blob: 1f51345dc5dc7693fb688e771a51dea2a5a22bfc [file] [log] [blame]
#!/usr/bin/env python3
#
# Copyright (c) 2016, The OpenThread Authors.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
import copy
import unittest
import command
import config
import copy
import ipv6
import thread_cert
from pktverify.consts import WIRESHARK_OVERRIDE_PREFS, ADDR_QRY_URI, ADDR_NTF_URI, NL_ML_EID_TLV, NL_RLOC16_TLV, NL_TARGET_EID_TLV
from pktverify.packet_verifier import PacketVerifier
from pktverify.bytes import Bytes
LEADER = 1
ROUTER1 = 2
DUT_ROUTER2 = 3
ROUTER3 = 4
SED1 = 5
PREFIX_1 = '2001::/64'
GUA_1_START = '2001'
PREFIX_2 = '2002::/64'
# Test Purpose and Description:
# -----------------------------
# The purpose of this test case is to validate that the DUT is able to generate
# Address Query and Address Notification messages properly.
# The Leader is configured as a Border Router with DHCPv6 server for prefixes
# 2001:: & 2002::
#
# Test Topology:
# -------------
# Router_1 - Leader
# / \
# Router_3 Router_2(DUT)
# |
# SED
#
# DUT Types:
# ----------
# Router
class Cert_5_3_09_AddressQuery(thread_cert.TestCase):
USE_MESSAGE_FACTORY = False
TOPOLOGY = {
LEADER: {
'name': 'LEADER',
'mode': 'rdn',
'allowlist': [ROUTER1, DUT_ROUTER2, ROUTER3]
},
ROUTER1: {
'name': 'ROUTER_1',
'mode': 'rdn',
'allowlist': [LEADER]
},
DUT_ROUTER2: {
'name': 'ROUTER_2',
'mode': 'rdn',
'allowlist': [LEADER, SED1]
},
ROUTER3: {
'name': 'ROUTER_3',
'mode': 'rdn',
'allowlist': [LEADER]
},
SED1: {
'name': 'SED',
'is_mtd': True,
'mode': '-',
'timeout': config.DEFAULT_CHILD_TIMEOUT,
'allowlist': [DUT_ROUTER2]
},
}
# override wireshark preferences with case needed parameters
CASE_WIRESHARK_PREFS = copy.deepcopy(WIRESHARK_OVERRIDE_PREFS)
CASE_WIRESHARK_PREFS['6lowpan.context1'] = PREFIX_1
CASE_WIRESHARK_PREFS['6lowpan.context2'] = PREFIX_2
def test(self):
# 1 & 2 ALL: Build and verify the topology
self.nodes[LEADER].start()
self.simulator.go(5)
self.assertEqual(self.nodes[LEADER].get_state(), 'leader')
# Configure the LEADER to be a DHCPv6 Border Router for prefixes
self.nodes[LEADER].add_prefix(PREFIX_1, 'pdros')
self.nodes[LEADER].add_prefix(PREFIX_2, 'pdro')
self.nodes[LEADER].register_netdata()
self.nodes[ROUTER1].start()
self.simulator.go(5)
self.assertEqual(self.nodes[ROUTER1].get_state(), 'router')
self.nodes[DUT_ROUTER2].start()
self.simulator.go(5)
self.assertEqual(self.nodes[DUT_ROUTER2].get_state(), 'router')
self.nodes[ROUTER3].start()
self.simulator.go(5)
self.assertEqual(self.nodes[ROUTER3].get_state(), 'router')
self.nodes[SED1].start()
self.simulator.go(5)
self.assertEqual(self.nodes[SED1].get_state(), 'child')
self.collect_rlocs()
self.collect_rloc16s()
self.collect_ipaddrs()
# 3 SED1: The SED1 sends an ICMPv6 Echo Request to ROUTER3 using GUA
# PREFIX_1 address
router3_addr = self.nodes[ROUTER3].get_addr(PREFIX_1)
self.assertTrue(router3_addr is not None)
self.assertTrue(self.nodes[SED1].ping(router3_addr))
# 4 ROUTER1: ROUTER1 sends an ICMPv6 Echo Request to the SED1 using GUA
# PREFIX_1 address
sed1_addr = self.nodes[SED1].get_addr(PREFIX_1)
self.assertTrue(sed1_addr is not None)
self.assertTrue(self.nodes[ROUTER1].ping(sed1_addr))
self.simulator.go(1)
# 5 SED1: SED1 sends an ICMPv6 Echo Request to the ROUTER3 using GUA
# PREFIX_1 address
self.assertTrue(self.nodes[SED1].ping(router3_addr))
self.simulator.go(1)
# 6 DUT_ROUTER2: Power off ROUTER3 and wait 580s to alow LEADER to
# expire its Router ID
self.nodes[ROUTER3].stop()
self.simulator.go(580)
# The SED1 sends an ICMPv6 Echo Request to ROUTER3 GUA PREFIX_1 address
self.assertFalse(self.nodes[SED1].ping(router3_addr))
self.simulator.go(1)
# 7 SED1: Power off SED1 and wait to allow DUT_ROUTER2 to timeout the
# child
self.nodes[SED1].stop()
self.simulator.go(3)
self.simulator.go(config.DEFAULT_CHILD_TIMEOUT)
# ROUTER1 sends two ICMPv6 Echo Requests to SED1 GUA PREFIX_1 address
self.assertFalse(self.nodes[ROUTER1].ping(sed1_addr))
self.assertFalse(self.nodes[ROUTER1].ping(sed1_addr))
def verify(self, pv):
pkts = pv.pkts
pv.summary.show()
LEADER = pv.vars['LEADER']
ROUTER_1 = pv.vars['ROUTER_1']
ROUTER_1_RLOC = pv.vars['ROUTER_1_RLOC']
ROUTER_2 = pv.vars['ROUTER_2']
ROUTER_2_RLOC = pv.vars['ROUTER_2_RLOC']
ROUTER_2_RLOC16 = pv.vars['ROUTER_2_RLOC16']
ROUTER_3 = pv.vars['ROUTER_3']
SED = pv.vars['SED']
SED_RLOC16 = pv.vars['SED_RLOC16']
MM = pv.vars['MM_PORT']
GUA1 = {}
for node in ('ROUTER_1', 'ROUTER_3', 'SED'):
for addr in pv.vars['%s_IPADDRS' % node]:
if addr.startswith(Bytes(GUA_1_START)):
GUA1[node] = addr
# Step 1: Build the topology as described
for i in range(1, 4):
pv.verify_attached('ROUTER_%d' % i, 'LEADER')
pv.verify_attached('SED', 'ROUTER_2', 'MTD')
# Step 2: SED sends an ICMPv6 Echo Request to Router_3 using GUA 2001::
# address
# The DUT MUST generate an Address Query Request on SED’s behalf
# to find each node’s RLOC.
# The Address Query Request MUST be sent to the Realm-Local
# All-Routers address (FF03::2)
# CoAP URI-Path
# - NON POST coap://<FF03::2>
# CoAP Payload
# - Target EID TLV
# The DUT MUST receive and process the incoming Address Query
# Response and forward the ICMPv6 Echo Reply packet to SED
_pkt = pkts.filter_ping_request().\
filter_wpan_src64(SED).\
filter_ipv6_dst(GUA1['ROUTER_3']).\
must_next()
pkts.filter_wpan_src64(ROUTER_2).\
filter_RLARMA().\
filter_coap_request(ADDR_QRY_URI, port=MM).\
filter(lambda p: p.thread_address.tlv.target_eid == GUA1['ROUTER_3']).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(ROUTER_3).\
filter_ipv6_dst(GUA1['SED']).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(ROUTER_2).\
filter_wpan_dst16(SED_RLOC16).\
must_next()
# Step 3: Router_1 sends an ICMPv6 Echo Request to SED using GUA 2001::
# addresss
# The DUT MUST respond to the Address Query Request with a properly
# formatted Address Notification Message:
# CoAP URI-Path
# - CON POST coap://[<Address Query Source>]:MM/a/an
# CoAP Payload
# - ML-EID TLV
# - RLOC16 TLV
# - Target EID TLV
# The IPv6 Source address MUST be the RLOC of the originator
# The IPv6 Destination address MUST be the RLOC of the destination
pkts.filter_wpan_src64(ROUTER_1).\
filter_RLARMA().\
filter_coap_request(ADDR_QRY_URI, port=MM).\
filter(lambda p: p.thread_address.tlv.target_eid == GUA1['SED']).\
must_next()
pkts.filter_ipv6_src_dst(ROUTER_2_RLOC, ROUTER_1_RLOC).\
filter_coap_request(ADDR_NTF_URI, port=MM).\
filter(lambda p: {
NL_ML_EID_TLV,
NL_RLOC16_TLV,
NL_TARGET_EID_TLV
} <= set(p.coap.tlv.type) and\
p.thread_address.tlv.target_eid == GUA1['SED'] and\
p.thread_address.tlv.rloc16 == ROUTER_2_RLOC16
).\
must_next()
_pkt = pkts.filter_ping_request().\
filter_wpan_src64(ROUTER_1).\
filter_ipv6_dst(GUA1['SED']).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(SED).\
filter_ipv6_dst(GUA1['ROUTER_1']).\
must_next()
# Step 5: SED sends an ICMPv6 Echo Request to Router_3 using GUA 2001::
# address
# The DUT MUST not send an Address Query as Router_3 address should
# be cached.
# The DUT MUST forward the ICMPv6 Echo Reply to SED
_pkt = pkts.filter_ping_request().\
filter_wpan_src64(SED).\
filter_ipv6_dst(GUA1['ROUTER_3']).\
must_next()
lstart = pkts.index
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(ROUTER_3).\
filter_ipv6_dst(GUA1['SED']).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(ROUTER_2).\
filter_wpan_dst16(SED_RLOC16).\
must_next()
lend = pkts.index
pkts.range(lstart, lend).filter_wpan_src64(ROUTER_2).\
filter_RLARMA().\
filter_coap_request(ADDR_QRY_URI, port=MM).\
must_not_next()
# Step 6: SED sends an ICMPv6 Echo Request to Router_3 using GUA 2001::
# address
# The DUT MUST update its address cache and remove all entries
# based on Router_3’s Router ID.
# The DUT MUST send an Address Query to discover Router_3’s RLOC address.
pkts.filter_ping_request().\
filter_wpan_src64(SED).\
filter_ipv6_dst(GUA1['ROUTER_3']).\
must_next()
pkts.filter_wpan_src64(ROUTER_2).\
filter_RLARMA().\
filter_coap_request(ADDR_QRY_URI, port=MM).\
filter(lambda p: p.thread_address.tlv.target_eid == GUA1['ROUTER_3']).\
must_next()
# Step 7: Router_1 sends two ICMPv6 Echo Requests to SED using GUA 2001::
# address
# The DUT MUST NOT respond with an Address Notification message
pkts.filter_wpan_src64(ROUTER_2).\
filter_ipv6_dst(ROUTER_1_RLOC).\
filter_coap_request(ADDR_NTF_URI, port=MM).\
must_not_next()
pkts.filter_ping_request().\
filter_wpan_src64(ROUTER_1).\
filter_ipv6_dst(GUA1['SED']).\
must_next()
if __name__ == '__main__':
unittest.main()