blob: 8c3b1642e680b47f1fc689d130adc6c209bac33f [file] [log] [blame]
#!/usr/bin/env python3
#
# Copyright (c) 2016, The OpenThread Authors.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
import copy
import unittest
import command
import config
import copy
import ipv6
import thread_cert
from pktverify.consts import WIRESHARK_OVERRIDE_PREFS, ADDR_QRY_URI, ADDR_NTF_URI, NL_ML_EID_TLV, NL_RLOC16_TLV, NL_TARGET_EID_TLV
from pktverify.packet_verifier import PacketVerifier
from pktverify.bytes import Bytes
from pktverify.addrs import Ipv6Addr
LEADER = 1
BR = 2
ROUTER1 = 3
DUT_ROUTER2 = 4
MED1 = 5
PREFIX_1 = '2003::/64'
GUA_1_START = '2003'
PREFIX_2 = '2004::/64'
# Test Purpose and Description:
# -----------------------------
# The purpose of this test case is to validate that the DUT is able to generate
# Address Query and Address Notification messages
# The Border Router is configured as a SLAAC server for prefixes 2003:: & 2004::
#
# Test Topology:
# -------------
# BorderRouter - Leader
# / \
# Router_1 - Router_2(DUT)
# |
# MED
#
# DUT Types:
# ----------
# Router
class Cert_5_3_10_AddressQuery(thread_cert.TestCase):
USE_MESSAGE_FACTORY = False
SUPPORT_NCP = False
TOPOLOGY = {
LEADER: {
'name': 'LEADER',
'mode': 'rdn',
'allowlist': [BR, ROUTER1, DUT_ROUTER2]
},
BR: {
'name': 'BR',
'mode': 'rdn',
'allowlist': [LEADER]
},
ROUTER1: {
'name': 'ROUTER_1',
'mode': 'rdn',
'allowlist': [LEADER, DUT_ROUTER2]
},
DUT_ROUTER2: {
'name': 'ROUTER_2',
'mode': 'rdn',
'allowlist': [LEADER, ROUTER1, MED1]
},
MED1: {
'name': 'MED',
'is_mtd': True,
'mode': 'rn',
'allowlist': [DUT_ROUTER2]
},
}
# override wireshark preferences with case needed parameters
CASE_WIRESHARK_PREFS = copy.deepcopy(WIRESHARK_OVERRIDE_PREFS)
CASE_WIRESHARK_PREFS['6lowpan.context1'] = PREFIX_1
CASE_WIRESHARK_PREFS['6lowpan.context2'] = PREFIX_2
def test(self):
# 1 & 2
self.nodes[LEADER].start()
self.simulator.go(5)
self.assertEqual(self.nodes[LEADER].get_state(), 'leader')
self.nodes[BR].start()
self.simulator.go(5)
self.assertEqual(self.nodes[BR].get_state(), 'router')
# Configure two On-Mesh Prefixes on the BR
self.nodes[BR].add_prefix(PREFIX_1, 'paros')
self.nodes[BR].add_prefix(PREFIX_2, 'paros')
self.nodes[BR].register_netdata()
self.nodes[DUT_ROUTER2].start()
self.simulator.go(5)
self.assertEqual(self.nodes[DUT_ROUTER2].get_state(), 'router')
self.nodes[ROUTER1].start()
self.simulator.go(5)
self.assertEqual(self.nodes[ROUTER1].get_state(), 'router')
self.nodes[MED1].start()
self.simulator.go(5)
self.assertEqual(self.nodes[MED1].get_state(), 'child')
self.collect_rlocs()
self.collect_rloc16s()
self.collect_ipaddrs()
# 3 MED1: MED1 sends an ICMPv6 Echo Request to Router1 using GUA
# PREFIX_1 address
router1_addr = self.nodes[ROUTER1].get_addr(PREFIX_1)
self.assertTrue(router1_addr is not None)
self.assertTrue(self.nodes[MED1].ping(router1_addr))
self.simulator.go(1)
# 4 BR: BR sends an ICMPv6 Echo Request to MED1 using GUA PREFIX_1
# address
med1_addr = self.nodes[MED1].get_addr(PREFIX_1)
self.assertTrue(med1_addr is not None)
self.assertTrue(self.nodes[BR].ping(med1_addr))
self.simulator.go(1)
# 5 MED1: MED1 sends an ICMPv6 Echo Request to ROUTER1 using GUA PREFIX_1
# address
self.assertTrue(self.nodes[MED1].ping(router1_addr))
self.simulator.go(1)
# 6 DUT_ROUTER2: Power off ROUTER1 and wait 580 seconds to allow the
# LEADER to expire its Router ID
router1_id = self.nodes[ROUTER1].get_router_id()
self.nodes[ROUTER1].stop()
self.simulator.go(580)
# Send an ICMPv6 Echo Request from MED1 to ROUTER1 GUA PREFIX_1 address
self.assertFalse(self.nodes[MED1].ping(router1_addr))
self.simulator.go(1)
# 7 MED1: Power off MED1 and wait to allow DUT_ROUTER2 to timeout the
# child
self.nodes[MED1].stop()
self.simulator.go(config.MLE_END_DEVICE_TIMEOUT)
# BR sends two ICMPv6 Echo Requests to MED1 GUA PREFIX_1 address
self.assertFalse(self.nodes[BR].ping(med1_addr))
self.assertFalse(self.nodes[BR].ping(med1_addr))
def verify(self, pv):
pkts = pv.pkts
pv.summary.show()
LEADER = pv.vars['LEADER']
ROUTER_1 = pv.vars['ROUTER_1']
ROUTER_2 = pv.vars['ROUTER_2']
ROUTER_2_RLOC = pv.vars['ROUTER_2_RLOC']
ROUTER_2_RLOC16 = pv.vars['ROUTER_2_RLOC16']
BR = pv.vars['BR']
BR_RLOC = pv.vars['BR_RLOC']
MED = pv.vars['MED']
MED_RLOC16 = pv.vars['MED_RLOC16']
MM = pv.vars['MM_PORT']
GUA1 = {}
for node in ('ROUTER_1', 'BR', 'MED'):
for addr in pv.vars['%s_IPADDRS' % node]:
if addr.startswith(Bytes(GUA_1_START)):
GUA1[node] = addr
# Step 2: Build the topology as described
pv.verify_attached('BR', 'LEADER')
for i in (2, 1):
pv.verify_attached('ROUTER_%d' % i, 'LEADER')
pv.verify_attached('MED', 'ROUTER_2', 'MTD')
# Step 3: MED sends an ICMPv6 Echo Request to Router_1 using GUA 2003::
# address
# The DUT MUST generate an Address Query Request on MED’s behalf
# to find each node’s RLOC.
# The Address Query Request MUST be sent to the Realm-Local
# All-Routers address (FF03::2)
# CoAP URI-Path
# - NON POST coap://<FF03::2>
# CoAP Payload
# - Target EID TLV
# The DUT MUST receive and process the incoming Address Query
# Response and forward the ICMPv6 Echo Request packet to Router_1
_pkt = pkts.filter_ping_request().\
filter_wpan_src64(MED).\
filter_ipv6_dst(GUA1['ROUTER_1']).\
must_next()
pkts.filter_wpan_src64(ROUTER_2).\
filter_RLARMA().\
filter_coap_request(ADDR_QRY_URI, port=MM).\
filter(lambda p: p.thread_address.tlv.target_eid == GUA1['ROUTER_1']).\
must_next()
pkts.filter_ping_request(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(ROUTER_2).\
filter_ipv6_dst(GUA1['ROUTER_1']).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(ROUTER_1).\
filter_ipv6_dst(GUA1['MED']).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(ROUTER_2).\
filter_wpan_dst16(MED_RLOC16).\
must_next()
# Step 4: Border Router sends an ICMPv6 Echo Request to MED using GUA 2003::
# addresss
# The DUT MUST respond to the Address Query Request with a properly
# formatted Address Notification Message:
# CoAP URI-Path
# - CON POST coap://[<Address Query Source>]:MM/a/an
# CoAP Payload
# - ML-EID TLV
# - RLOC16 TLV
# - Target EID TLV
# The IPv6 Source address MUST be the RLOC of the originator
# The IPv6 Destination address MUST be the RLOC of the destination
pkts.filter_wpan_src64(BR).\
filter_RLARMA().\
filter_coap_request(ADDR_QRY_URI, port=MM).\
filter(lambda p: p.thread_address.tlv.target_eid == GUA1['MED']).\
must_next()
pkts.filter_ipv6_src_dst(ROUTER_2_RLOC, BR_RLOC).\
filter_coap_request(ADDR_NTF_URI, port=MM).\
filter(lambda p: {
NL_ML_EID_TLV,
NL_RLOC16_TLV,
NL_TARGET_EID_TLV
} <= set(p.coap.tlv.type) and\
p.thread_address.tlv.target_eid == GUA1['MED'] and\
p.thread_address.tlv.rloc16 == ROUTER_2_RLOC16
).\
must_next()
_pkt = pkts.filter_ping_request().\
filter_wpan_src64(BR).\
filter_ipv6_dst(GUA1['MED']).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(MED).\
filter_ipv6_dst(GUA1['BR']).\
must_next()
# Step 5: MED sends an ICMPv6 Echo Request to Router_1 using GUA 2003::
# address
# The DUT MUST not send an Address Query as Router_1 address should
# be cached.
# The DUT MUST forward the ICMPv6 Echo Reply to MED
_pkt = pkts.filter_ping_request().\
filter_wpan_src64(MED).\
filter_ipv6_dst(GUA1['ROUTER_1']).\
must_next()
lstart = pkts.index
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(ROUTER_1).\
filter_ipv6_dst(GUA1['MED']).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(ROUTER_2).\
filter_wpan_dst16(MED_RLOC16).\
must_next()
lend = pkts.index
pkts.range(lstart, lend).filter_wpan_src64(ROUTER_2).\
filter_RLARMA().\
filter_coap_request(ADDR_QRY_URI, port=MM).\
must_not_next()
# Step 6: MED sends an ICMPv6 Echo Request to Router_1 using GUA 2003::
# address
# The DUT MUST update its address cache and remove all entries
# based on Router_1’s Router ID.
# The DUT MUST send an Address Query to discover Router_1’s RLOC address.
pkts.filter_ping_request().\
filter_wpan_src64(MED).\
filter_ipv6_dst(GUA1['ROUTER_1']).\
must_next()
pkts.filter_wpan_src64(ROUTER_2).\
filter_RLARMA().\
filter_coap_request(ADDR_QRY_URI, port=MM).\
filter(lambda p: p.thread_address.tlv.target_eid == GUA1['ROUTER_1']).\
must_next()
# Step 7: Border Router sends two ICMPv6 Echo Requests to MED using GUA 2003::
# address
# The DUT MUST NOT respond with an Address Notification message
pkts.filter_wpan_src64(ROUTER_2).\
filter_ipv6_dst(BR_RLOC).\
filter_coap_request(ADDR_NTF_URI, port=MM).\
must_not_next()
pkts.filter_ping_request().\
filter_wpan_src64(BR).\
filter_ipv6_dst(GUA1['MED']).\
must_next()
if __name__ == '__main__':
unittest.main()