blob: b50f5105d316e5ced18b481c67ada0d5954e71d6 [file] [log] [blame]
/*
* Copyright (c) 2016, The OpenThread Authors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* This file implements the OpenThread platform abstraction for radio communication.
*
*/
#include <openthread-core-config.h>
#include <openthread/config.h>
#include <assert.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <common/code_utils.hpp>
#include <platform-config.h>
#include <openthread/platform/diag.h>
#include <openthread/platform/logging.h>
#include <openthread/platform/radio.h>
#include "platform-nrf5.h"
#include "platform.h"
#include <nrf.h>
#include <nrf_802154.h>
#include <openthread-core-config.h>
#include <openthread/config.h>
#include <openthread/types.h>
// clang-format off
#define SHORT_ADDRESS_SIZE 2
#define EXTENDED_ADDRESS_SIZE 8
#define PENDING_BIT 0x10
#define US_PER_MS 1000ULL
// clang-format on
enum
{
NRF52840_RECEIVE_SENSITIVITY = -100, // dBm
};
static bool sDisabled;
static otError sReceiveError = OT_ERROR_NONE;
static otRadioFrame sReceivedFrames[NRF_802154_RX_BUFFERS];
static otRadioFrame sTransmitFrame;
static uint8_t sTransmitPsdu[OT_RADIO_FRAME_MAX_SIZE + 1];
static otRadioFrame sAckFrame;
static int8_t sDefaultTxPower;
static uint32_t sEnergyDetectionTime;
static uint8_t sEnergyDetectionChannel;
static int8_t sEnergyDetected;
typedef enum {
kPendingEventSleep, // Requested to enter Sleep state.
kPendingEventFrameTransmitted, // Transmitted frame and received ACK (if requested).
kPendingEventChannelAccessFailure, // Failed to transmit frame (channel busy).
kPendingEventInvalidOrNoAck, // Failed to transmit frame (received invalid or no ACK).
kPendingEventReceiveFailed, // Failed to receive a valid frame.
kPendingEventEnergyDetectionStart, // Requested to start Energy Detection procedure.
kPendingEventEnergyDetected, // Energy Detection finished.
} RadioPendingEvents;
static uint32_t sPendingEvents;
static void dataInit(void)
{
sDisabled = true;
sTransmitFrame.mPsdu = sTransmitPsdu + 1;
sReceiveError = OT_ERROR_NONE;
for (uint32_t i = 0; i < NRF_802154_RX_BUFFERS; i++)
{
sReceivedFrames[i].mPsdu = NULL;
}
memset(&sAckFrame, 0, sizeof(sAckFrame));
}
static void convertShortAddress(uint8_t *aTo, uint16_t aFrom)
{
aTo[0] = (uint8_t)aFrom;
aTo[1] = (uint8_t)(aFrom >> 8);
}
static inline bool isPendingEventSet(RadioPendingEvents aEvent)
{
return sPendingEvents & (1UL << aEvent);
}
static void setPendingEvent(RadioPendingEvents aEvent)
{
volatile uint32_t pendingEvents;
uint32_t bitToSet = 1UL << aEvent;
do
{
pendingEvents = __LDREXW((unsigned long volatile *)&sPendingEvents);
pendingEvents |= bitToSet;
} while (__STREXW(pendingEvents, (unsigned long volatile *)&sPendingEvents));
PlatformEventSignalPending();
}
static void resetPendingEvent(RadioPendingEvents aEvent)
{
volatile uint32_t pendingEvents;
uint32_t bitsToRemain = ~(1UL << aEvent);
do
{
pendingEvents = __LDREXW((unsigned long volatile *)&sPendingEvents);
pendingEvents &= bitsToRemain;
} while (__STREXW(pendingEvents, (unsigned long volatile *)&sPendingEvents));
}
static inline void clearPendingEvents(void)
{
// Clear pending events that could cause race in the MAC layer.
volatile uint32_t pendingEvents;
uint32_t bitsToRemain = ~(0UL);
bitsToRemain &= ~(1UL << kPendingEventSleep);
do
{
pendingEvents = __LDREXW((unsigned long volatile *)&sPendingEvents);
pendingEvents &= bitsToRemain;
} while (__STREXW(pendingEvents, (unsigned long volatile *)&sPendingEvents));
}
#if !OPENTHREAD_CONFIG_ENABLE_PLATFORM_EUI64_CUSTOM_SOURCE
void otPlatRadioGetIeeeEui64(otInstance *aInstance, uint8_t *aIeeeEui64)
{
(void)aInstance;
uint64_t factoryAddress = (uint64_t)NRF_FICR->DEVICEID[0] << 32;
factoryAddress |= NRF_FICR->DEVICEID[1];
memcpy(aIeeeEui64, &factoryAddress, sizeof(factoryAddress));
}
#endif // OPENTHREAD_CONFIG_ENABLE_PLATFORM_EUI64_CUSTOM_SOURCE
void otPlatRadioSetPanId(otInstance *aInstance, uint16_t aPanId)
{
(void)aInstance;
uint8_t address[SHORT_ADDRESS_SIZE];
convertShortAddress(address, aPanId);
nrf_802154_pan_id_set(address);
}
void otPlatRadioSetExtendedAddress(otInstance *aInstance, const otExtAddress *aExtAddress)
{
(void)aInstance;
nrf_802154_extended_address_set(aExtAddress->m8);
}
void otPlatRadioSetShortAddress(otInstance *aInstance, uint16_t aShortAddress)
{
(void)aInstance;
uint8_t address[SHORT_ADDRESS_SIZE];
convertShortAddress(address, aShortAddress);
nrf_802154_short_address_set(address);
}
void nrf5RadioInit(void)
{
dataInit();
nrf_802154_init();
}
void nrf5RadioDeinit(void)
{
nrf_802154_deinit();
}
otRadioState otPlatRadioGetState(otInstance *aInstance)
{
(void)aInstance;
if (sDisabled)
{
return OT_RADIO_STATE_DISABLED;
}
switch (nrf_802154_state_get())
{
case NRF_802154_STATE_SLEEP:
return OT_RADIO_STATE_SLEEP;
case NRF_802154_STATE_RECEIVE:
case NRF_802154_STATE_ENERGY_DETECTION:
return OT_RADIO_STATE_RECEIVE;
case NRF_802154_STATE_TRANSMIT:
return OT_RADIO_STATE_TRANSMIT;
default:
assert(false); // Make sure driver returned valid state.
}
return OT_RADIO_STATE_RECEIVE; // It is the default state. Return it in case of unknown.
}
otError otPlatRadioEnable(otInstance *aInstance)
{
(void)aInstance;
otError error;
if (sDisabled)
{
sDisabled = false;
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_INVALID_STATE;
}
return error;
}
otError otPlatRadioDisable(otInstance *aInstance)
{
(void)aInstance;
otError error;
if (!sDisabled)
{
sDisabled = true;
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_INVALID_STATE;
}
return error;
}
bool otPlatRadioIsEnabled(otInstance *aInstance)
{
(void)aInstance;
return !sDisabled;
}
otError otPlatRadioSleep(otInstance *aInstance)
{
(void)aInstance;
if (nrf_802154_sleep())
{
clearPendingEvents();
}
else
{
clearPendingEvents();
setPendingEvent(kPendingEventSleep);
}
return OT_ERROR_NONE;
}
otError otPlatRadioReceive(otInstance *aInstance, uint8_t aChannel)
{
(void)aInstance;
bool result;
nrf_802154_channel_set(aChannel);
nrf_802154_tx_power_set(sDefaultTxPower);
result = nrf_802154_receive();
clearPendingEvents();
return result ? OT_ERROR_NONE : OT_ERROR_INVALID_STATE;
}
otError otPlatRadioTransmit(otInstance *aInstance, otRadioFrame *aFrame)
{
(void)aInstance;
aFrame->mPsdu[-1] = aFrame->mLength;
nrf_802154_channel_set(aFrame->mChannel);
if (aFrame->mInfo.mTxInfo.mIsCcaEnabled)
{
nrf_802154_transmit_csma_ca_raw(&aFrame->mPsdu[-1]);
}
else
{
nrf_802154_transmit_raw(&aFrame->mPsdu[-1], false);
}
clearPendingEvents();
otPlatRadioTxStarted(aInstance, aFrame);
return OT_ERROR_NONE;
}
otRadioFrame *otPlatRadioGetTransmitBuffer(otInstance *aInstance)
{
(void)aInstance;
return &sTransmitFrame;
}
int8_t otPlatRadioGetRssi(otInstance *aInstance)
{
(void)aInstance;
return nrf_802154_rssi_last_get();
}
otRadioCaps otPlatRadioGetCaps(otInstance *aInstance)
{
(void)aInstance;
return (otRadioCaps)(OT_RADIO_CAPS_ENERGY_SCAN | OT_RADIO_CAPS_ACK_TIMEOUT | OT_RADIO_CAPS_CSMA_BACKOFF);
}
bool otPlatRadioGetPromiscuous(otInstance *aInstance)
{
(void)aInstance;
return nrf_802154_promiscuous_get();
}
void otPlatRadioSetPromiscuous(otInstance *aInstance, bool aEnable)
{
(void)aInstance;
nrf_802154_promiscuous_set(aEnable);
}
void otPlatRadioEnableSrcMatch(otInstance *aInstance, bool aEnable)
{
(void)aInstance;
nrf_802154_auto_pending_bit_set(aEnable);
}
otError otPlatRadioAddSrcMatchShortEntry(otInstance *aInstance, const uint16_t aShortAddress)
{
(void)aInstance;
otError error;
uint8_t shortAddress[SHORT_ADDRESS_SIZE];
convertShortAddress(shortAddress, aShortAddress);
if (nrf_802154_pending_bit_for_addr_set(shortAddress, false))
{
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_NO_BUFS;
}
return error;
}
otError otPlatRadioAddSrcMatchExtEntry(otInstance *aInstance, const otExtAddress *aExtAddress)
{
(void)aInstance;
otError error;
if (nrf_802154_pending_bit_for_addr_set(aExtAddress->m8, true))
{
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_NO_BUFS;
}
return error;
}
otError otPlatRadioClearSrcMatchShortEntry(otInstance *aInstance, const uint16_t aShortAddress)
{
(void)aInstance;
otError error;
uint8_t shortAddress[SHORT_ADDRESS_SIZE];
convertShortAddress(shortAddress, aShortAddress);
if (nrf_802154_pending_bit_for_addr_clear(shortAddress, false))
{
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_NO_ADDRESS;
}
return error;
}
otError otPlatRadioClearSrcMatchExtEntry(otInstance *aInstance, const otExtAddress *aExtAddress)
{
(void)aInstance;
otError error;
if (nrf_802154_pending_bit_for_addr_clear(aExtAddress->m8, true))
{
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_NO_ADDRESS;
}
return error;
}
void otPlatRadioClearSrcMatchShortEntries(otInstance *aInstance)
{
(void)aInstance;
nrf_802154_pending_bit_for_addr_reset(false);
}
void otPlatRadioClearSrcMatchExtEntries(otInstance *aInstance)
{
(void)aInstance;
nrf_802154_pending_bit_for_addr_reset(true);
}
otError otPlatRadioEnergyScan(otInstance *aInstance, uint8_t aScanChannel, uint16_t aScanDuration)
{
(void)aInstance;
sEnergyDetectionTime = (uint32_t)aScanDuration * 1000UL;
sEnergyDetectionChannel = aScanChannel;
clearPendingEvents();
nrf_802154_channel_set(aScanChannel);
if (nrf_802154_energy_detection(sEnergyDetectionTime))
{
resetPendingEvent(kPendingEventEnergyDetectionStart);
}
else
{
setPendingEvent(kPendingEventEnergyDetectionStart);
}
return OT_ERROR_NONE;
}
otError otPlatRadioGetTransmitPower(otInstance *aInstance, int8_t *aPower)
{
otError error = OT_ERROR_NONE;
(void)aInstance;
if (aPower == NULL)
{
error = OT_ERROR_INVALID_ARGS;
}
else
{
*aPower = sDefaultTxPower;
}
return error;
}
otError otPlatRadioSetTransmitPower(otInstance *aInstance, int8_t aPower)
{
(void)aInstance;
sDefaultTxPower = aPower;
nrf_802154_tx_power_set(aPower);
return OT_ERROR_NONE;
}
void nrf5RadioProcess(otInstance *aInstance)
{
for (uint32_t i = 0; i < NRF_802154_RX_BUFFERS; i++)
{
if (sReceivedFrames[i].mPsdu != NULL)
{
#if OPENTHREAD_ENABLE_DIAG
if (otPlatDiagModeGet())
{
otPlatDiagRadioReceiveDone(aInstance, &sReceivedFrames[i], OT_ERROR_NONE);
}
else
#endif
{
otPlatRadioReceiveDone(aInstance, &sReceivedFrames[i], OT_ERROR_NONE);
}
uint8_t *bufferAddress = &sReceivedFrames[i].mPsdu[-1];
sReceivedFrames[i].mPsdu = NULL;
nrf_802154_buffer_free_raw(bufferAddress);
}
}
if (isPendingEventSet(kPendingEventFrameTransmitted))
{
resetPendingEvent(kPendingEventFrameTransmitted);
#if OPENTHREAD_ENABLE_DIAG
if (otPlatDiagModeGet())
{
otPlatDiagRadioTransmitDone(aInstance, &sTransmitFrame, OT_ERROR_NONE);
}
else
#endif
{
otRadioFrame *ackPtr = (sAckFrame.mPsdu == NULL) ? NULL : &sAckFrame;
otPlatRadioTxDone(aInstance, &sTransmitFrame, ackPtr, OT_ERROR_NONE);
}
if (sAckFrame.mPsdu != NULL)
{
nrf_802154_buffer_free_raw(sAckFrame.mPsdu - 1);
sAckFrame.mPsdu = NULL;
}
}
if (isPendingEventSet(kPendingEventChannelAccessFailure))
{
resetPendingEvent(kPendingEventChannelAccessFailure);
#if OPENTHREAD_ENABLE_DIAG
if (otPlatDiagModeGet())
{
otPlatDiagRadioTransmitDone(aInstance, &sTransmitFrame, OT_ERROR_CHANNEL_ACCESS_FAILURE);
}
else
#endif
{
otPlatRadioTxDone(aInstance, &sTransmitFrame, NULL, OT_ERROR_CHANNEL_ACCESS_FAILURE);
}
}
if (isPendingEventSet(kPendingEventInvalidOrNoAck))
{
resetPendingEvent(kPendingEventInvalidOrNoAck);
#if OPENTHREAD_ENABLE_DIAG
if (otPlatDiagModeGet())
{
otPlatDiagRadioTransmitDone(aInstance, &sTransmitFrame, OT_ERROR_NO_ACK);
}
else
#endif
{
otPlatRadioTxDone(aInstance, &sTransmitFrame, NULL, OT_ERROR_NO_ACK);
}
}
if (isPendingEventSet(kPendingEventReceiveFailed))
{
resetPendingEvent(kPendingEventReceiveFailed);
#if OPENTHREAD_ENABLE_DIAG
if (otPlatDiagModeGet())
{
otPlatDiagRadioReceiveDone(aInstance, NULL, sReceiveError);
}
else
#endif
{
otPlatRadioReceiveDone(aInstance, NULL, sReceiveError);
}
}
if (isPendingEventSet(kPendingEventEnergyDetected))
{
resetPendingEvent(kPendingEventEnergyDetected);
otPlatRadioEnergyScanDone(aInstance, sEnergyDetected);
}
if (isPendingEventSet(kPendingEventSleep))
{
if (nrf_802154_sleep())
{
resetPendingEvent(kPendingEventSleep);
}
}
if (isPendingEventSet(kPendingEventEnergyDetectionStart))
{
nrf_802154_channel_set(sEnergyDetectionChannel);
if (nrf_802154_energy_detection(sEnergyDetectionTime))
{
resetPendingEvent(kPendingEventEnergyDetectionStart);
}
}
}
void nrf_802154_received_raw(uint8_t *p_data, int8_t power, uint8_t lqi)
{
otRadioFrame *receivedFrame = NULL;
for (uint32_t i = 0; i < NRF_802154_RX_BUFFERS; i++)
{
if (sReceivedFrames[i].mPsdu == NULL)
{
receivedFrame = &sReceivedFrames[i];
break;
}
}
assert(receivedFrame != NULL);
memset(receivedFrame, 0, sizeof(*receivedFrame));
receivedFrame->mPsdu = &p_data[1];
receivedFrame->mLength = p_data[0];
receivedFrame->mInfo.mRxInfo.mRssi = power;
receivedFrame->mInfo.mRxInfo.mLqi = lqi;
receivedFrame->mChannel = nrf_802154_channel_get();
#if OPENTHREAD_ENABLE_RAW_LINK_API
uint64_t timestamp = nrf5AlarmGetCurrentTime();
receivedFrame->mInfo.mRxInfo.mMsec = timestamp / US_PER_MS;
receivedFrame->mInfo.mRxInfo.mUsec = timestamp - receivedFrame->mMsec * US_PER_MS;
#endif
PlatformEventSignalPending();
}
void nrf_802154_receive_failed(nrf_802154_rx_error_t error)
{
switch (error)
{
case NRF_802154_RX_ERROR_INVALID_FRAME:
sReceiveError = OT_ERROR_NO_FRAME_RECEIVED;
break;
case NRF_802154_RX_ERROR_INVALID_FCS:
sReceiveError = OT_ERROR_FCS;
break;
case NRF_802154_RX_ERROR_INVALID_DEST_ADDR:
sReceiveError = OT_ERROR_DESTINATION_ADDRESS_FILTERED;
break;
case NRF_802154_RX_ERROR_RUNTIME:
case NRF_802154_RX_ERROR_TIMESLOT_ENDED:
case NRF_802154_RX_ERROR_ABORTED:
sReceiveError = OT_ERROR_FAILED;
break;
default:
assert(false);
}
setPendingEvent(kPendingEventReceiveFailed);
}
void nrf_802154_transmitted_raw(const uint8_t *aFrame, uint8_t *aAckPsdu, int8_t aPower, uint8_t aLqi)
{
assert(aFrame == sTransmitPsdu);
if (aAckPsdu == NULL)
{
sAckFrame.mPsdu = NULL;
}
else
{
sAckFrame.mPsdu = &aAckPsdu[1];
sAckFrame.mLength = aAckPsdu[0];
sAckFrame.mInfo.mRxInfo.mRssi = aPower;
sAckFrame.mInfo.mRxInfo.mLqi = aLqi;
sAckFrame.mChannel = nrf_802154_channel_get();
}
setPendingEvent(kPendingEventFrameTransmitted);
}
void nrf_802154_transmit_failed(const uint8_t *aFrame, nrf_802154_tx_error_t error)
{
assert(aFrame == sTransmitPsdu);
switch (error)
{
case NRF_802154_TX_ERROR_BUSY_CHANNEL:
case NRF_802154_TX_ERROR_TIMESLOT_ENDED:
setPendingEvent(kPendingEventChannelAccessFailure);
break;
case NRF_802154_TX_ERROR_INVALID_ACK:
case NRF_802154_TX_ERROR_NO_ACK:
case NRF_802154_TX_ERROR_NO_MEM:
setPendingEvent(kPendingEventInvalidOrNoAck);
break;
default:
assert(false);
}
}
void nrf_802154_energy_detected(uint8_t result)
{
sEnergyDetected = nrf_802154_dbm_from_energy_level_calculate(result);
setPendingEvent(kPendingEventEnergyDetected);
}
int8_t otPlatRadioGetReceiveSensitivity(otInstance *aInstance)
{
(void)aInstance;
return NRF52840_RECEIVE_SENSITIVITY;
}