blob: 9ff9bfd1a12b1b1e9ed7f0f2b934ccff8389b3b0 [file] [log] [blame]
#!/usr/bin/env python3
#
# Copyright (c) 2016, The OpenThread Authors.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
import unittest
import config
import thread_cert
from pktverify.consts import MLE_CHILD_ID_REQUEST, MLE_CHILD_ID_RESPONSE, REALM_LOCAL_ALL_NODES_ADDRESS, REALM_LOCAL_ALL_ROUTERS_ADDRESS, REALM_LOCAL_All_THREAD_NODES_MULTICAST_ADDRESS
from pktverify.packet_verifier import PacketVerifier
LEADER = 1
ROUTER1 = 2
DUT_ROUTER2 = 3
SED1 = 4
FRAGMENTED_DATA_LEN = 256
# Test Purpose and Description:
# -----------------------------
# The purpose of this test case is to validate the Realm-Local addresses
# that the DUT auto-configures.
#
# Test Topology:
# -------------
# Leader
# |
# Router_1 - Router_2(DUT)
# |
# SED
#
# DUT Types:
# ----------
# Router
class Cert_5_3_2_RealmLocal(thread_cert.TestCase):
USE_MESSAGE_FACTORY = False
TOPOLOGY = {
LEADER: {
'name': 'LEADER',
'mode': 'rdn',
'allowlist': [ROUTER1]
},
ROUTER1: {
'name': 'ROUTER_1',
'mode': 'rdn',
'allowlist': [LEADER, DUT_ROUTER2]
},
DUT_ROUTER2: {
'name': 'ROUTER_2',
'mode': 'rdn',
'allowlist': [ROUTER1, SED1]
},
SED1: {
'name': 'SED',
'is_mtd': True,
'mode': 'n',
'timeout': config.DEFAULT_CHILD_TIMEOUT,
'allowlist': [DUT_ROUTER2]
},
}
def test(self):
# 1
self.nodes[LEADER].start()
self.simulator.go(5)
self.assertEqual(self.nodes[LEADER].get_state(), 'leader')
self.nodes[ROUTER1].start()
self.simulator.go(5)
self.assertEqual(self.nodes[ROUTER1].get_state(), 'router')
self.nodes[DUT_ROUTER2].start()
self.simulator.go(5)
self.assertEqual(self.nodes[DUT_ROUTER2].get_state(), 'router')
self.nodes[SED1].start()
self.simulator.go(5)
self.assertEqual(self.nodes[SED1].get_state(), 'child')
self.collect_ipaddrs()
self.collect_rloc16s()
# 2 & 3
mleid = self.nodes[DUT_ROUTER2].get_ip6_address(config.ADDRESS_TYPE.ML_EID)
self.assertTrue(self.nodes[LEADER].ping(mleid, size=FRAGMENTED_DATA_LEN))
self.simulator.go(2)
self.assertTrue(self.nodes[LEADER].ping(mleid))
self.simulator.go(2)
# 4 & 5
self.assertTrue(self.nodes[LEADER].ping('ff03::1', num_responses=2, size=FRAGMENTED_DATA_LEN))
self.simulator.go(5)
self.assertTrue(self.nodes[LEADER].ping('ff03::1', num_responses=2))
self.simulator.go(5)
# 6 & 7
self.assertTrue(self.nodes[LEADER].ping('ff03::2', num_responses=2, size=FRAGMENTED_DATA_LEN))
self.simulator.go(5)
self.assertTrue(self.nodes[LEADER].ping('ff03::2', num_responses=2))
self.simulator.go(5)
# 8
self.assertTrue(self.nodes[LEADER].ping(
config.REALM_LOCAL_All_THREAD_NODES_MULTICAST_ADDRESS,
num_responses=3,
size=FRAGMENTED_DATA_LEN,
))
self.simulator.go(5)
def verify(self, pv):
pkts = pv.pkts
pv.summary.show()
LEADER = pv.vars['LEADER']
LEADER_MLEID = pv.vars['LEADER_MLEID']
ROUTER_1 = pv.vars['ROUTER_1']
ROUTER_2 = pv.vars['ROUTER_2']
ROUTER_2_RLOC16 = pv.vars['ROUTER_2_RLOC16']
ROUTER_2_MLEID = pv.vars['ROUTER_2_MLEID']
SED = pv.vars['SED']
SED_RLOC16 = pv.vars['SED_RLOC16']
# Step 1: Build the topology as described
pv.verify_attached('ROUTER_1', 'LEADER')
pv.verify_attached('ROUTER_2', 'ROUTER_1')
pv.verify_attached('SED', 'ROUTER_2', 'MTD')
# Step 2: Leader sends a Fragmented ICMPv6 Echo Request to
# DUT's ML-EID
# The DUT MUST respond with an ICMPv6 Echo Reply
_pkt = pkts.filter_ping_request().\
filter_ipv6_src_dst(LEADER_MLEID, ROUTER_2_MLEID).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_next()
# Step 3: Leader sends a Unfragmented ICMPv6 Echo Request to
# DUT’s ML-EID
# The DUT MUST respond with an ICMPv6 Echo Reply
_pkt = pkts.filter_ping_request().\
filter_ipv6_src_dst(LEADER_MLEID, ROUTER_2_MLEID).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\
must_next()
# Step 4: Leader sends a Fragmented ICMPv6 Echo Request to the
# Realm-Local All Nodes multicast address (FF03::1)
# The DUT MUST respond with an ICMPv6 Echo Reply
# The DUT MUST NOT forward the ICMPv6 Echo Request to SED
_pkt1 = pkts.filter_ping_request().\
filter_wpan_src64(LEADER).\
filter_ipv6_dst(REALM_LOCAL_ALL_NODES_ADDRESS).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_next()
with pkts.save_index():
pkts.filter_ping_reply(identifier=_pkt1.icmpv6.echo.identifier).\
filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_next()
pkts.filter_ping_request(identifier=_pkt1.icmpv6.echo.identifier).\
filter_wpan_src16_dst16(ROUTER_2_RLOC16, SED_RLOC16).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_not_next()
# Step 5: Leader sends an Unfragmented ICMPv6 Echo Request to the
# Realm-Local All Nodes multicast address (FF03::1)
# The DUT MUST respond with an ICMPv6 Echo Reply
# The DUT MUST NOT forward the ICMPv6 Echo Request to SED
_pkt2 = pkts.filter_ping_request().\
filter_wpan_src64(LEADER).\
filter_ipv6_dst(REALM_LOCAL_ALL_NODES_ADDRESS).\
filter(lambda p: p.icmpv6.echo.sequence_number !=
_pkt1.icmpv6.echo.sequence_number
).\
must_next()
with pkts.save_index():
pkts.filter_ping_reply(identifier=_pkt2.icmpv6.echo.identifier).\
filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\
must_next()
pkts.filter_ping_request(identifier = _pkt2.icmpv6.echo.identifier).\
filter_wpan_src16_dst16(ROUTER_2_RLOC16, SED_RLOC16).\
must_not_next()
# Step 6: Leader sends a Fragmented ICMPv6 Echo Request to the
# Realm-Local All Routers multicast address (FF03::2)
# The DUT MUST respond with an ICMPv6 Echo Reply
# The DUT MUST NOT forward the ICMPv6 Echo Request to SED
_pkt1 = pkts.filter_ping_request().\
filter_wpan_src64(LEADER).\
filter_ipv6_dst(REALM_LOCAL_ALL_ROUTERS_ADDRESS).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_next()
with pkts.save_index():
pkts.filter_ping_reply(identifier=_pkt1.icmpv6.echo.identifier).\
filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_next()
pkts.filter_ping_request(identifier=_pkt1.icmpv6.echo.identifier).\
filter_wpan_src16_dst16(ROUTER_2_RLOC16, SED_RLOC16).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_not_next()
# Step 7: Leader sends an Unfragmented ICMPv6 Echo Request to the
# Realm-Local All Routers multicast address (FF03::2)
# The DUT MUST respond with an ICMPv6 Echo Reply
# The DUT MUST NOT forward the ICMPv6 Echo Request to SED
_pkt2 = pkts.filter_ping_request().\
filter_wpan_src64(LEADER).\
filter_ipv6_dst(REALM_LOCAL_ALL_ROUTERS_ADDRESS).\
filter(lambda p: p.icmpv6.echo.sequence_number !=
_pkt1.icmpv6.echo.sequence_number
).\
must_next()
with pkts.save_index():
pkts.filter_ping_reply(identifier=_pkt2.icmpv6.echo.identifier).\
filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\
must_next()
pkts.filter_ping_request(identifier=_pkt2.icmpv6.echo.identifier).\
filter_wpan_src16_dst16(ROUTER_2_RLOC16, SED_RLOC16).\
must_not_next()
# Step 8: Leader sends a Fragmented ICMPv6 Echo Request to the
# Realm-Local All Thread Nodes multicast address
# The DUT MUST respond with an ICMPv6 Echo Reply
# The Realm-Local All Thread Nodes multicast address
# MUST be a realm-local Unicast Prefix-Based Multicast
# Address [RFC 3306], with:
# - flgs set to 3 (P = 1 and T = 1)
# - scop set to 3
# - plen set to the Mesh Local Prefix length
# - network prefix set to the Mesh Local Prefix
# - group ID set to 1
# The DUT MUST use IEEE 802.15.4 indirect transmissions
# to forward packet to SED
_pkt = pkts.filter_ping_request().\
filter_wpan_src64(LEADER).\
filter_ipv6_dst(REALM_LOCAL_All_THREAD_NODES_MULTICAST_ADDRESS).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_next()
with pkts.save_index():
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_next()
pkts.filter_ping_request(identifier = _pkt.icmpv6.echo.identifier).\
filter_wpan_src16_dst16(ROUTER_2_RLOC16, SED_RLOC16).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_next()
pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\
filter_wpan_src64(SED).\
filter_ipv6_dst(LEADER_MLEID).\
filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\
must_next()
if __name__ == '__main__':
unittest.main()