blob: 217d4ded6bf65f409f31e5feea57ce5e6add759b [file] [log] [blame]
// Copyright 2016 The Netstack Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ipv6 contains the implementation of the ipv6 network protocol. To use
// it in the networking stack, this package must be added to the project, and
// activated on the stack by passing ipv6.ProtocolName (or "ipv6") as one of the
// network protocols when calling stack.New(). Then endpoints can be created
// by passing ipv6.ProtocolNumber as the network protocol number when calling
// Stack.NewEndpoint().
package ipv6
import (
"sync/atomic"
"github.com/google/netstack/tcpip"
"github.com/google/netstack/tcpip/buffer"
"github.com/google/netstack/tcpip/header"
"github.com/google/netstack/tcpip/stack"
)
const (
// ProtocolName is the string representation of the ipv6 protocol name.
ProtocolName = "ipv6"
// ProtocolNumber is the ipv6 protocol number.
ProtocolNumber = header.IPv6ProtocolNumber
// maxTotalSize is maximum size that can be encoded in the 16-bit
// PayloadLength field of the ipv6 header.
maxPayloadSize = 0xffff
)
type address [header.IPv6AddressSize]byte
type endpoint struct {
nicid tcpip.NICID
id stack.NetworkEndpointID
address address
linkEP stack.LinkEndpoint
linkAddrCache stack.LinkAddressCache
dispatcher stack.TransportDispatcher
}
func (e *endpoint) DefaultTTL() uint8 {
return header.IPv6DefaultHopLimit
}
// MTU implements stack.NetworkEndpoint.MTU. It returns the link-layer MTU minus
// the network layer max header length.
func (e *endpoint) MTU() uint32 {
mtu := e.linkEP.MTU() - uint32(e.MaxHeaderLength())
if mtu <= maxPayloadSize {
return mtu
}
return maxPayloadSize
}
// NICID returns the ID of the NIC this endpoint belongs to.
func (e *endpoint) NICID() tcpip.NICID {
return e.nicid
}
// ID returns the ipv6 endpoint ID.
func (e *endpoint) ID() *stack.NetworkEndpointID {
return &e.id
}
// MaxHeaderLength returns the maximum length needed by ipv6 headers (and
// underlying protocols).
func (e *endpoint) MaxHeaderLength() uint16 {
return e.linkEP.MaxHeaderLength() + header.IPv6MinimumSize
}
// WritePacket writes a packet to the given destination address and protocol.
func (e *endpoint) WritePacket(r *stack.Route, hdr *buffer.Prependable, payload buffer.View, protocol tcpip.TransportProtocolNumber, ttl uint8) *tcpip.Error {
length := uint16(hdr.UsedLength())
if payload != nil {
length += uint16(len(payload))
}
ip := header.IPv6(hdr.Prepend(header.IPv6MinimumSize))
ip.Encode(&header.IPv6Fields{
PayloadLength: length,
NextHeader: uint8(protocol),
HopLimit: ttl,
SrcAddr: r.LocalAddress,
DstAddr: r.RemoteAddress,
})
atomic.AddUint64(&r.MutableStats().IP.PacketsSent, 1)
return e.linkEP.WritePacket(r, hdr, payload, ProtocolNumber)
}
// HandlePacket is called by the link layer when new ipv6 packets arrive for
// this endpoint.
func (e *endpoint) HandlePacket(r *stack.Route, vv *buffer.VectorisedView) {
h := header.IPv6(vv.First())
if !h.IsValid(vv.Size()) {
return
}
vv.TrimFront(header.IPv6MinimumSize)
vv.CapLength(int(h.PayloadLength()))
p := tcpip.TransportProtocolNumber(h.NextHeader())
if p == header.ICMPv6ProtocolNumber {
e.handleICMP(r, vv)
return
}
atomic.AddUint64(&r.MutableStats().IP.PacketsReceived, 1)
e.dispatcher.DeliverTransportPacket(r, p, vv)
}
// Close cleans up resources associated with the endpoint.
func (*endpoint) Close() {}
type protocol struct{}
// NewProtocol creates a new protocol ipv6 protocol descriptor. This is exported
// only for tests that short-circuit the stack. Regular use of the protocol is
// done via the stack, which gets a protocol descriptor from the init() function
// below.
func NewProtocol() stack.NetworkProtocol {
return &protocol{}
}
// Number returns the ipv6 protocol number.
func (p *protocol) Number() tcpip.NetworkProtocolNumber {
return ProtocolNumber
}
// MinimumPacketSize returns the minimum valid ipv6 packet size.
func (p *protocol) MinimumPacketSize() int {
return header.IPv6MinimumSize
}
// ParseAddresses implements NetworkProtocol.ParseAddresses.
func (*protocol) ParseAddresses(v buffer.View) (src, dst tcpip.Address) {
h := header.IPv6(v)
return h.SourceAddress(), h.DestinationAddress()
}
// NewEndpoint creates a new ipv6 endpoint.
func (p *protocol) NewEndpoint(nicid tcpip.NICID, addr tcpip.Address, linkAddrCache stack.LinkAddressCache, dispatcher stack.TransportDispatcher, linkEP stack.LinkEndpoint) (stack.NetworkEndpoint, *tcpip.Error) {
e := &endpoint{
nicid: nicid,
linkEP: linkEP,
linkAddrCache: linkAddrCache,
dispatcher: dispatcher,
}
copy(e.address[:], addr)
e.id = stack.NetworkEndpointID{tcpip.Address(e.address[:])}
return e, nil
}
// SetOption implements NetworkProtocol.SetOption.
func (p *protocol) SetOption(option interface{}) *tcpip.Error {
return tcpip.ErrUnknownProtocolOption
}
func init() {
stack.RegisterNetworkProtocolFactory(ProtocolName, func() stack.NetworkProtocol {
return &protocol{}
})
}
// LinkLocalAddr computes the default IPv6 link-local address from
// a link-layer (MAC) address.
func LinkLocalAddr(linkAddr tcpip.LinkAddress) tcpip.Address {
// Convert a 48-bit MAC to an EUI-64 and then prepend the
// link-local header, FE80::.
//
// The conversion is very nearly:
// aa:bb:cc:dd:ee:ff => FE80::Aabb:ccFF:FEdd:eeff
// Note the capital A. The conversion aa->Aa involves a bit flip.
lladdrb := [16]byte{
0: 0xFE,
1: 0x80,
8: linkAddr[0] ^ 2,
9: linkAddr[1],
10: linkAddr[2],
11: 0xFF,
12: 0xFE,
13: linkAddr[3],
14: linkAddr[4],
15: linkAddr[5],
}
return tcpip.Address(lladdrb[:])
}
// SolicitedNodeAddr computes the solicited-node multicast address.
// This is used for NDP. Described in RFC 4291.
func SolicitedNodeAddr(addr tcpip.Address) tcpip.Address {
return "\xff\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\xff" + addr[len(addr)-3:]
}