blob: d4bad63a7099d981b0fdfd8f9bd26a923d89f5f4 [file] [log] [blame]
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"math"
"sync"
"sync/atomic"
"time"
"github.com/google/netstack/sleep"
"github.com/google/netstack/tcpip"
"github.com/google/netstack/tcpip/buffer"
"github.com/google/netstack/tcpip/header"
"github.com/google/netstack/tcpip/seqnum"
)
const (
// minRTO is the minimum allowed value for the retransmit timeout.
minRTO = 200 * time.Millisecond
// InitialCwnd is the initial congestion window.
InitialCwnd = 10
// nDupAckThreshold is the number of duplicate ACK's required
// before fast-retransmit is entered.
nDupAckThreshold = 3
)
// ccState indicates the current congestion control state for this sender.
type ccState int
const (
// Open indicates that the sender is receiving acks in order and
// no loss or dupACK's etc have been detected.
Open ccState = iota
// RTORecovery indicates that an RTO has occurred and the sender
// has entered an RTO based recovery phase.
RTORecovery
// FastRecovery indicates that the sender has entered FastRecovery
// based on receiving nDupAck's. This state is entered only when
// SACK is not in use.
FastRecovery
// SACKRecovery indicates that the sender has entered SACK based
// recovery.
SACKRecovery
// Disorder indicates the sender either received some SACK blocks
// or dupACK's.
Disorder
)
// congestionControl is an interface that must be implemented by any supported
// congestion control algorithm.
type congestionControl interface {
// HandleNDupAcks is invoked when sender.dupAckCount >= nDupAckThreshold
// just before entering fast retransmit.
HandleNDupAcks()
// HandleRTOExpired is invoked when the retransmit timer expires.
HandleRTOExpired()
// Update is invoked when processing inbound acks. It's passed the
// number of packet's that were acked by the most recent cumulative
// acknowledgement.
Update(packetsAcked int)
// PostRecovery is invoked when the sender is exiting a fast retransmit/
// recovery phase. This provides congestion control algorithms a way
// to adjust their state when exiting recovery.
PostRecovery()
}
// sender holds the state necessary to send TCP segments.
//
// +stateify savable
type sender struct {
ep *endpoint
// lastSendTime is the timestamp when the last packet was sent.
lastSendTime time.Time
// dupAckCount is the number of duplicated acks received. It is used for
// fast retransmit.
dupAckCount int
// fr holds state related to fast recovery.
fr fastRecovery
// sndCwnd is the congestion window, in packets.
sndCwnd int
// sndSsthresh is the threshold between slow start and congestion
// avoidance.
sndSsthresh int
// sndCAAckCount is the number of packets acknowledged during congestion
// avoidance. When enough packets have been ack'd (typically cwnd
// packets), the congestion window is incremented by one.
sndCAAckCount int
// outstanding is the number of outstanding packets, that is, packets
// that have been sent but not yet acknowledged.
outstanding int
// sndWnd is the send window size.
sndWnd seqnum.Size
// sndUna is the next unacknowledged sequence number.
sndUna seqnum.Value
// sndNxt is the sequence number of the next segment to be sent.
sndNxt seqnum.Value
// sndNxtList is the sequence number of the next segment to be added to
// the send list.
sndNxtList seqnum.Value
// rttMeasureSeqNum is the sequence number being used for the latest RTT
// measurement.
rttMeasureSeqNum seqnum.Value
// rttMeasureTime is the time when the rttMeasureSeqNum was sent.
rttMeasureTime time.Time
closed bool
writeNext *segment
writeList segmentList
resendTimer timer
resendWaker sleep.Waker
// rtt.srtt, rtt.rttvar, and rto are the "smoothed round-trip time",
// "round-trip time variation" and "retransmit timeout", as defined in
// section 2 of RFC 6298.
rtt rtt
rto time.Duration
// maxPayloadSize is the maximum size of the payload of a given segment.
// It is initialized on demand.
maxPayloadSize int
// gso is set if generic segmentation offload is enabled.
gso bool
// sndWndScale is the number of bits to shift left when reading the send
// window size from a segment.
sndWndScale uint8
// maxSentAck is the maxium acknowledgement actually sent.
maxSentAck seqnum.Value
// state is the current state of congestion control for this endpoint.
state ccState
// cc is the congestion control algorithm in use for this sender.
cc congestionControl
}
// rtt is a synchronization wrapper used to appease stateify. See the comment
// in sender, where it is used.
//
// +stateify savable
type rtt struct {
sync.Mutex
srtt time.Duration
rttvar time.Duration
srttInited bool
}
// fastRecovery holds information related to fast recovery from a packet loss.
//
// +stateify savable
type fastRecovery struct {
// active whether the endpoint is in fast recovery. The following fields
// are only meaningful when active is true.
active bool
// first and last represent the inclusive sequence number range being
// recovered.
first seqnum.Value
last seqnum.Value
// maxCwnd is the maximum value the congestion window may be inflated to
// due to duplicate acks. This exists to avoid attacks where the
// receiver intentionally sends duplicate acks to artificially inflate
// the sender's cwnd.
maxCwnd int
// highRxt is the highest sequence number which has been retransmitted
// during the current loss recovery phase.
// See: RFC 6675 Section 2 for details.
highRxt seqnum.Value
// rescueRxt is the highest sequence number which has been
// optimistically retransmitted to prevent stalling of the ACK clock
// when there is loss at the end of the window and no new data is
// available for transmission.
// See: RFC 6675 Section 2 for details.
rescueRxt seqnum.Value
}
func newSender(ep *endpoint, iss, irs seqnum.Value, sndWnd seqnum.Size, mss uint16, sndWndScale int) *sender {
// The sender MUST reduce the TCP data length to account for any IP or
// TCP options that it is including in the packets that it sends.
// See: https://tools.ietf.org/html/rfc6691#section-2
maxPayloadSize := int(mss) - ep.maxOptionSize()
s := &sender{
ep: ep,
sndWnd: sndWnd,
sndUna: iss + 1,
sndNxt: iss + 1,
sndNxtList: iss + 1,
rto: 1 * time.Second,
rttMeasureSeqNum: iss + 1,
lastSendTime: time.Now(),
maxPayloadSize: maxPayloadSize,
maxSentAck: irs + 1,
fr: fastRecovery{
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 1.
last: iss,
highRxt: iss,
rescueRxt: iss,
},
gso: ep.gso != nil,
}
if s.gso {
s.ep.gso.MSS = uint16(maxPayloadSize)
}
s.cc = s.initCongestionControl(ep.cc)
// A negative sndWndScale means that no scaling is in use, otherwise we
// store the scaling value.
if sndWndScale > 0 {
s.sndWndScale = uint8(sndWndScale)
}
s.resendTimer.init(&s.resendWaker)
s.updateMaxPayloadSize(int(ep.route.MTU()), 0)
// Initialize SACK Scoreboard after updating max payload size as we use
// the maxPayloadSize as the smss when determining if a segment is lost
// etc.
s.ep.scoreboard = NewSACKScoreboard(uint16(s.maxPayloadSize), iss)
return s
}
// initCongestionControl initializes the specified congestion control module and
// returns a handle to it. It also initializes the sndCwnd and sndSsThresh to
// their initial values.
func (s *sender) initCongestionControl(congestionControlName tcpip.CongestionControlOption) congestionControl {
s.sndCwnd = InitialCwnd
s.sndSsthresh = math.MaxInt64
switch congestionControlName {
case ccCubic:
return newCubicCC(s)
case ccReno:
fallthrough
default:
return newRenoCC(s)
}
}
// updateMaxPayloadSize updates the maximum payload size based on the given
// MTU. If this is in response to "packet too big" control packets (indicated
// by the count argument), it also reduces the number of outstanding packets and
// attempts to retransmit the first packet above the MTU size.
func (s *sender) updateMaxPayloadSize(mtu, count int) {
m := mtu - header.TCPMinimumSize
m -= s.ep.maxOptionSize()
// We don't adjust up for now.
if m >= s.maxPayloadSize {
return
}
// Make sure we can transmit at least one byte.
if m <= 0 {
m = 1
}
s.maxPayloadSize = m
if s.gso {
s.ep.gso.MSS = uint16(m)
}
if count == 0 {
// updateMaxPayloadSize is also called when the sender is created.
// and there is no data to send in such cases. Return immediately.
return
}
// Update the scoreboard's smss to reflect the new lowered
// maxPayloadSize.
s.ep.scoreboard.smss = uint16(m)
s.outstanding -= count
if s.outstanding < 0 {
s.outstanding = 0
}
// Rewind writeNext to the first segment exceeding the MTU. Do nothing
// if it is already before such a packet.
for seg := s.writeList.Front(); seg != nil; seg = seg.Next() {
if seg == s.writeNext {
// We got to writeNext before we could find a segment
// exceeding the MTU.
break
}
if seg.data.Size() > m {
// We found a segment exceeding the MTU. Rewind
// writeNext and try to retransmit it.
s.writeNext = seg
break
}
}
// Since we likely reduced the number of outstanding packets, we may be
// ready to send some more.
s.sendData()
}
// sendAck sends an ACK segment.
func (s *sender) sendAck() {
s.sendSegmentFromView(buffer.VectorisedView{}, header.TCPFlagAck, s.sndNxt)
}
// updateRTO updates the retransmit timeout when a new roud-trip time is
// available. This is done in accordance with section 2 of RFC 6298.
func (s *sender) updateRTO(rtt time.Duration) {
s.rtt.Lock()
if !s.rtt.srttInited {
s.rtt.rttvar = rtt / 2
s.rtt.srtt = rtt
s.rtt.srttInited = true
} else {
diff := s.rtt.srtt - rtt
if diff < 0 {
diff = -diff
}
// Use RFC6298 standard algorithm to update rttvar and srtt when
// no timestamps are available.
if !s.ep.sendTSOk {
s.rtt.rttvar = (3*s.rtt.rttvar + diff) / 4
s.rtt.srtt = (7*s.rtt.srtt + rtt) / 8
} else {
// When we are taking RTT measurements of every ACK then
// we need to use a modified method as specified in
// https://tools.ietf.org/html/rfc7323#appendix-G
if s.outstanding == 0 {
s.rtt.Unlock()
return
}
// Netstack measures congestion window/inflight all in
// terms of packets and not bytes. This is similar to
// how linux also does cwnd and inflight. In practice
// this approximation works as expected.
expectedSamples := math.Ceil(float64(s.outstanding) / 2)
// alpha & beta values are the original values as recommended in
// https://tools.ietf.org/html/rfc6298#section-2.3.
const alpha = 0.125
const beta = 0.25
alphaPrime := alpha / expectedSamples
betaPrime := beta / expectedSamples
rttVar := (1-betaPrime)*s.rtt.rttvar.Seconds() + betaPrime*diff.Seconds()
srtt := (1-alphaPrime)*s.rtt.srtt.Seconds() + alphaPrime*rtt.Seconds()
s.rtt.rttvar = time.Duration(rttVar * float64(time.Second))
s.rtt.srtt = time.Duration(srtt * float64(time.Second))
}
}
s.rto = s.rtt.srtt + 4*s.rtt.rttvar
s.rtt.Unlock()
if s.rto < minRTO {
s.rto = minRTO
}
}
// resendSegment resends the first unacknowledged segment.
func (s *sender) resendSegment() {
// Don't use any segments we already sent to measure RTT as they may
// have been affected by packets being lost.
s.rttMeasureSeqNum = s.sndNxt
// Resend the segment.
if seg := s.writeList.Front(); seg != nil {
if seg.data.Size() > s.maxPayloadSize {
s.splitSeg(seg, s.maxPayloadSize)
}
// See: RFC 6675 section 5 Step 4.3
//
// To prevent retransmission, set both the HighRXT and RescueRXT
// to the highest sequence number in the retransmitted segment.
s.fr.highRxt = seg.sequenceNumber.Add(seqnum.Size(seg.data.Size())) - 1
s.fr.rescueRxt = seg.sequenceNumber.Add(seqnum.Size(seg.data.Size())) - 1
s.sendSegment(seg)
s.ep.stack.Stats().TCP.FastRetransmit.Increment()
s.ep.stats.SendErrors.FastRetransmit.Increment()
// Run SetPipe() as per RFC 6675 section 5 Step 4.4
s.SetPipe()
}
}
// retransmitTimerExpired is called when the retransmit timer expires, and
// unacknowledged segments are assumed lost, and thus need to be resent.
// Returns true if the connection is still usable, or false if the connection
// is deemed lost.
func (s *sender) retransmitTimerExpired() bool {
// Check if the timer actually expired or if it's a spurious wake due
// to a previously orphaned runtime timer.
if !s.resendTimer.checkExpiration() {
return true
}
s.ep.stack.Stats().TCP.Timeouts.Increment()
s.ep.stats.SendErrors.Timeouts.Increment()
// Give up if we've waited more than a minute since the last resend.
if s.rto >= 60*time.Second {
return false
}
// Set new timeout. The timer will be restarted by the call to sendData
// below.
s.rto *= 2
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 4.
//
// Retransmit timeouts:
// After a retransmit timeout, record the highest sequence number
// transmitted in the variable recover, and exit the fast recovery
// procedure if applicable.
s.fr.last = s.sndNxt - 1
if s.fr.active {
// We were attempting fast recovery but were not successful.
// Leave the state. We don't need to update ssthresh because it
// has already been updated when entered fast-recovery.
s.leaveFastRecovery()
}
s.state = RTORecovery
s.cc.HandleRTOExpired()
// Mark the next segment to be sent as the first unacknowledged one and
// start sending again. Set the number of outstanding packets to 0 so
// that we'll be able to retransmit.
//
// We'll keep on transmitting (or retransmitting) as we get acks for
// the data we transmit.
s.outstanding = 0
// Expunge all SACK information as per https://tools.ietf.org/html/rfc6675#section-5.1
//
// In order to avoid memory deadlocks, the TCP receiver is allowed to
// discard data that has already been selectively acknowledged. As a
// result, [RFC2018] suggests that a TCP sender SHOULD expunge the SACK
// information gathered from a receiver upon a retransmission timeout
// (RTO) "since the timeout might indicate that the data receiver has
// reneged." Additionally, a TCP sender MUST "ignore prior SACK
// information in determining which data to retransmit."
//
// NOTE: We take the stricter interpretation and just expunge all
// information as we lack more rigorous checks to validate if the SACK
// information is usable after an RTO.
s.ep.scoreboard.Reset()
s.writeNext = s.writeList.Front()
s.sendData()
return true
}
// pCount returns the number of packets in the segment. Due to GSO, a segment
// can be composed of multiple packets.
func (s *sender) pCount(seg *segment) int {
size := seg.data.Size()
if size == 0 {
return 1
}
return (size-1)/s.maxPayloadSize + 1
}
// splitSeg splits a given segment at the size specified and inserts the
// remainder as a new segment after the current one in the write list.
func (s *sender) splitSeg(seg *segment, size int) {
if seg.data.Size() <= size {
return
}
// Split this segment up.
nSeg := seg.clone()
nSeg.data.TrimFront(size)
nSeg.sequenceNumber.UpdateForward(seqnum.Size(size))
s.writeList.InsertAfter(seg, nSeg)
seg.data.CapLength(size)
}
// NextSeg implements the RFC6675 NextSeg() operation. It returns segments that
// match rule 1, 3 and 4 of the NextSeg() operation defined in RFC6675. Rule 2
// is handled by the normal send logic.
func (s *sender) NextSeg() (nextSeg1, nextSeg3, nextSeg4 *segment) {
var s3 *segment
var s4 *segment
smss := s.ep.scoreboard.SMSS()
// Step 1.
for seg := s.writeList.Front(); seg != nil; seg = seg.Next() {
if !s.isAssignedSequenceNumber(seg) {
break
}
segSeq := seg.sequenceNumber
if seg.data.Size() > int(smss) {
s.splitSeg(seg, int(smss))
}
// See RFC 6675 Section 4
//
// 1. If there exists a smallest unSACKED sequence number
// 'S2' that meets the following 3 criteria for determinig
// loss, the sequence range of one segment of up to SMSS
// octects starting with S2 MUST be returned.
if !s.ep.scoreboard.IsSACKED(header.SACKBlock{segSeq, segSeq.Add(1)}) {
// NextSeg():
//
// (1.a) S2 is greater than HighRxt
// (1.b) S2 is less than highest octect covered by
// any received SACK.
if s.fr.highRxt.LessThan(segSeq) && segSeq.LessThan(s.ep.scoreboard.maxSACKED) {
// NextSeg():
// (1.c) IsLost(S2) returns true.
if s.ep.scoreboard.IsLost(segSeq) {
return seg, s3, s4
}
// NextSeg():
//
// (3): If the conditions for rules (1) and (2)
// fail, but there exists an unSACKed sequence
// number S3 that meets the criteria for
// detecting loss given in steps 1.a and 1.b
// above (specifically excluding (1.c)) then one
// segment of upto SMSS octets starting with S3
// SHOULD be returned.
if s3 == nil {
s3 = seg
}
}
// NextSeg():
//
// (4) If the conditions for (1), (2) and (3) fail,
// but there exists outstanding unSACKED data, we
// provide the opportunity for a single "rescue"
// retransmission per entry into loss recovery. If
// HighACK is greater than RescueRxt, the one
// segment of upto SMSS octects that MUST include
// the highest outstanding unSACKed sequence number
// SHOULD be returned.
if s.fr.rescueRxt.LessThan(s.sndUna - 1) {
if s4 != nil {
if s4.sequenceNumber.LessThan(segSeq) {
s4 = seg
}
} else {
s4 = seg
}
s.fr.rescueRxt = s.fr.last
}
}
}
return nil, s3, s4
}
// maybeSendSegment tries to send the specified segment and either coalesces
// other segments into this one or splits the specified segment based on the
// lower of the specified limit value or the receivers window size specified by
// end.
func (s *sender) maybeSendSegment(seg *segment, limit int, end seqnum.Value) (sent bool) {
// We abuse the flags field to determine if we have already
// assigned a sequence number to this segment.
if !s.isAssignedSequenceNumber(seg) {
// Merge segments if allowed.
if seg.data.Size() != 0 {
available := int(seg.sequenceNumber.Size(end))
if available > limit {
available = limit
}
// nextTooBig indicates that the next segment was too
// large to entirely fit in the current segment. It
// would be possible to split the next segment and merge
// the portion that fits, but unexpectedly splitting
// segments can have user visible side-effects which can
// break applications. For example, RFC 7766 section 8
// says that the length and data of a DNS response
// should be sent in the same TCP segment to avoid
// triggering bugs in poorly written DNS
// implementations.
var nextTooBig bool
for seg.Next() != nil && seg.Next().data.Size() != 0 {
if seg.data.Size()+seg.Next().data.Size() > available {
nextTooBig = true
break
}
seg.data.Append(seg.Next().data)
// Consume the segment that we just merged in.
s.writeList.Remove(seg.Next())
}
if !nextTooBig && seg.data.Size() < available {
// Segment is not full.
if s.outstanding > 0 && atomic.LoadUint32(&s.ep.delay) != 0 {
// Nagle's algorithm. From Wikipedia:
// Nagle's algorithm works by
// combining a number of small
// outgoing messages and sending them
// all at once. Specifically, as long
// as there is a sent packet for which
// the sender has received no
// acknowledgment, the sender should
// keep buffering its output until it
// has a full packet's worth of
// output, thus allowing output to be
// sent all at once.
return false
}
if atomic.LoadUint32(&s.ep.cork) != 0 {
// Hold back the segment until full.
return false
}
}
}
// Assign flags. We don't do it above so that we can merge
// additional data if Nagle holds the segment.
seg.sequenceNumber = s.sndNxt
seg.flags = header.TCPFlagAck | header.TCPFlagPsh
}
var segEnd seqnum.Value
if seg.data.Size() == 0 {
if s.writeList.Back() != seg {
panic("FIN segments must be the final segment in the write list.")
}
seg.flags = header.TCPFlagAck | header.TCPFlagFin
segEnd = seg.sequenceNumber.Add(1)
// Transition to FIN-WAIT1 state since we're initiating an active close.
s.ep.mu.Lock()
switch s.ep.state {
case StateCloseWait:
// We've already received a FIN and are now sending our own. The
// sender is now awaiting a final ACK for this FIN.
s.ep.state = StateLastAck
default:
s.ep.state = StateFinWait1
}
s.ep.stack.Stats().TCP.CurrentEstablished.Decrement()
s.ep.mu.Unlock()
} else {
// We're sending a non-FIN segment.
if seg.flags&header.TCPFlagFin != 0 {
panic("Netstack queues FIN segments without data.")
}
if !seg.sequenceNumber.LessThan(end) {
return false
}
available := int(seg.sequenceNumber.Size(end))
if available == 0 {
return false
}
if available > limit {
available = limit
}
if seg.data.Size() > available {
s.splitSeg(seg, available)
}
segEnd = seg.sequenceNumber.Add(seqnum.Size(seg.data.Size()))
}
s.sendSegment(seg)
// Update sndNxt if we actually sent new data (as opposed to
// retransmitting some previously sent data).
if s.sndNxt.LessThan(segEnd) {
s.sndNxt = segEnd
}
return true
}
// handleSACKRecovery implements the loss recovery phase as described in RFC6675
// section 5, step C.
func (s *sender) handleSACKRecovery(limit int, end seqnum.Value) (dataSent bool) {
s.SetPipe()
for s.outstanding < s.sndCwnd {
nextSeg, s3, s4 := s.NextSeg()
if nextSeg == nil {
// NextSeg():
//
// Step (2): "If no sequence number 'S2' per rule (1)
// exists but there exists available unsent data and the
// receiver's advertised window allows, the sequence
// range of one segment of up to SMSS octets of
// previously unsent data starting with sequence number
// HighData+1 MUST be returned."
for seg := s.writeNext; seg != nil; seg = seg.Next() {
if s.isAssignedSequenceNumber(seg) && seg.sequenceNumber.LessThan(s.sndNxt) {
continue
}
// Step C.3 described below is handled by
// maybeSendSegment which increments sndNxt when
// a segment is transmitted.
//
// Step C.3 "If any of the data octets sent in
// (C.1) are above HighData, HighData must be
// updated to reflect the transmission of
// previously unsent data."
if sent := s.maybeSendSegment(seg, limit, end); !sent {
break
}
dataSent = true
s.outstanding++
s.writeNext = seg.Next()
nextSeg = seg
break
}
if nextSeg != nil {
continue
}
}
rescueRtx := false
if nextSeg == nil && s3 != nil {
nextSeg = s3
}
if nextSeg == nil && s4 != nil {
nextSeg = s4
rescueRtx = true
}
if nextSeg == nil {
break
}
segEnd := nextSeg.sequenceNumber.Add(nextSeg.logicalLen())
if !rescueRtx && nextSeg.sequenceNumber.LessThan(s.sndNxt) {
// RFC 6675, Step C.2
//
// "If any of the data octets sent in (C.1) are below
// HighData, HighRxt MUST be set to the highest sequence
// number of the retransmitted segment unless NextSeg ()
// rule (4) was invoked for this retransmission."
s.fr.highRxt = segEnd - 1
}
// RFC 6675, Step C.4.
//
// "The estimate of the amount of data outstanding in the network
// must be updated by incrementing pipe by the number of octets
// transmitted in (C.1)."
s.outstanding++
dataSent = true
s.sendSegment(nextSeg)
}
return dataSent
}
// sendData sends new data segments. It is called when data becomes available or
// when the send window opens up.
func (s *sender) sendData() {
limit := s.maxPayloadSize
if s.gso {
limit = int(s.ep.gso.MaxSize - header.TCPHeaderMaximumSize)
}
end := s.sndUna.Add(s.sndWnd)
// Reduce the congestion window to min(IW, cwnd) per RFC 5681, page 10.
// "A TCP SHOULD set cwnd to no more than RW before beginning
// transmission if the TCP has not sent data in the interval exceeding
// the retrasmission timeout."
if !s.fr.active && time.Now().Sub(s.lastSendTime) > s.rto {
if s.sndCwnd > InitialCwnd {
s.sndCwnd = InitialCwnd
}
}
var dataSent bool
// RFC 6675 recovery algorithm step C 1-5.
if s.fr.active && s.ep.sackPermitted {
dataSent = s.handleSACKRecovery(s.maxPayloadSize, end)
} else {
for seg := s.writeNext; seg != nil && s.outstanding < s.sndCwnd; seg = seg.Next() {
cwndLimit := (s.sndCwnd - s.outstanding) * s.maxPayloadSize
if cwndLimit < limit {
limit = cwndLimit
}
if s.isAssignedSequenceNumber(seg) && s.ep.sackPermitted && s.ep.scoreboard.IsSACKED(seg.sackBlock()) {
continue
}
if sent := s.maybeSendSegment(seg, limit, end); !sent {
break
}
dataSent = true
s.outstanding += s.pCount(seg)
s.writeNext = seg.Next()
}
}
if dataSent {
// We sent data, so we should stop the keepalive timer to ensure
// that no keepalives are sent while there is pending data.
s.ep.disableKeepaliveTimer()
}
// Enable the timer if we have pending data and it's not enabled yet.
if !s.resendTimer.enabled() && s.sndUna != s.sndNxt {
s.resendTimer.enable(s.rto)
}
// If we have no more pending data, start the keepalive timer.
if s.sndUna == s.sndNxt {
s.ep.resetKeepaliveTimer(false)
}
}
func (s *sender) enterFastRecovery() {
s.fr.active = true
// Save state to reflect we're now in fast recovery.
//
// See : https://tools.ietf.org/html/rfc5681#section-3.2 Step 3.
// We inflate the cwnd by 3 to account for the 3 packets which triggered
// the 3 duplicate ACKs and are now not in flight.
s.sndCwnd = s.sndSsthresh + 3
s.fr.first = s.sndUna
s.fr.last = s.sndNxt - 1
s.fr.maxCwnd = s.sndCwnd + s.outstanding
if s.ep.sackPermitted {
s.state = SACKRecovery
s.ep.stack.Stats().TCP.SACKRecovery.Increment()
return
}
s.state = FastRecovery
s.ep.stack.Stats().TCP.FastRecovery.Increment()
}
func (s *sender) leaveFastRecovery() {
s.fr.active = false
s.fr.maxCwnd = 0
s.dupAckCount = 0
// Deflate cwnd. It had been artificially inflated when new dups arrived.
s.sndCwnd = s.sndSsthresh
s.cc.PostRecovery()
}
func (s *sender) handleFastRecovery(seg *segment) (rtx bool) {
ack := seg.ackNumber
// We are in fast recovery mode. Ignore the ack if it's out of
// range.
if !ack.InRange(s.sndUna, s.sndNxt+1) {
return false
}
// Leave fast recovery if it acknowledges all the data covered by
// this fast recovery session.
if s.fr.last.LessThan(ack) {
s.leaveFastRecovery()
return false
}
if s.ep.sackPermitted {
// When SACK is enabled we let retransmission be governed by
// the SACK logic.
return false
}
// Don't count this as a duplicate if it is carrying data or
// updating the window.
if seg.logicalLen() != 0 || s.sndWnd != seg.window {
return false
}
// Inflate the congestion window if we're getting duplicate acks
// for the packet we retransmitted.
if ack == s.fr.first {
// We received a dup, inflate the congestion window by 1 packet
// if we're not at the max yet. Only inflate the window if
// regular FastRecovery is in use, RFC6675 does not require
// inflating cwnd on duplicate ACKs.
if s.sndCwnd < s.fr.maxCwnd {
s.sndCwnd++
}
return false
}
// A partial ack was received. Retransmit this packet and
// remember it so that we don't retransmit it again. We don't
// inflate the window because we're putting the same packet back
// onto the wire.
//
// N.B. The retransmit timer will be reset by the caller.
s.fr.first = ack
s.dupAckCount = 0
return true
}
// isAssignedSequenceNumber relies on the fact that we only set flags once a
// sequencenumber is assigned and that is only done right before we send the
// segment. As a result any segment that has a non-zero flag has a valid
// sequence number assigned to it.
func (s *sender) isAssignedSequenceNumber(seg *segment) bool {
return seg.flags != 0
}
// SetPipe implements the SetPipe() function described in RFC6675. Netstack
// maintains the congestion window in number of packets and not bytes, so
// SetPipe() here measures number of outstanding packets rather than actual
// outstanding bytes in the network.
func (s *sender) SetPipe() {
// If SACK isn't permitted or it is permitted but recovery is not active
// then ignore pipe calculations.
if !s.ep.sackPermitted || !s.fr.active {
return
}
pipe := 0
smss := seqnum.Size(s.ep.scoreboard.SMSS())
for s1 := s.writeList.Front(); s1 != nil && s1.data.Size() != 0 && s.isAssignedSequenceNumber(s1); s1 = s1.Next() {
// With GSO each segment can be much larger than SMSS. So check the segment
// in SMSS sized ranges.
segEnd := s1.sequenceNumber.Add(seqnum.Size(s1.data.Size()))
for startSeq := s1.sequenceNumber; startSeq.LessThan(segEnd); startSeq = startSeq.Add(smss) {
endSeq := startSeq.Add(smss)
if segEnd.LessThan(endSeq) {
endSeq = segEnd
}
sb := header.SACKBlock{startSeq, endSeq}
// SetPipe():
//
// After initializing pipe to zero, the following steps are
// taken for each octet 'S1' in the sequence space between
// HighACK and HighData that has not been SACKed:
if !s1.sequenceNumber.LessThan(s.sndNxt) {
break
}
if s.ep.scoreboard.IsSACKED(sb) {
continue
}
// SetPipe():
//
// (a) If IsLost(S1) returns false, Pipe is incremened by 1.
//
// NOTE: here we mark the whole segment as lost. We do not try
// and test every byte in our write buffer as we maintain our
// pipe in terms of oustanding packets and not bytes.
if !s.ep.scoreboard.IsRangeLost(sb) {
pipe++
}
// SetPipe():
// (b) If S1 <= HighRxt, Pipe is incremented by 1.
if s1.sequenceNumber.LessThanEq(s.fr.highRxt) {
pipe++
}
}
}
s.outstanding = pipe
}
// checkDuplicateAck is called when an ack is received. It manages the state
// related to duplicate acks and determines if a retransmit is needed according
// to the rules in RFC 6582 (NewReno).
func (s *sender) checkDuplicateAck(seg *segment) (rtx bool) {
ack := seg.ackNumber
if s.fr.active {
return s.handleFastRecovery(seg)
}
// We're not in fast recovery yet. A segment is considered a duplicate
// only if it doesn't carry any data and doesn't update the send window,
// because if it does, it wasn't sent in response to an out-of-order
// segment. If SACK is enabled then we have an additional check to see
// if the segment carries new SACK information. If it does then it is
// considered a duplicate ACK as per RFC6675.
if ack != s.sndUna || seg.logicalLen() != 0 || s.sndWnd != seg.window || ack == s.sndNxt {
if !s.ep.sackPermitted || !seg.hasNewSACKInfo {
s.dupAckCount = 0
return false
}
}
s.dupAckCount++
// Do not enter fast recovery until we reach nDupAckThreshold or the
// first unacknowledged byte is considered lost as per SACK scoreboard.
if s.dupAckCount < nDupAckThreshold || (s.ep.sackPermitted && !s.ep.scoreboard.IsLost(s.sndUna)) {
// RFC 6675 Step 3.
s.fr.highRxt = s.sndUna - 1
// Do run SetPipe() to calculate the outstanding segments.
s.SetPipe()
s.state = Disorder
return false
}
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 2
//
// We only do the check here, the incrementing of last to the highest
// sequence number transmitted till now is done when enterFastRecovery
// is invoked.
if !s.fr.last.LessThan(seg.ackNumber) {
s.dupAckCount = 0
return false
}
s.cc.HandleNDupAcks()
s.enterFastRecovery()
s.dupAckCount = 0
return true
}
// handleRcvdSegment is called when a segment is received; it is responsible for
// updating the send-related state.
func (s *sender) handleRcvdSegment(seg *segment) {
// Check if we can extract an RTT measurement from this ack.
if !seg.parsedOptions.TS && s.rttMeasureSeqNum.LessThan(seg.ackNumber) {
s.updateRTO(time.Now().Sub(s.rttMeasureTime))
s.rttMeasureSeqNum = s.sndNxt
}
// Update Timestamp if required. See RFC7323, section-4.3.
if s.ep.sendTSOk && seg.parsedOptions.TS {
s.ep.updateRecentTimestamp(seg.parsedOptions.TSVal, s.maxSentAck, seg.sequenceNumber)
}
// Insert SACKBlock information into our scoreboard.
if s.ep.sackPermitted {
for _, sb := range seg.parsedOptions.SACKBlocks {
// Only insert the SACK block if the following holds
// true:
// * SACK block acks data after the ack number in the
// current segment.
// * SACK block represents a sequence
// between sndUna and sndNxt (i.e. data that is
// currently unacked and in-flight).
// * SACK block that has not been SACKed already.
//
// NOTE: This check specifically excludes DSACK blocks
// which have start/end before sndUna and are used to
// indicate spurious retransmissions.
if seg.ackNumber.LessThan(sb.Start) && s.sndUna.LessThan(sb.Start) && sb.End.LessThanEq(s.sndNxt) && !s.ep.scoreboard.IsSACKED(sb) {
s.ep.scoreboard.Insert(sb)
seg.hasNewSACKInfo = true
}
}
s.SetPipe()
}
// Count the duplicates and do the fast retransmit if needed.
rtx := s.checkDuplicateAck(seg)
// Stash away the current window size.
s.sndWnd = seg.window
// Ignore ack if it doesn't acknowledge any new data.
ack := seg.ackNumber
if (ack - 1).InRange(s.sndUna, s.sndNxt) {
s.dupAckCount = 0
// See : https://tools.ietf.org/html/rfc1323#section-3.3.
// Specifically we should only update the RTO using TSEcr if the
// following condition holds:
//
// A TSecr value received in a segment is used to update the
// averaged RTT measurement only if the segment acknowledges
// some new data, i.e., only if it advances the left edge of
// the send window.
if s.ep.sendTSOk && seg.parsedOptions.TSEcr != 0 {
// TSVal/Ecr values sent by Netstack are at a millisecond
// granularity.
elapsed := time.Duration(s.ep.timestamp()-seg.parsedOptions.TSEcr) * time.Millisecond
s.updateRTO(elapsed)
}
// When an ack is received we must rearm the timer.
// RFC 6298 5.2
s.resendTimer.enable(s.rto)
// Remove all acknowledged data from the write list.
acked := s.sndUna.Size(ack)
s.sndUna = ack
ackLeft := acked
originalOutstanding := s.outstanding
for ackLeft > 0 {
// We use logicalLen here because we can have FIN
// segments (which are always at the end of list) that
// have no data, but do consume a sequence number.
seg := s.writeList.Front()
datalen := seg.logicalLen()
if datalen > ackLeft {
prevCount := s.pCount(seg)
seg.data.TrimFront(int(ackLeft))
seg.sequenceNumber.UpdateForward(ackLeft)
s.outstanding -= prevCount - s.pCount(seg)
break
}
if s.writeNext == seg {
s.writeNext = seg.Next()
}
s.writeList.Remove(seg)
// if SACK is enabled then Only reduce outstanding if
// the segment was not previously SACKED as these have
// already been accounted for in SetPipe().
if !s.ep.sackPermitted || !s.ep.scoreboard.IsSACKED(seg.sackBlock()) {
s.outstanding -= s.pCount(seg)
}
seg.decRef()
ackLeft -= datalen
}
// Update the send buffer usage and notify potential waiters.
s.ep.updateSndBufferUsage(int(acked))
// Clear SACK information for all acked data.
s.ep.scoreboard.Delete(s.sndUna)
// If we are not in fast recovery then update the congestion
// window based on the number of acknowledged packets.
if !s.fr.active {
s.cc.Update(originalOutstanding - s.outstanding)
if s.fr.last.LessThan(s.sndUna) {
s.state = Open
}
}
// It is possible for s.outstanding to drop below zero if we get
// a retransmit timeout, reset outstanding to zero but later
// get an ack that cover previously sent data.
if s.outstanding < 0 {
s.outstanding = 0
}
s.SetPipe()
// If all outstanding data was acknowledged the disable the timer.
// RFC 6298 Rule 5.3
if s.sndUna == s.sndNxt {
s.outstanding = 0
s.resendTimer.disable()
}
}
// Now that we've popped all acknowledged data from the retransmit
// queue, retransmit if needed.
if rtx {
s.resendSegment()
}
// Send more data now that some of the pending data has been ack'd, or
// that the window opened up, or the congestion window was inflated due
// to a duplicate ack during fast recovery. This will also re-enable
// the retransmit timer if needed.
if !s.ep.sackPermitted || s.fr.active || s.dupAckCount == 0 || seg.hasNewSACKInfo {
s.sendData()
}
}
// sendSegment sends the specified segment.
func (s *sender) sendSegment(seg *segment) *tcpip.Error {
if !seg.xmitTime.IsZero() {
s.ep.stack.Stats().TCP.Retransmits.Increment()
s.ep.stats.SendErrors.Retransmits.Increment()
if s.sndCwnd < s.sndSsthresh {
s.ep.stack.Stats().TCP.SlowStartRetransmits.Increment()
}
}
seg.xmitTime = time.Now()
return s.sendSegmentFromView(seg.data, seg.flags, seg.sequenceNumber)
}
// sendSegmentFromView sends a new segment containing the given payload, flags
// and sequence number.
func (s *sender) sendSegmentFromView(data buffer.VectorisedView, flags byte, seq seqnum.Value) *tcpip.Error {
s.lastSendTime = time.Now()
if seq == s.rttMeasureSeqNum {
s.rttMeasureTime = s.lastSendTime
}
rcvNxt, rcvWnd := s.ep.rcv.getSendParams()
// Remember the max sent ack.
s.maxSentAck = rcvNxt
// Every time a packet containing data is sent (including a
// retransmission), if SACK is enabled then use the conservative timer
// described in RFC6675 Section 4.0, otherwise follow the standard time
// described in RFC6298 Section 5.2.
if data.Size() != 0 {
if s.ep.sackPermitted {
s.resendTimer.enable(s.rto)
} else {
if !s.resendTimer.enabled() {
s.resendTimer.enable(s.rto)
}
}
}
return s.ep.sendRaw(data, flags, seq, rcvNxt, rcvWnd)
}