is incorrect");
static_assert(kSamePartitionRetry == 2, "kSamePartitionRetry value is incorrect");
static_assert(kBetterPartition == 3, "kBetterPartition value is incorrect");
static_assert(kDowngradeToReed == 4, "kDowngradeToReed value is incorrect");
static_assert(kBetterParent == 5, "kBetterParent value is incorrect");
return kAttachModeStrings[aMode];
}
const char *Mle::AttachStateToString(AttachState aState)
{
static const char *const kAttachStateStrings[] = {
"Idle", // (0) kAttachStateIdle
"ProcessAnnounce", // (1) kAttachStateProcessAnnounce
"Start", // (2) kAttachStateStart
"ParentReqRouters", // (3) kAttachStateParentRequestRouter
"ParentReqReeds", // (4) kAttachStateParentRequestReed
"Announce", // (5) kAttachStateAnnounce
"ChildIdReq", // (6) kAttachStateChildIdRequest
};
static_assert(kAttachStateIdle == 0, "kAttachStateIdle value is incorrect");
static_assert(kAttachStateProcessAnnounce == 1, "kAttachStateProcessAnnounce value is incorrect");
static_assert(kAttachStateStart == 2, "kAttachStateStart value is incorrect");
static_assert(kAttachStateParentRequestRouter == 3, "kAttachStateParentRequestRouter value is incorrect");
static_assert(kAttachStateParentRequestReed == 4, "kAttachStateParentRequestReed value is incorrect");
static_assert(kAttachStateAnnounce == 5, "kAttachStateAnnounce value is incorrect");
static_assert(kAttachStateChildIdRequest == 6, "kAttachStateChildIdRequest value is incorrect");
return kAttachStateStrings[aState];
}
const char *Mle::ReattachStateToString(ReattachState aState)
{
static const char *const kReattachStateStrings[] = {
"", // (0) kReattachStop
"reattaching", // (1) kReattachStart
"reattaching with Active Dataset", // (2) kReattachActive
"reattaching with Pending Dataset", // (3) kReattachPending
};
static_assert(kReattachStop == 0, "kReattachStop value is incorrect");
static_assert(kReattachStart == 1, "kReattachStart value is incorrect");
static_assert(kReattachActive == 2, "kReattachActive value is incorrect");
static_assert(kReattachPending == 3, "kReattachPending value is incorrect");
return kReattachStateStrings[aState];
}
#endif // OT_SHOULD_LOG_AT( OT_LOG_LEVEL_NOTE)
// LCOV_EXCL_STOP
#if OPENTHREAD_CONFIG_MLE_LINK_METRICS_INITIATOR_ENABLE
Error Mle::SendLinkMetricsManagementRequest(const Ip6::Address &aDestination, const uint8_t *aSubTlvs, uint8_t aLength)
{
Error error = kErrorNone;
Message *message;
Tlv tlv;
VerifyOrExit((message = NewMleMessage(kCommandLinkMetricsManagementRequest)) != nullptr, error = kErrorNoBufs);
// Link Metrics Management TLV
tlv.SetType(Tlv::kLinkMetricsManagement);
tlv.SetLength(aLength);
SuccessOrExit(error = message->AppendBytes(&tlv, sizeof(tlv)));
SuccessOrExit(error = message->AppendBytes(aSubTlvs, aLength));
SuccessOrExit(error = SendMessage(*message, aDestination));
exit:
FreeMessageOnError(message, error);
return error;
}
#endif
void Mle::RegisterParentResponseStatsCallback(otThreadParentResponseCallback aCallback, void *aContext)
{
mParentResponseCb = aCallback;
mParentResponseCbContext = aContext;
}
#if OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE
uint64_t Mle::CalcParentCslMetric(uint8_t aCslClockAccuracy, uint8_t aCslUncertainty)
{
/*
* This function calculates the overall time that device will operate on battery
* by summming sequence of "ON quants" over a period of time.
*/
const uint64_t usInSecond = 1000000;
uint64_t cslPeriodUs = kMinCslPeriod * kUsPerTenSymbols;
uint64_t cslTimeoutUs = GetCslTimeout() * usInSecond;
uint64_t k = cslTimeoutUs / cslPeriodUs;
return k * (k + 1) * cslPeriodUs / usInSecond * aCslClockAccuracy + aCslUncertainty * k * kUsPerUncertUnit;
}
#endif
void Mle::Challenge::GenerateRandom(void)
{
mLength = kMaxChallengeSize;
IgnoreError(Random::Crypto::FillBuffer(mBuffer, mLength));
}
bool Mle::Challenge::Matches(const uint8_t *aBuffer, uint8_t aLength) const
{
return (mLength == aLength) && (memcmp(mBuffer, aBuffer, aLength) == 0);
}
void Mle::DelayedResponseMetadata::ReadFrom(const Message &aMessage)
{
uint16_t length = aMessage.GetLength();
OT_ASSERT(length >= sizeof(*this));
IgnoreError(aMessage.Read(length - sizeof(*this), *this));
}
void Mle::DelayedResponseMetadata::RemoveFrom(Message &aMessage) const
{
SuccessOrAssert(aMessage.SetLength(aMessage.GetLength() - sizeof(*this)));
}
} // namespace Mle
} // namespace ot