blob: be980148ef016038c334717d33b207dbff101adf [file] [log] [blame]
#!/usr/bin/env python3
#
# Copyright (c) 2020, The OpenThread Authors.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
import unittest
import copy
import config
import thread_cert
from pktverify.consts import WIRESHARK_OVERRIDE_PREFS, MLE_CHILD_UPDATE_REQUEST, MLE_DATA_RESPONSE, MLE_CHILD_ID_RESPONSE, SVR_DATA_URI, ACTIVE_TIMESTAMP_TLV, RESPONSE_TLV, LINK_LAYER_FRAME_COUNTER_TLV, VERSION_TLV, TLV_REQUEST_TLV, ADDRESS16_TLV, NETWORK_DATA_TLV, ROUTE64_TLV, CHALLENGE_TLV, SOURCE_ADDRESS_TLV, LEADER_DATA_TLV, ADDRESS_REGISTRATION_TLV, NWD_BORDER_ROUTER_TLV, NWD_6LOWPAN_ID_TLV
from pktverify.packet_verifier import PacketVerifier
from pktverify.bytes import Bytes
from pktverify.addrs import Ipv6Addr
from pktverify.null_field import nullField
from pktverify.utils import is_sublist
LEADER = 1
ROUTER_1 = 2
ROUTER_2 = 3
MED = 4
SED = 5
MTDS = [MED, SED]
PREFIX_1 = '2001:0db8:0001::/64'
PREFIX_2 = '2001:0db8:0002::/64'
# Test Purpose and Description:
# -----------------------------
# The purpose of this test case is to verify that network data is properly updated
# when a server from the network leaves and rejoins.
# Router_1 is configured as Border Router for prefix 2001:db8:1::/64.
# Router_2 is configured as Border Router for prefix 2001:db8:1::/64.
# MED is configured to require complete network data.
# SED is configured to request only stable network data.
#
# Test Topology:
# -------------
# SED
# |
# Router_1 - Leader(DUT) - MED
# |
# Router_2
#
# DUT Types:
# ----------
# Leader
class Cert_7_1_7_BorderRouterAsLeader(thread_cert.TestCase):
USE_MESSAGE_FACTORY = False
SUPPORT_NCP = False
TOPOLOGY = {
LEADER: {
'name': 'LEADER',
'mode': 'rdn',
'allowlist': [ROUTER_1, ROUTER_2, MED, SED]
},
ROUTER_1: {
'name': 'ROUTER_1',
'mode': 'rdn',
'allowlist': [LEADER]
},
ROUTER_2: {
'name': 'ROUTER_2',
'mode': 'rdn',
'allowlist': [LEADER]
},
MED: {
'name': 'MED',
'is_mtd': True,
'mode': 'rn',
'timeout': config.DEFAULT_CHILD_TIMEOUT,
'allowlist': [LEADER]
},
SED: {
'name': 'SED',
'is_mtd': True,
'mode': '-',
'timeout': config.DEFAULT_CHILD_TIMEOUT,
'allowlist': [LEADER]
},
}
# override wireshark preferences with case needed parameters
CASE_WIRESHARK_PREFS = copy.deepcopy(WIRESHARK_OVERRIDE_PREFS)
CASE_WIRESHARK_PREFS['6lowpan.context1'] = PREFIX_1
CASE_WIRESHARK_PREFS['6lowpan.context2'] = PREFIX_2
def test(self):
self.nodes[LEADER].start()
self.simulator.go(5)
self.assertEqual(self.nodes[LEADER].get_state(), 'leader')
for i in (2, 3):
self.nodes[i].start()
self.simulator.go(5)
self.assertEqual(self.nodes[i].get_state(), 'router')
self.nodes[MED].start()
self.simulator.go(5)
self.assertEqual(self.nodes[MED].get_state(), 'child')
self.nodes[SED].start()
self.simulator.go(5)
self.assertEqual(self.nodes[SED].get_state(), 'child')
self.collect_rlocs()
self.nodes[ROUTER_1].add_prefix(PREFIX_1, 'paosr')
self.nodes[ROUTER_1].register_netdata()
self.simulator.go(5)
self.nodes[ROUTER_2].add_prefix(PREFIX_1, 'paro')
self.nodes[ROUTER_2].register_netdata()
self.simulator.go(5)
self.nodes[ROUTER_2].set_preferred_partition_id(1)
self.nodes[ROUTER_2].set_network_id_timeout(50)
self.nodes[ROUTER_2].remove_allowlist(self.nodes[LEADER].get_addr64())
self.nodes[LEADER].remove_allowlist(self.nodes[ROUTER_2].get_addr64())
# Wait for NETWORK_ID_TIMEOUT taking effect
# Router_2 creates a new partition
self.simulator.go(60)
self.assertEqual(self.nodes[ROUTER_2].get_state(), 'leader')
self.nodes[ROUTER_2].remove_domain_prefix(PREFIX_1)
self.nodes[ROUTER_2].add_prefix(PREFIX_2, 'paros')
self.nodes[ROUTER_2].register_netdata()
# Router_2 reattaches to Leader
self.nodes[ROUTER_2].add_allowlist(self.nodes[LEADER].get_addr64())
self.nodes[LEADER].add_allowlist(self.nodes[ROUTER_2].get_addr64())
# Wait for Router_2 reattachment and network data propagation
# ADVERTISEMENT_I_MAX + DEFAULT_CHILD_TIMEOUT + ATTACH_DELAY + Extra
self.simulator.go(60)
self.assertEqual(self.nodes[ROUTER_2].get_state(), 'router')
self.collect_ipaddrs()
self.collect_rloc16s()
# ping Leader's PREFIX_1 and PREFIX_2 addrs
dut_addrs = []
dut_addrs.append(self.nodes[LEADER].get_addr(PREFIX_1))
dut_addrs.append(self.nodes[LEADER].get_addr(PREFIX_2))
for addr in dut_addrs:
self.assertTrue(self.nodes[ROUTER_1].ping(addr))
self.simulator.go(1)
self.assertTrue(self.nodes[SED].ping(addr))
self.simulator.go(1)
self.nodes[ROUTER_2].remove_domain_prefix(PREFIX_2)
self.nodes[ROUTER_2].register_netdata()
self.simulator.go(5)
def verify(self, pv):
pkts = pv.pkts
pv.summary.show()
LEADER = pv.vars['LEADER']
LEADER_RLOC = pv.vars['LEADER_RLOC']
LEADER_RLOC16 = pv.vars['LEADER_RLOC16']
ROUTER_1 = pv.vars['ROUTER_1']
ROUTER_1_RLOC16 = pv.vars['ROUTER_1_RLOC16']
ROUTER_1_RLOC = pv.vars['ROUTER_1_RLOC']
ROUTER_2 = pv.vars['ROUTER_2']
ROUTER_2_RLOC16 = pv.vars['ROUTER_2_RLOC16']
ROUTER_2_RLOC = pv.vars['ROUTER_2_RLOC']
SED = pv.vars['SED']
MED = pv.vars['MED']
GUA = [{}, {}]
PREFIXES = [Bytes(PREFIX_1[:-5]), Bytes(PREFIX_2[:-5])]
for i in (0, 1):
for node in ('LEADER', 'ROUTER_1', 'SED'):
for addr in pv.vars['%s_IPADDRS' % node]:
if addr.startswith(PREFIXES[i]):
GUA[i][node] = addr
# Step 1: Ensure topology is formed correctly
pv.verify_attached('ROUTER_1', 'LEADER')
pv.verify_attached('ROUTER_2', 'LEADER')
pv.verify_attached('MED', 'LEADER', 'MTD')
pv.verify_attached('SED', 'LEADER', 'MTD')
_pkt = pkts.last()
# Step 2,3: Router_1 and Router_2 MUST send a CoAP Server Data
# Notification frame to the Leader including the server’s
# information(Prefix, Border Router):
# CoAP Request URI
# coap://[<Leader address>]:MM/a/sd
# CoAP Payload
# Thread Network Data TLV
# Step 4: Leader sends a CoAP ACK frame to each of Router_1 and
# Router_2
with pkts.save_index():
for node in ('ROUTER_1', 'ROUTER_2'):
_dn_pkt = pkts.filter_wpan_src64(pv.vars['%s' %node]).\
filter_wpan_dst16(LEADER_RLOC16).\
filter_coap_request(SVR_DATA_URI).\
filter(lambda p:
[Ipv6Addr(PREFIX_1[:-3])] ==
p.thread_nwd.tlv.prefix and\
[pv.vars['%s_RLOC16' %node]] ==
p.thread_nwd.tlv.border_router_16
).\
must_next()
pkts.filter_wpan_src64(LEADER).\
filter_ipv6_dst(pv.vars['%s_RLOC' %node]).\
filter_coap_ack(SVR_DATA_URI).\
filter(lambda p: p.coap.mid == _dn_pkt.coap.mid).\
must_next()
# Step 5: Leader MUST multicast MLE Data Response with the new
# information collected from Router_1 and Router_2,
# including the following TLVs:,
# - Source Address TLV
# - Leader Data TLV
# - Data Version field <incremented>
# - Stable Data Version field <incremented>
# - Network Data TLV
# - Stable Flag set
# - At least one Prefix TLV (Prefix 1)
# - Two Border Router sub-TLVs
# Border Router1 TLV: Stable Flag set
# Border Router2 TLV: Stable Flag not set
# - 6LoWPAN ID sub-TLV
# Stable Flag set
_dr_pkt = pkts.filter_wpan_src64(LEADER).\
filter_LLANMA().\
filter_mle_cmd(MLE_DATA_RESPONSE).\
filter(lambda p: {
NETWORK_DATA_TLV,
SOURCE_ADDRESS_TLV,
LEADER_DATA_TLV
} <= set(p.mle.tlv.type) and\
[Ipv6Addr(PREFIX_1[:-3])] ==
p.thread_nwd.tlv.prefix and\
p.mle.tlv.leader_data.data_version ==
(_pkt.mle.tlv.leader_data.data_version + 1) % 256 and\
p.mle.tlv.leader_data.stable_data_version ==
(_pkt.mle.tlv.leader_data.stable_data_version + 1) % 256
).\
must_next()
with pkts.save_index():
_dr_pkt1 = pkts.filter_wpan_src64(LEADER).\
filter_LLANMA().\
filter_mle_cmd(MLE_DATA_RESPONSE).\
filter(lambda p: {
NETWORK_DATA_TLV,
SOURCE_ADDRESS_TLV,
LEADER_DATA_TLV
} <= set(p.mle.tlv.type) and\
{
NWD_BORDER_ROUTER_TLV,
NWD_6LOWPAN_ID_TLV
} <= set(p.thread_nwd.tlv.type) and\
p.mle.tlv.leader_data.data_version ==
(_dr_pkt.mle.tlv.leader_data.data_version + 1) % 256 and\
p.mle.tlv.leader_data.stable_data_version ==
_dr_pkt.mle.tlv.leader_data.stable_data_version and\
is_sublist([ROUTER_1_RLOC16, ROUTER_2_RLOC16],
p.thread_nwd.tlv.border_router_16) and\
is_sublist([0, 1, 1, 1, 0], p.thread_nwd.tlv.stable) and\
is_sublist([1], getattr(p.thread_nwd.tlv, '6co').flag.c) and\
is_sublist([Ipv6Addr(PREFIX_1[:-3])], p.thread_nwd.tlv.prefix)
).\
must_next()
# Step 6: Leader MUST send a MLE Child Update Request or MLE Data
# Response to SED, including the following TLVs:
# - Network Data TLV
# At least one Prefix TLV (Prefix 1) including:
# - Stable Flag set
# - Border Router sub-TLV(corresponding to Router_1)
# - P_border_router_16<0xFFFE>
# - Stable Flag set
# - 6LoWPAN ID sub-TLV
# - Stable Flag set
# - Source Address TLV
# - Leader Data TLV
# - Active Timestamp TLV
pkts.filter_wpan_src64(LEADER).\
filter_wpan_dst64(SED).\
filter_mle_cmd2(MLE_CHILD_UPDATE_REQUEST, MLE_DATA_RESPONSE).\
filter(lambda p: {
NETWORK_DATA_TLV,
SOURCE_ADDRESS_TLV,
LEADER_DATA_TLV,
ACTIVE_TIMESTAMP_TLV
} == set(p.mle.tlv.type) and\
is_sublist([Ipv6Addr(PREFIX_1[:-3])], p.thread_nwd.tlv.prefix) and\
is_sublist([1, 1, 1], p.thread_nwd.tlv.stable) and\
is_sublist([1], getattr(p.thread_nwd.tlv, '6co').flag.c) and\
is_sublist([0xFFFE], p.thread_nwd.tlv.border_router_16)
).\
must_next()
# Step 10: Router_2 automatically reattaches to the Leader and sends
# a CoAP Server Data Notification message with the server’s
# information (Prefix, Border Router) to the Leader:
# CoAP Request URI
# coap://[<leader address>]:MM/a/sd
# CoAP Payload
# Thread Network Data TLV
# Step 11: Leader sends a CoAP ACK frame to each of Routers
pv.verify_attached('ROUTER_2', 'LEADER')
with pkts.save_index():
_dn_pkt = pkts.filter_wpan_src64(ROUTER_2).\
filter_wpan_dst16(LEADER_RLOC16).\
filter_coap_request(SVR_DATA_URI).\
filter(lambda p:
[Ipv6Addr(PREFIX_2[:-3])] ==
p.thread_nwd.tlv.prefix and\
[ROUTER_2_RLOC16] ==
p.thread_nwd.tlv.border_router_16
).\
must_next()
pkts.filter_wpan_src64(LEADER).\
filter_ipv6_dst(ROUTER_2_RLOC).\
filter_coap_ack(SVR_DATA_URI).\
filter(lambda p: p.coap.mid == _dn_pkt.coap.mid).\
must_next()
# Step 12: Leader MUST multicast MLE Data Response with the new
# information collected from Router_2,
# including the following TLVs:,
# - Source Address TLV
# - Leader Data TLV
# - Data Version field <incremented>
# - Stable Data Version field <incremented>
# - Network Data TLV
# - Stable Flag set
# - At least two Prefix TLVs (Prefix 1 and Prefix 2)
# - Prefix 1 TLV
# - Stable Flag set
# - Only one Border Router sub-TLV
# corresponding to Router_1
# - 6LoWPAN ID sub-TLV
# - Stable Flag set
# - Prefix 2 TLV
# - Stable Flag set
# - Only one Border Router sub-TLV
# corresponding to Router_2
# - 6LoWPAN ID sub-TLV
_dr_pkt2 = pkts.filter_wpan_src64(LEADER).\
filter_LLANMA().\
filter_mle_cmd(MLE_DATA_RESPONSE).\
filter(lambda p: {
NETWORK_DATA_TLV,
SOURCE_ADDRESS_TLV,
LEADER_DATA_TLV
} <= set(p.mle.tlv.type) and\
{
NWD_BORDER_ROUTER_TLV,
NWD_6LOWPAN_ID_TLV
} <= set(p.thread_nwd.tlv.type) and\
is_sublist([ROUTER_1_RLOC16, ROUTER_2_RLOC16],
p.thread_nwd.tlv.border_router_16) and\
is_sublist([0, 1, 1, 1, 1, 1, 1],
p.thread_nwd.tlv.stable) and\
is_sublist([1, 1], getattr(p.thread_nwd.tlv, '6co').flag.c) and\
is_sublist([Ipv6Addr(PREFIX_1[:-3]), Ipv6Addr(PREFIX_2[:-3])],
p.thread_nwd.tlv.prefix) and\
p.mle.tlv.leader_data.data_version ==
(_dr_pkt1.mle.tlv.leader_data.data_version + 1) % 256 and\
p.mle.tlv.leader_data.stable_data_version ==
(_dr_pkt1.mle.tlv.leader_data.stable_data_version + 1) % 256
).\
must_next()
# Step 13: Leader MUST send a MLE Child Update Request or MLE Data
# Response to SED, containing the stable Network Data
# including the following TLVs:
# - Source Address TLV
# - Leader Data TLV
# - Network Data TLV
# - At least two Prefix TLVs (Prefix 1 and Prefix 2)
# - Prefix 1 TLV
# - Stable Flag set
# - Border Router sub-TLV
# corresponding to Router_1
# - P_border_router_16 <0xFFFE>
# - Stable flag set
# - 6LoWPAN ID sub-TLV
# - Stable flag set
# - Prefix 2 TLV
# - Stable Flag set
# - Border Router sub-TLV
# corresponding to Router_2
# - P_border_router_16 <0xFFFE>
# - Stable flag set
# - 6LoWPAN ID sub-TLV
# - Stable flag set
# - Active Timestamp TLV
with pkts.save_index():
pkts.filter_wpan_src64(LEADER).\
filter_wpan_dst64(SED).\
filter_mle_cmd2(MLE_CHILD_UPDATE_REQUEST, MLE_DATA_RESPONSE).\
filter(lambda p: {
NETWORK_DATA_TLV,
SOURCE_ADDRESS_TLV,
LEADER_DATA_TLV,
ACTIVE_TIMESTAMP_TLV
} == set(p.mle.tlv.type) and\
is_sublist([1, 1, 1, 1, 1, 1],
p.thread_nwd.tlv.stable) and\
is_sublist([1, 1], getattr(p.thread_nwd.tlv, '6co').flag.c) and\
is_sublist([Ipv6Addr(PREFIX_1[:-3]), Ipv6Addr(PREFIX_2[:-3])],
p.thread_nwd.tlv.prefix) and\
is_sublist([0xFFFE, 0xFFFE], p.thread_nwd.tlv.border_router_16)
).\
must_next()
# Step 14: Verifies connectivity by sending ICMPv6 Echo Requests from
# Router_1 and SED_1 to the Leader Prefix_1 and Prefix_2-based
# address.
# Leader must respond with ICMPv6 Echo Replies
for i in (0, 1):
for node in ('ROUTER_1', 'SED'):
_pkt = pkts.filter_ping_request().\
filter_ipv6_src_dst(GUA[i][node], GUA[i]['LEADER']).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_ipv6_src_dst(GUA[i]['LEADER'], GUA[i][node]).\
must_next()
# Step 15: Router_2 sends a CoAP Server Data Notification message with
# the server’s information (Prefix, Border Router) to the Leader:
# CoAP Request URI
# coap://[<leader address>]:MM/a/sd
# CoAP Payload
# empty payload
# Step 16: Leader sends a CoAP ACK frame to each of Router_1 and
# Router_2
with pkts.save_index():
_dn_pkt = pkts.filter_wpan_src64(ROUTER_2).\
filter_wpan_dst16(LEADER_RLOC16).\
filter_coap_request(SVR_DATA_URI).\
filter(lambda p:
p.thread_nwd.tlv.border_router_16 is nullField
).\
must_next()
pkts.filter_wpan_src64(LEADER).\
filter_ipv6_dst(ROUTER_2_RLOC).\
filter_coap_ack(SVR_DATA_URI).\
filter(lambda p: p.coap.mid == _dn_pkt.coap.mid).\
must_next()
# Step 17: Leader MUST multicast MLE Data Response with the new
# information collected from Router_2,
# including the following TLVs:,
# - Source Address TLV
# - Leader Data TLV
# - Data Version field <incremented>
# - Stable Data Version field <incremented>
# - Network Data TLV
# - Stable Flag set
# - At least two Prefix TLVs (Prefix 1 and Prefix 2)
# - Prefix 1 TLV
# - Stable Flag set
# - Only one Border Router sub-TLV
# corresponding to Router_1
# - 6LoWPAN ID sub-TLV
# - Stable Flag set
# - Prefix 2 TLV
# - Stable Flag set
# - 6LoWPAN ID sub-TLV
# - Stable Flag set
# - compression flag set to 0
_pkt = pkts.filter_wpan_src64(LEADER).\
filter_LLANMA().\
filter_mle_cmd(MLE_DATA_RESPONSE).\
filter(lambda p: {
NETWORK_DATA_TLV,
SOURCE_ADDRESS_TLV,
LEADER_DATA_TLV
} <= set(p.mle.tlv.type) and\
{
NWD_BORDER_ROUTER_TLV,
NWD_6LOWPAN_ID_TLV
} <= set(p.thread_nwd.tlv.type) and\
p.mle.tlv.leader_data.data_version ==
(_dr_pkt2.mle.tlv.leader_data.data_version + 1) % 256 and\
p.mle.tlv.leader_data.stable_data_version ==
(_dr_pkt2.mle.tlv.leader_data.stable_data_version + 1) % 256 and\
is_sublist([Ipv6Addr(PREFIX_1[:-3]), Ipv6Addr(PREFIX_2[:-3])],
p.thread_nwd.tlv.prefix) and\
is_sublist([1,0], getattr(p.thread_nwd.tlv, '6co').flag.c)
).\
must_next()
# Step 18: Leader MUST send a MLE Child Update Request or MLE Data
# Response to SED, containing the stable Network Data
# including the following TLVs:
# - Source Address TLV
# - Leader Data TLV
# - Network Data TLV
# - At least two Prefix TLVs (Prefix 1 and Prefix 2)
# - Prefix 1 TLV
# - Stable Flag set
# - Border Router sub-TLV
# corresponding to Router_1
# - P_border_router_16 <0xFFFE>
# - Stable flag set
# - 6LoWPAN ID sub-TLV
# - Stable flag set
# - Prefix 2 TLV
# - Stable Flag set
# - 6LoWPAN ID sub-TLV
# - Stable flag set
# - compression flag set to 0
# - Active Timestamp TLV
pkts.filter_wpan_src64(LEADER).\
filter_wpan_dst64(SED).\
filter_mle_cmd2(MLE_CHILD_UPDATE_REQUEST, MLE_DATA_RESPONSE).\
filter(lambda p: {
NETWORK_DATA_TLV,
SOURCE_ADDRESS_TLV,
LEADER_DATA_TLV,
ACTIVE_TIMESTAMP_TLV
} == set(p.mle.tlv.type) and\
is_sublist([Ipv6Addr(PREFIX_1[:-3]), Ipv6Addr(PREFIX_2[:-3])],
p.thread_nwd.tlv.prefix) and\
is_sublist([1, 1, 1, 1, 1], p.thread_nwd.tlv.stable) and\
is_sublist([0xFFFE], p.thread_nwd.tlv.border_router_16) and\
is_sublist([1,0], getattr(p.thread_nwd.tlv, '6co').flag.c)
).\
must_next()
if __name__ == '__main__':
unittest.main()