blob: 72d711bda40ea41b4fc567c6fae87420b94483d8 [file] [log] [blame]
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"crypto/sha1"
"encoding/binary"
"hash"
"io"
"sync"
"time"
"github.com/google/netstack/rand"
"github.com/google/netstack/sleep"
"github.com/google/netstack/tcpip"
"github.com/google/netstack/tcpip/header"
"github.com/google/netstack/tcpip/seqnum"
"github.com/google/netstack/tcpip/stack"
"github.com/google/netstack/waiter"
)
const (
// tsLen is the length, in bits, of the timestamp in the SYN cookie.
tsLen = 8
// tsMask is a mask for timestamp values (i.e., tsLen bits).
tsMask = (1 << tsLen) - 1
// tsOffset is the offset, in bits, of the timestamp in the SYN cookie.
tsOffset = 24
// hashMask is the mask for hash values (i.e., tsOffset bits).
hashMask = (1 << tsOffset) - 1
// maxTSDiff is the maximum allowed difference between a received cookie
// timestamp and the current timestamp. If the difference is greater
// than maxTSDiff, the cookie is expired.
maxTSDiff = 2
)
var (
// SynRcvdCountThreshold is the global maximum number of connections
// that are allowed to be in SYN-RCVD state before TCP starts using SYN
// cookies to accept connections.
//
// It is an exported variable only for testing, and should not otherwise
// be used by importers of this package.
SynRcvdCountThreshold uint64 = 1000
// mssTable is a slice containing the possible MSS values that we
// encode in the SYN cookie with two bits.
mssTable = []uint16{536, 1300, 1440, 1460}
)
func encodeMSS(mss uint16) uint32 {
for i := len(mssTable) - 1; i > 0; i-- {
if mss >= mssTable[i] {
return uint32(i)
}
}
return 0
}
// syncRcvdCount is the number of endpoints in the SYN-RCVD state. The value is
// protected by a mutex so that we can increment only when it's guaranteed not
// to go above a threshold.
var synRcvdCount struct {
sync.Mutex
value uint64
pending sync.WaitGroup
}
// listenContext is used by a listening endpoint to store state used while
// listening for connections. This struct is allocated by the listen goroutine
// and must not be accessed or have its methods called concurrently as they
// may mutate the stored objects.
type listenContext struct {
stack *stack.Stack
rcvWnd seqnum.Size
nonce [2][sha1.BlockSize]byte
listenEP *endpoint
hasherMu sync.Mutex
hasher hash.Hash
v6only bool
netProto tcpip.NetworkProtocolNumber
// pendingMu protects pendingEndpoints. This should only be accessed
// by the listening endpoint's worker goroutine.
//
// Lock Ordering: listenEP.workerMu -> pendingMu
pendingMu sync.Mutex
// pending is used to wait for all pendingEndpoints to finish when
// a socket is closed.
pending sync.WaitGroup
// pendingEndpoints is a map of all endpoints for which a handshake is
// in progress.
pendingEndpoints map[stack.TransportEndpointID]*endpoint
}
// timeStamp returns an 8-bit timestamp with a granularity of 64 seconds.
func timeStamp() uint32 {
return uint32(time.Now().Unix()>>6) & tsMask
}
// incSynRcvdCount tries to increment the global number of endpoints in SYN-RCVD
// state. It succeeds if the increment doesn't make the count go beyond the
// threshold, and fails otherwise.
func incSynRcvdCount() bool {
synRcvdCount.Lock()
if synRcvdCount.value >= SynRcvdCountThreshold {
synRcvdCount.Unlock()
return false
}
synRcvdCount.pending.Add(1)
synRcvdCount.value++
synRcvdCount.Unlock()
return true
}
// decSynRcvdCount atomically decrements the global number of endpoints in
// SYN-RCVD state. It must only be called if a previous call to incSynRcvdCount
// succeeded.
func decSynRcvdCount() {
synRcvdCount.Lock()
synRcvdCount.value--
synRcvdCount.pending.Done()
synRcvdCount.Unlock()
}
// synCookiesInUse() returns true if the synRcvdCount is greater than
// SynRcvdCountThreshold.
func synCookiesInUse() bool {
synRcvdCount.Lock()
v := synRcvdCount.value
synRcvdCount.Unlock()
return v >= SynRcvdCountThreshold
}
// newListenContext creates a new listen context.
func newListenContext(stk *stack.Stack, listenEP *endpoint, rcvWnd seqnum.Size, v6only bool, netProto tcpip.NetworkProtocolNumber) *listenContext {
l := &listenContext{
stack: stk,
rcvWnd: rcvWnd,
hasher: sha1.New(),
v6only: v6only,
netProto: netProto,
listenEP: listenEP,
pendingEndpoints: make(map[stack.TransportEndpointID]*endpoint),
}
rand.Read(l.nonce[0][:])
rand.Read(l.nonce[1][:])
return l
}
// cookieHash calculates the cookieHash for the given id, timestamp and nonce
// index. The hash is used to create and validate cookies.
func (l *listenContext) cookieHash(id stack.TransportEndpointID, ts uint32, nonceIndex int) uint32 {
// Initialize block with fixed-size data: local ports and v.
var payload [8]byte
binary.BigEndian.PutUint16(payload[0:], id.LocalPort)
binary.BigEndian.PutUint16(payload[2:], id.RemotePort)
binary.BigEndian.PutUint32(payload[4:], ts)
// Feed everything to the hasher.
l.hasherMu.Lock()
l.hasher.Reset()
l.hasher.Write(payload[:])
l.hasher.Write(l.nonce[nonceIndex][:])
io.WriteString(l.hasher, string(id.LocalAddress))
io.WriteString(l.hasher, string(id.RemoteAddress))
// Finalize the calculation of the hash and return the first 4 bytes.
h := make([]byte, 0, sha1.Size)
h = l.hasher.Sum(h)
l.hasherMu.Unlock()
return binary.BigEndian.Uint32(h[:])
}
// createCookie creates a SYN cookie for the given id and incoming sequence
// number.
func (l *listenContext) createCookie(id stack.TransportEndpointID, seq seqnum.Value, data uint32) seqnum.Value {
ts := timeStamp()
v := l.cookieHash(id, 0, 0) + uint32(seq) + (ts << tsOffset)
v += (l.cookieHash(id, ts, 1) + data) & hashMask
return seqnum.Value(v)
}
// isCookieValid checks if the supplied cookie is valid for the given id and
// sequence number. If it is, it also returns the data originally encoded in the
// cookie when createCookie was called.
func (l *listenContext) isCookieValid(id stack.TransportEndpointID, cookie seqnum.Value, seq seqnum.Value) (uint32, bool) {
ts := timeStamp()
v := uint32(cookie) - l.cookieHash(id, 0, 0) - uint32(seq)
cookieTS := v >> tsOffset
if ((ts - cookieTS) & tsMask) > maxTSDiff {
return 0, false
}
return (v - l.cookieHash(id, cookieTS, 1)) & hashMask, true
}
// createConnectingEndpoint creates a new endpoint in a connecting state, with
// the connection parameters given by the arguments.
func (l *listenContext) createConnectingEndpoint(s *segment, iss seqnum.Value, irs seqnum.Value, rcvdSynOpts *header.TCPSynOptions) (*endpoint, *tcpip.Error) {
// Create a new endpoint.
netProto := l.netProto
if netProto == 0 {
netProto = s.route.NetProto
}
n := newEndpoint(l.stack, netProto, nil)
n.v6only = l.v6only
n.ID = s.id
n.boundNICID = s.route.NICID()
n.route = s.route.Clone()
n.effectiveNetProtos = []tcpip.NetworkProtocolNumber{s.route.NetProto}
n.rcvBufSize = int(l.rcvWnd)
n.amss = mssForRoute(&n.route)
n.maybeEnableTimestamp(rcvdSynOpts)
n.maybeEnableSACKPermitted(rcvdSynOpts)
n.initGSO()
// Register new endpoint so that packets are routed to it.
if err := n.stack.RegisterTransportEndpoint(n.boundNICID, n.effectiveNetProtos, ProtocolNumber, n.ID, n, n.reusePort, n.bindToDevice); err != nil {
n.Close()
return nil, err
}
n.isRegistered = true
// Create sender and receiver.
//
// The receiver at least temporarily has a zero receive window scale,
// but the caller may change it (before starting the protocol loop).
n.snd = newSender(n, iss, irs, s.window, rcvdSynOpts.MSS, rcvdSynOpts.WS)
n.rcv = newReceiver(n, irs, seqnum.Size(n.initialReceiveWindow()), 0, seqnum.Size(n.receiveBufferSize()))
// Bootstrap the auto tuning algorithm. Starting at zero will result in
// a large step function on the first window adjustment causing the
// window to grow to a really large value.
n.rcvAutoParams.prevCopied = n.initialReceiveWindow()
return n, nil
}
// createEndpoint creates a new endpoint in connected state and then performs
// the TCP 3-way handshake.
func (l *listenContext) createEndpointAndPerformHandshake(s *segment, opts *header.TCPSynOptions) (*endpoint, *tcpip.Error) {
// Create new endpoint.
irs := s.sequenceNumber
cookie := l.createCookie(s.id, irs, encodeMSS(opts.MSS))
ep, err := l.createConnectingEndpoint(s, cookie, irs, opts)
if err != nil {
return nil, err
}
// listenEP is nil when listenContext is used by tcp.Forwarder.
if l.listenEP != nil {
l.listenEP.mu.Lock()
if l.listenEP.state != StateListen {
l.listenEP.mu.Unlock()
return nil, tcpip.ErrConnectionAborted
}
l.addPendingEndpoint(ep)
l.listenEP.mu.Unlock()
}
// Perform the 3-way handshake.
h := newHandshake(ep, seqnum.Size(ep.initialReceiveWindow()))
h.resetToSynRcvd(cookie, irs, opts)
if err := h.execute(); err != nil {
ep.Close()
if l.listenEP != nil {
l.removePendingEndpoint(ep)
}
return nil, err
}
ep.mu.Lock()
ep.stack.Stats().TCP.CurrentEstablished.Increment()
ep.state = StateEstablished
ep.mu.Unlock()
// Update the receive window scaling. We can't do it before the
// handshake because it's possible that the peer doesn't support window
// scaling.
ep.rcv.rcvWndScale = h.effectiveRcvWndScale()
return ep, nil
}
func (l *listenContext) addPendingEndpoint(n *endpoint) {
l.pendingMu.Lock()
l.pendingEndpoints[n.ID] = n
l.pending.Add(1)
l.pendingMu.Unlock()
}
func (l *listenContext) removePendingEndpoint(n *endpoint) {
l.pendingMu.Lock()
delete(l.pendingEndpoints, n.ID)
l.pending.Done()
l.pendingMu.Unlock()
}
func (l *listenContext) closeAllPendingEndpoints() {
l.pendingMu.Lock()
for _, n := range l.pendingEndpoints {
n.notifyProtocolGoroutine(notifyClose)
}
l.pendingMu.Unlock()
l.pending.Wait()
}
// deliverAccepted delivers the newly-accepted endpoint to the listener. If the
// endpoint has transitioned out of the listen state, the new endpoint is closed
// instead.
func (e *endpoint) deliverAccepted(n *endpoint) {
e.mu.Lock()
state := e.state
e.pendingAccepted.Add(1)
defer e.pendingAccepted.Done()
acceptedChan := e.acceptedChan
e.mu.Unlock()
if state == StateListen {
acceptedChan <- n
e.waiterQueue.Notify(waiter.EventIn)
} else {
n.Close()
}
}
// handleSynSegment is called in its own goroutine once the listening endpoint
// receives a SYN segment. It is responsible for completing the handshake and
// queueing the new endpoint for acceptance.
//
// A limited number of these goroutines are allowed before TCP starts using SYN
// cookies to accept connections.
func (e *endpoint) handleSynSegment(ctx *listenContext, s *segment, opts *header.TCPSynOptions) {
defer decSynRcvdCount()
defer e.decSynRcvdCount()
defer s.decRef()
n, err := ctx.createEndpointAndPerformHandshake(s, opts)
if err != nil {
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
return
}
ctx.removePendingEndpoint(n)
e.deliverAccepted(n)
}
func (e *endpoint) incSynRcvdCount() bool {
e.mu.Lock()
if e.synRcvdCount >= cap(e.acceptedChan) {
e.mu.Unlock()
return false
}
e.synRcvdCount++
e.mu.Unlock()
return true
}
func (e *endpoint) decSynRcvdCount() {
e.mu.Lock()
e.synRcvdCount--
e.mu.Unlock()
}
func (e *endpoint) acceptQueueIsFull() bool {
e.mu.Lock()
if l, c := len(e.acceptedChan)+e.synRcvdCount, cap(e.acceptedChan); l >= c {
e.mu.Unlock()
return true
}
e.mu.Unlock()
return false
}
// handleListenSegment is called when a listening endpoint receives a segment
// and needs to handle it.
func (e *endpoint) handleListenSegment(ctx *listenContext, s *segment) {
switch s.flags {
case header.TCPFlagSyn:
opts := parseSynSegmentOptions(s)
if incSynRcvdCount() {
// Only handle the syn if the following conditions hold
// - accept queue is not full.
// - number of connections in synRcvd state is less than the
// backlog.
if !e.acceptQueueIsFull() && e.incSynRcvdCount() {
s.incRef()
go e.handleSynSegment(ctx, s, &opts)
return
}
decSynRcvdCount()
e.stack.Stats().TCP.ListenOverflowSynDrop.Increment()
e.stats.ReceiveErrors.ListenOverflowSynDrop.Increment()
e.stack.Stats().DroppedPackets.Increment()
return
} else {
// If cookies are in use but the endpoint accept queue
// is full then drop the syn.
if e.acceptQueueIsFull() {
e.stack.Stats().TCP.ListenOverflowSynDrop.Increment()
e.stats.ReceiveErrors.ListenOverflowSynDrop.Increment()
e.stack.Stats().DroppedPackets.Increment()
return
}
cookie := ctx.createCookie(s.id, s.sequenceNumber, encodeMSS(opts.MSS))
// Send SYN without window scaling because we currently
// dont't encode this information in the cookie.
//
// Enable Timestamp option if the original syn did have
// the timestamp option specified.
mss := mssForRoute(&s.route)
synOpts := header.TCPSynOptions{
WS: -1,
TS: opts.TS,
TSVal: tcpTimeStamp(timeStampOffset()),
TSEcr: opts.TSVal,
MSS: uint16(mss),
}
e.sendSynTCP(&s.route, s.id, e.ttl, e.sendTOS, header.TCPFlagSyn|header.TCPFlagAck, cookie, s.sequenceNumber+1, ctx.rcvWnd, synOpts)
e.stack.Stats().TCP.ListenOverflowSynCookieSent.Increment()
}
case header.TCPFlagAck:
if e.acceptQueueIsFull() {
// Silently drop the ack as the application can't accept
// the connection at this point. The ack will be
// retransmitted by the sender anyway and we can
// complete the connection at the time of retransmit if
// the backlog has space.
e.stack.Stats().TCP.ListenOverflowAckDrop.Increment()
e.stats.ReceiveErrors.ListenOverflowAckDrop.Increment()
e.stack.Stats().DroppedPackets.Increment()
return
}
if !synCookiesInUse() {
// Send a reset as this is an ACK for which there is no
// half open connections and we are not using cookies
// yet.
//
// The only time we should reach here when a connection
// was opened and closed really quickly and a delayed
// ACK was received from the sender.
replyWithReset(s)
return
}
// Since SYN cookies are in use this is potentially an ACK to a
// SYN-ACK we sent but don't have a half open connection state
// as cookies are being used to protect against a potential SYN
// flood. In such cases validate the cookie and if valid create
// a fully connected endpoint and deliver to the accept queue.
//
// If not, silently drop the ACK to avoid leaking information
// when under a potential syn flood attack.
//
// Validate the cookie.
data, ok := ctx.isCookieValid(s.id, s.ackNumber-1, s.sequenceNumber-1)
if !ok || int(data) >= len(mssTable) {
e.stack.Stats().TCP.ListenOverflowInvalidSynCookieRcvd.Increment()
e.stack.Stats().DroppedPackets.Increment()
return
}
e.stack.Stats().TCP.ListenOverflowSynCookieRcvd.Increment()
// Create newly accepted endpoint and deliver it.
rcvdSynOptions := &header.TCPSynOptions{
MSS: mssTable[data],
// Disable Window scaling as original SYN is
// lost.
WS: -1,
}
// When syn cookies are in use we enable timestamp only
// if the ack specifies the timestamp option assuming
// that the other end did in fact negotiate the
// timestamp option in the original SYN.
if s.parsedOptions.TS {
rcvdSynOptions.TS = true
rcvdSynOptions.TSVal = s.parsedOptions.TSVal
rcvdSynOptions.TSEcr = s.parsedOptions.TSEcr
}
n, err := ctx.createConnectingEndpoint(s, s.ackNumber-1, s.sequenceNumber-1, rcvdSynOptions)
if err != nil {
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
return
}
// clear the tsOffset for the newly created
// endpoint as the Timestamp was already
// randomly offset when the original SYN-ACK was
// sent above.
n.tsOffset = 0
// Switch state to connected.
n.stack.Stats().TCP.CurrentEstablished.Increment()
n.state = StateEstablished
// Do the delivery in a separate goroutine so
// that we don't block the listen loop in case
// the application is slow to accept or stops
// accepting.
//
// NOTE: This won't result in an unbounded
// number of goroutines as we do check before
// entering here that there was at least some
// space available in the backlog.
go e.deliverAccepted(n)
}
}
// protocolListenLoop is the main loop of a listening TCP endpoint. It runs in
// its own goroutine and is responsible for handling connection requests.
func (e *endpoint) protocolListenLoop(rcvWnd seqnum.Size) *tcpip.Error {
e.mu.Lock()
v6only := e.v6only
e.mu.Unlock()
ctx := newListenContext(e.stack, e, rcvWnd, v6only, e.NetProto)
defer func() {
// Mark endpoint as closed. This will prevent goroutines running
// handleSynSegment() from attempting to queue new connections
// to the endpoint.
e.mu.Lock()
e.state = StateClose
// close any endpoints in SYN-RCVD state.
ctx.closeAllPendingEndpoints()
// Do cleanup if needed.
e.completeWorkerLocked()
if e.drainDone != nil {
close(e.drainDone)
}
e.mu.Unlock()
// Notify waiters that the endpoint is shutdown.
e.waiterQueue.Notify(waiter.EventIn | waiter.EventOut)
}()
s := sleep.Sleeper{}
s.AddWaker(&e.notificationWaker, wakerForNotification)
s.AddWaker(&e.newSegmentWaker, wakerForNewSegment)
for {
switch index, _ := s.Fetch(true); index {
case wakerForNotification:
n := e.fetchNotifications()
if n&notifyClose != 0 {
return nil
}
if n&notifyDrain != 0 {
for !e.segmentQueue.empty() {
s := e.segmentQueue.dequeue()
e.handleListenSegment(ctx, s)
s.decRef()
}
close(e.drainDone)
<-e.undrain
}
case wakerForNewSegment:
// Process at most maxSegmentsPerWake segments.
mayRequeue := true
for i := 0; i < maxSegmentsPerWake; i++ {
s := e.segmentQueue.dequeue()
if s == nil {
mayRequeue = false
break
}
e.handleListenSegment(ctx, s)
s.decRef()
}
// If the queue is not empty, make sure we'll wake up
// in the next iteration.
if mayRequeue && !e.segmentQueue.empty() {
e.newSegmentWaker.Assert()
}
}
}
}