blob: a45f7805ebd9480776aeac19eab6340ef3724d9a [file] [log] [blame]
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package udp
import (
"sync"
"github.com/google/netstack/sleep"
"github.com/google/netstack/tcpip"
"github.com/google/netstack/tcpip/buffer"
"github.com/google/netstack/tcpip/header"
"github.com/google/netstack/tcpip/stack"
"github.com/google/netstack/waiter"
)
// +stateify savable
type udpPacket struct {
udpPacketEntry
senderAddress tcpip.FullAddress
data buffer.VectorisedView
timestamp int64
hasTimestamp bool
// views is used as buffer for data when its length is large
// enough to store a VectorisedView.
views [8]buffer.View
}
type endpointState int
const (
stateInitial endpointState = iota
stateBound
stateConnected
stateClosed
)
// endpoint represents a UDP endpoint. This struct serves as the interface
// between users of the endpoint and the protocol implementation; it is legal to
// have concurrent goroutines make calls into the endpoint, they are properly
// synchronized.
//
// +stateify savable
type endpoint struct {
// The following fields are initialized at creation time and do not
// change throughout the lifetime of the endpoint.
stack *stack.Stack
netProto tcpip.NetworkProtocolNumber
waiterQueue *waiter.Queue
// The following fields are used to manage the receive queue, and are
// protected by rcvMu.
rcvMu sync.Mutex
rcvReady bool
rcvList udpPacketList
rcvBufSizeMax int
rcvBufSize int
rcvClosed bool
rcvTimestamp bool
// The following fields are protected by the mu mutex.
mu sync.RWMutex
sndBufSize int
id stack.TransportEndpointID
state endpointState
bindNICID tcpip.NICID
regNICID tcpip.NICID
route stack.Route
dstPort uint16
v6only bool
multicastTTL uint8
// shutdownFlags represent the current shutdown state of the endpoint.
shutdownFlags tcpip.ShutdownFlags
// multicastMemberships that need to be remvoed when the endpoint is
// closed. Protected by the mu mutex.
multicastMemberships []multicastMembership
// effectiveNetProtos contains the network protocols actually in use. In
// most cases it will only contain "netProto", but in cases like IPv6
// endpoints with v6only set to false, this could include multiple
// protocols (e.g., IPv6 and IPv4) or a single different protocol (e.g.,
// IPv4 when IPv6 endpoint is bound or connected to an IPv4 mapped
// address).
effectiveNetProtos []tcpip.NetworkProtocolNumber
}
type multicastMembership struct {
nicID tcpip.NICID
multicastAddr tcpip.Address
}
func newEndpoint(stack *stack.Stack, netProto tcpip.NetworkProtocolNumber, waiterQueue *waiter.Queue) *endpoint {
return &endpoint{
stack: stack,
netProto: netProto,
waiterQueue: waiterQueue,
// RFC 1075 section 5.4 recommends a TTL of 1 for membership
// requests.
//
// RFC 5135 4.2.1 appears to assume that IGMP messages have a
// TTL of 1.
//
// RFC 5135 Appendix A defines TTL=1: A multicast source that
// wants its traffic to not traverse a router (e.g., leave a
// home network) may find it useful to send traffic with IP
// TTL=1.
//
// Linux defaults to TTL=1.
multicastTTL: 1,
rcvBufSizeMax: 32 * 1024,
sndBufSize: 32 * 1024,
}
}
// NewConnectedEndpoint creates a new endpoint in the connected state using the
// provided route.
func NewConnectedEndpoint(stack *stack.Stack, r *stack.Route, id stack.TransportEndpointID, waiterQueue *waiter.Queue) (tcpip.Endpoint, *tcpip.Error) {
ep := newEndpoint(stack, r.NetProto, waiterQueue)
// Register new endpoint so that packets are routed to it.
if err := stack.RegisterTransportEndpoint(r.NICID(), []tcpip.NetworkProtocolNumber{r.NetProto}, ProtocolNumber, id, ep); err != nil {
ep.Close()
return nil, err
}
ep.id = id
ep.route = r.Clone()
ep.dstPort = id.RemotePort
ep.regNICID = r.NICID()
ep.state = stateConnected
return ep, nil
}
// Close puts the endpoint in a closed state and frees all resources
// associated with it.
func (e *endpoint) Close() {
e.mu.Lock()
e.shutdownFlags = tcpip.ShutdownRead | tcpip.ShutdownWrite
switch e.state {
case stateBound, stateConnected:
e.stack.UnregisterTransportEndpoint(e.regNICID, e.effectiveNetProtos, ProtocolNumber, e.id)
e.stack.ReleasePort(e.effectiveNetProtos, ProtocolNumber, e.id.LocalAddress, e.id.LocalPort)
}
for _, mem := range e.multicastMemberships {
e.stack.LeaveGroup(e.netProto, mem.nicID, mem.multicastAddr)
}
e.multicastMemberships = nil
// Close the receive list and drain it.
e.rcvMu.Lock()
e.rcvClosed = true
e.rcvBufSize = 0
for !e.rcvList.Empty() {
p := e.rcvList.Front()
e.rcvList.Remove(p)
}
e.rcvMu.Unlock()
e.route.Release()
// Update the state.
e.state = stateClosed
e.mu.Unlock()
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut)
}
// Read reads data from the endpoint. This method does not block if
// there is no data pending.
func (e *endpoint) Read(addr *tcpip.FullAddress) (buffer.View, tcpip.ControlMessages, *tcpip.Error) {
e.rcvMu.Lock()
if e.rcvList.Empty() {
err := tcpip.ErrWouldBlock
if e.rcvClosed {
err = tcpip.ErrClosedForReceive
}
e.rcvMu.Unlock()
return buffer.View{}, tcpip.ControlMessages{}, err
}
p := e.rcvList.Front()
e.rcvList.Remove(p)
e.rcvBufSize -= p.data.Size()
ts := e.rcvTimestamp
e.rcvMu.Unlock()
if addr != nil {
*addr = p.senderAddress
}
if ts && !p.hasTimestamp {
// Linux uses the current time.
p.timestamp = e.stack.NowNanoseconds()
}
return p.data.ToView(), tcpip.ControlMessages{HasTimestamp: ts, Timestamp: p.timestamp}, nil
}
// prepareForWrite prepares the endpoint for sending data. In particular, it
// binds it if it's still in the initial state. To do so, it must first
// reacquire the mutex in exclusive mode.
//
// Returns true for retry if preparation should be retried.
func (e *endpoint) prepareForWrite(to *tcpip.FullAddress) (retry bool, err *tcpip.Error) {
switch e.state {
case stateInitial:
case stateConnected:
return false, nil
case stateBound:
if to == nil {
return false, tcpip.ErrDestinationRequired
}
return false, nil
default:
return false, tcpip.ErrInvalidEndpointState
}
e.mu.RUnlock()
defer e.mu.RLock()
e.mu.Lock()
defer e.mu.Unlock()
// The state changed when we released the shared locked and re-acquired
// it in exclusive mode. Try again.
if e.state != stateInitial {
return true, nil
}
// The state is still 'initial', so try to bind the endpoint.
if err := e.bindLocked(tcpip.FullAddress{}, nil); err != nil {
return false, err
}
return true, nil
}
// Write writes data to the endpoint's peer. This method does not block
// if the data cannot be written.
func (e *endpoint) Write(p tcpip.Payload, opts tcpip.WriteOptions) (uintptr, *tcpip.Error) {
// MSG_MORE is unimplemented. (This also means that MSG_EOR is a no-op.)
if opts.More {
return 0, tcpip.ErrInvalidOptionValue
}
to := opts.To
e.mu.RLock()
defer e.mu.RUnlock()
// If we've shutdown with SHUT_WR we are in an invalid state for sending.
if e.shutdownFlags&tcpip.ShutdownWrite != 0 {
return 0, tcpip.ErrClosedForSend
}
// Prepare for write.
for {
retry, err := e.prepareForWrite(to)
if err != nil {
return 0, err
}
if !retry {
break
}
}
var route *stack.Route
var dstPort uint16
if to == nil {
route = &e.route
dstPort = e.dstPort
if route.IsResolutionRequired() {
// Promote lock to exclusive if using a shared route, given that it may need to
// change in Route.Resolve() call below.
e.mu.RUnlock()
defer e.mu.RLock()
e.mu.Lock()
defer e.mu.Unlock()
// Recheck state after lock was re-acquired.
if e.state != stateConnected {
return 0, tcpip.ErrInvalidEndpointState
}
}
} else {
// Reject destination address if it goes through a different
// NIC than the endpoint was bound to.
nicid := to.NIC
if e.bindNICID != 0 {
if nicid != 0 && nicid != e.bindNICID {
return 0, tcpip.ErrNoRoute
}
nicid = e.bindNICID
}
toCopy := *to
to = &toCopy
netProto, err := e.checkV4Mapped(to, false)
if err != nil {
return 0, err
}
// Find the enpoint.
r, err := e.stack.FindRoute(nicid, e.id.LocalAddress, to.Addr, netProto)
if err != nil {
return 0, err
}
defer r.Release()
route = &r
dstPort = to.Port
}
if route.IsResolutionRequired() {
waker := &sleep.Waker{}
if err := route.Resolve(waker); err != nil {
if err == tcpip.ErrWouldBlock {
// Link address needs to be resolved. Resolution was triggered the background.
// Better luck next time.
//
// TODO: queue up the request and send after link address
// is resolved.
route.RemoveWaker(waker)
return 0, tcpip.ErrNoLinkAddress
}
return 0, err
}
}
v, err := p.Get(p.Size())
if err != nil {
return 0, err
}
ttl := route.DefaultTTL()
if header.IsV4MulticastAddress(route.RemoteAddress) || header.IsV6MulticastAddress(route.RemoteAddress) {
ttl = e.multicastTTL
}
if err := sendUDP(route, buffer.View(v).ToVectorisedView(), e.id.LocalPort, dstPort, ttl); err != nil {
return 0, err
}
return uintptr(len(v)), nil
}
// Peek only returns data from a single datagram, so do nothing here.
func (e *endpoint) Peek([][]byte) (uintptr, tcpip.ControlMessages, *tcpip.Error) {
return 0, tcpip.ControlMessages{}, nil
}
// SetSockOpt sets a socket option. Currently not supported.
func (e *endpoint) SetSockOpt(opt interface{}) *tcpip.Error {
// TODO: Actually implement this.
switch v := opt.(type) {
case tcpip.V6OnlyOption:
// We only recognize this option on v6 endpoints.
if e.netProto != header.IPv6ProtocolNumber {
return tcpip.ErrInvalidEndpointState
}
e.mu.Lock()
defer e.mu.Unlock()
// We only allow this to be set when we're in the initial state.
if e.state != stateInitial {
return tcpip.ErrInvalidEndpointState
}
e.v6only = v != 0
case tcpip.TimestampOption:
e.rcvMu.Lock()
e.rcvTimestamp = v != 0
e.rcvMu.Unlock()
case tcpip.MulticastTTLOption:
e.mu.Lock()
defer e.mu.Unlock()
e.multicastTTL = uint8(v)
case tcpip.AddMembershipOption:
nicID := v.NIC
if v.InterfaceAddr != header.IPv4Any {
nicID = e.stack.CheckLocalAddress(nicID, e.netProto, v.InterfaceAddr)
}
if nicID == 0 {
return tcpip.ErrNoRoute
}
// TODO: check that v.MulticastAddr is a multicast address.
if err := e.stack.JoinGroup(e.netProto, nicID, v.MulticastAddr); err != nil {
return err
}
e.mu.Lock()
defer e.mu.Unlock()
e.multicastMemberships = append(e.multicastMemberships, multicastMembership{nicID, v.MulticastAddr})
case tcpip.RemoveMembershipOption:
nicID := v.NIC
if v.InterfaceAddr != header.IPv4Any {
nicID = e.stack.CheckLocalAddress(nicID, e.netProto, v.InterfaceAddr)
}
if nicID == 0 {
return tcpip.ErrNoRoute
}
// TODO: check that v.MulticastAddr is a multicast address.
if err := e.stack.LeaveGroup(e.netProto, nicID, v.MulticastAddr); err != nil {
return err
}
e.mu.Lock()
defer e.mu.Unlock()
for i, mem := range e.multicastMemberships {
if mem.nicID == nicID && mem.multicastAddr == v.MulticastAddr {
// Only remove the first match, so that each added membership above is
// paired with exactly 1 removal.
e.multicastMemberships[i] = e.multicastMemberships[len(e.multicastMemberships)-1]
e.multicastMemberships = e.multicastMemberships[:len(e.multicastMemberships)-1]
break
}
}
}
return nil
}
// GetSockOpt implements tcpip.Endpoint.GetSockOpt.
func (e *endpoint) GetSockOpt(opt interface{}) *tcpip.Error {
switch o := opt.(type) {
case tcpip.ErrorOption:
return nil
case *tcpip.SendBufferSizeOption:
e.mu.Lock()
*o = tcpip.SendBufferSizeOption(e.sndBufSize)
e.mu.Unlock()
return nil
case *tcpip.ReceiveBufferSizeOption:
e.rcvMu.Lock()
*o = tcpip.ReceiveBufferSizeOption(e.rcvBufSizeMax)
e.rcvMu.Unlock()
return nil
case *tcpip.V6OnlyOption:
// We only recognize this option on v6 endpoints.
if e.netProto != header.IPv6ProtocolNumber {
return tcpip.ErrUnknownProtocolOption
}
e.mu.Lock()
v := e.v6only
e.mu.Unlock()
*o = 0
if v {
*o = 1
}
return nil
case *tcpip.ReceiveQueueSizeOption:
e.rcvMu.Lock()
if e.rcvList.Empty() {
*o = 0
} else {
p := e.rcvList.Front()
*o = tcpip.ReceiveQueueSizeOption(p.data.Size())
}
e.rcvMu.Unlock()
return nil
case *tcpip.TimestampOption:
e.rcvMu.Lock()
*o = 0
if e.rcvTimestamp {
*o = 1
}
e.rcvMu.Unlock()
case *tcpip.MulticastTTLOption:
e.mu.Lock()
*o = tcpip.MulticastTTLOption(e.multicastTTL)
e.mu.Unlock()
return nil
}
return tcpip.ErrUnknownProtocolOption
}
// sendUDP sends a UDP segment via the provided network endpoint and under the
// provided identity.
func sendUDP(r *stack.Route, data buffer.VectorisedView, localPort, remotePort uint16, ttl uint8) *tcpip.Error {
// Allocate a buffer for the UDP header.
hdr := buffer.NewPrependable(header.UDPMinimumSize + int(r.MaxHeaderLength()))
// Initialize the header.
udp := header.UDP(hdr.Prepend(header.UDPMinimumSize))
length := uint16(hdr.UsedLength() + data.Size())
udp.Encode(&header.UDPFields{
SrcPort: localPort,
DstPort: remotePort,
Length: length,
})
// Only calculate the checksum if offloading isn't supported.
if r.Capabilities()&stack.CapabilityChecksumOffload == 0 {
xsum := r.PseudoHeaderChecksum(ProtocolNumber)
for _, v := range data.Views() {
xsum = header.Checksum(v, xsum)
}
udp.SetChecksum(^udp.CalculateChecksum(xsum, length))
}
// Track count of packets sent.
r.Stats().UDP.PacketsSent.Increment()
return r.WritePacket(hdr, data, ProtocolNumber, ttl)
}
func (e *endpoint) checkV4Mapped(addr *tcpip.FullAddress, allowMismatch bool) (tcpip.NetworkProtocolNumber, *tcpip.Error) {
netProto := e.netProto
if header.IsV4MappedAddress(addr.Addr) {
// Fail if using a v4 mapped address on a v6only endpoint.
if e.v6only {
return 0, tcpip.ErrNoRoute
}
netProto = header.IPv4ProtocolNumber
addr.Addr = addr.Addr[header.IPv6AddressSize-header.IPv4AddressSize:]
if addr.Addr == "\x00\x00\x00\x00" {
addr.Addr = ""
}
// Fail if we are bound to an IPv6 address.
if !allowMismatch && len(e.id.LocalAddress) == 16 {
return 0, tcpip.ErrNetworkUnreachable
}
}
// Fail if we're bound to an address length different from the one we're
// checking.
if l := len(e.id.LocalAddress); l != 0 && l != len(addr.Addr) {
return 0, tcpip.ErrInvalidEndpointState
}
return netProto, nil
}
// Connect connects the endpoint to its peer. Specifying a NIC is optional.
func (e *endpoint) Connect(addr tcpip.FullAddress) *tcpip.Error {
if addr.Port == 0 {
// We don't support connecting to port zero.
return tcpip.ErrInvalidEndpointState
}
e.mu.Lock()
defer e.mu.Unlock()
nicid := addr.NIC
var localPort uint16
switch e.state {
case stateInitial:
case stateBound, stateConnected:
localPort = e.id.LocalPort
if e.bindNICID == 0 {
break
}
if nicid != 0 && nicid != e.bindNICID {
return tcpip.ErrInvalidEndpointState
}
nicid = e.bindNICID
default:
return tcpip.ErrInvalidEndpointState
}
netProto, err := e.checkV4Mapped(&addr, false)
if err != nil {
return err
}
// Find a route to the desired destination.
r, err := e.stack.FindRoute(nicid, e.id.LocalAddress, addr.Addr, netProto)
if err != nil {
return err
}
defer r.Release()
id := stack.TransportEndpointID{
LocalAddress: r.LocalAddress,
LocalPort: localPort,
RemotePort: addr.Port,
RemoteAddress: r.RemoteAddress,
}
// Even if we're connected, this endpoint can still be used to send
// packets on a different network protocol, so we register both even if
// v6only is set to false and this is an ipv6 endpoint.
netProtos := []tcpip.NetworkProtocolNumber{netProto}
if netProto == header.IPv6ProtocolNumber && !e.v6only {
netProtos = []tcpip.NetworkProtocolNumber{
header.IPv4ProtocolNumber,
header.IPv6ProtocolNumber,
}
}
id, err = e.registerWithStack(nicid, netProtos, id)
if err != nil {
return err
}
// Remove the old registration.
if e.id.LocalPort != 0 {
e.stack.UnregisterTransportEndpoint(e.regNICID, e.effectiveNetProtos, ProtocolNumber, e.id)
}
e.id = id
e.route = r.Clone()
e.dstPort = addr.Port
e.regNICID = nicid
e.effectiveNetProtos = netProtos
e.state = stateConnected
e.rcvMu.Lock()
e.rcvReady = true
e.rcvMu.Unlock()
return nil
}
// ConnectEndpoint is not supported.
func (*endpoint) ConnectEndpoint(tcpip.Endpoint) *tcpip.Error {
return tcpip.ErrInvalidEndpointState
}
// Shutdown closes the read and/or write end of the endpoint connection
// to its peer.
func (e *endpoint) Shutdown(flags tcpip.ShutdownFlags) *tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
// A socket in the bound state can still receive multicast messages,
// so we need to notify waiters on shutdown.
if e.state != stateBound && e.state != stateConnected {
return tcpip.ErrNotConnected
}
e.shutdownFlags |= flags
if flags&tcpip.ShutdownRead != 0 {
e.rcvMu.Lock()
wasClosed := e.rcvClosed
e.rcvClosed = true
e.rcvMu.Unlock()
if !wasClosed {
e.waiterQueue.Notify(waiter.EventIn)
}
}
return nil
}
// Listen is not supported by UDP, it just fails.
func (*endpoint) Listen(int) *tcpip.Error {
return tcpip.ErrNotSupported
}
// Accept is not supported by UDP, it just fails.
func (*endpoint) Accept() (tcpip.Endpoint, *waiter.Queue, *tcpip.Error) {
return nil, nil, tcpip.ErrNotSupported
}
func (e *endpoint) registerWithStack(nicid tcpip.NICID, netProtos []tcpip.NetworkProtocolNumber, id stack.TransportEndpointID) (stack.TransportEndpointID, *tcpip.Error) {
if e.id.LocalPort == 0 {
port, err := e.stack.ReservePort(netProtos, ProtocolNumber, id.LocalAddress, id.LocalPort)
if err != nil {
return id, err
}
id.LocalPort = port
}
err := e.stack.RegisterTransportEndpoint(nicid, netProtos, ProtocolNumber, id, e)
if err != nil {
e.stack.ReleasePort(netProtos, ProtocolNumber, id.LocalAddress, id.LocalPort)
}
return id, err
}
func (e *endpoint) bindLocked(addr tcpip.FullAddress, commit func() *tcpip.Error) *tcpip.Error {
// Don't allow binding once endpoint is not in the initial state
// anymore.
if e.state != stateInitial {
return tcpip.ErrInvalidEndpointState
}
netProto, err := e.checkV4Mapped(&addr, true)
if err != nil {
return err
}
// Expand netProtos to include v4 and v6 if the caller is binding to a
// wildcard (empty) address, and this is an IPv6 endpoint with v6only
// set to false.
netProtos := []tcpip.NetworkProtocolNumber{netProto}
if netProto == header.IPv6ProtocolNumber && !e.v6only && addr.Addr == "" {
netProtos = []tcpip.NetworkProtocolNumber{
header.IPv6ProtocolNumber,
header.IPv4ProtocolNumber,
}
}
if len(addr.Addr) != 0 {
// A local address was specified, verify that it's valid.
if e.stack.CheckLocalAddress(addr.NIC, netProto, addr.Addr) == 0 {
return tcpip.ErrBadLocalAddress
}
}
id := stack.TransportEndpointID{
LocalPort: addr.Port,
LocalAddress: addr.Addr,
}
id, err = e.registerWithStack(addr.NIC, netProtos, id)
if err != nil {
return err
}
if commit != nil {
if err := commit(); err != nil {
// Unregister, the commit failed.
e.stack.UnregisterTransportEndpoint(addr.NIC, netProtos, ProtocolNumber, id)
e.stack.ReleasePort(netProtos, ProtocolNumber, id.LocalAddress, id.LocalPort)
return err
}
}
e.id = id
e.regNICID = addr.NIC
e.effectiveNetProtos = netProtos
// Mark endpoint as bound.
e.state = stateBound
e.rcvMu.Lock()
e.rcvReady = true
e.rcvMu.Unlock()
return nil
}
// Bind binds the endpoint to a specific local address and port.
// Specifying a NIC is optional.
func (e *endpoint) Bind(addr tcpip.FullAddress, commit func() *tcpip.Error) *tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
err := e.bindLocked(addr, commit)
if err != nil {
return err
}
e.bindNICID = addr.NIC
return nil
}
// GetLocalAddress returns the address to which the endpoint is bound.
func (e *endpoint) GetLocalAddress() (tcpip.FullAddress, *tcpip.Error) {
e.mu.RLock()
defer e.mu.RUnlock()
return tcpip.FullAddress{
NIC: e.regNICID,
Addr: e.id.LocalAddress,
Port: e.id.LocalPort,
}, nil
}
// GetRemoteAddress returns the address to which the endpoint is connected.
func (e *endpoint) GetRemoteAddress() (tcpip.FullAddress, *tcpip.Error) {
e.mu.RLock()
defer e.mu.RUnlock()
if e.state != stateConnected {
return tcpip.FullAddress{}, tcpip.ErrNotConnected
}
return tcpip.FullAddress{
NIC: e.regNICID,
Addr: e.id.RemoteAddress,
Port: e.id.RemotePort,
}, nil
}
// Readiness returns the current readiness of the endpoint. For example, if
// waiter.EventIn is set, the endpoint is immediately readable.
func (e *endpoint) Readiness(mask waiter.EventMask) waiter.EventMask {
// The endpoint is always writable.
result := waiter.EventOut & mask
// Determine if the endpoint is readable if requested.
if (mask & waiter.EventIn) != 0 {
e.rcvMu.Lock()
if !e.rcvList.Empty() || e.rcvClosed {
result |= waiter.EventIn
}
e.rcvMu.Unlock()
}
return result
}
// HandlePacket is called by the stack when new packets arrive to this transport
// endpoint.
func (e *endpoint) HandlePacket(r *stack.Route, id stack.TransportEndpointID, vv buffer.VectorisedView) {
// Get the header then trim it from the view.
hdr := header.UDP(vv.First())
if int(hdr.Length()) > vv.Size() {
// Malformed packet.
e.stack.Stats().UDP.MalformedPacketsReceived.Increment()
return
}
vv.TrimFront(header.UDPMinimumSize)
e.rcvMu.Lock()
e.stack.Stats().UDP.PacketsReceived.Increment()
// Drop the packet if our buffer is currently full.
if !e.rcvReady || e.rcvClosed || e.rcvBufSize >= e.rcvBufSizeMax {
e.stack.Stats().UDP.ReceiveBufferErrors.Increment()
e.rcvMu.Unlock()
return
}
wasEmpty := e.rcvBufSize == 0
// Push new packet into receive list and increment the buffer size.
pkt := &udpPacket{
senderAddress: tcpip.FullAddress{
NIC: r.NICID(),
Addr: id.RemoteAddress,
Port: hdr.SourcePort(),
},
}
pkt.data = vv.Clone(pkt.views[:])
e.rcvList.PushBack(pkt)
e.rcvBufSize += vv.Size()
if e.rcvTimestamp {
pkt.timestamp = e.stack.NowNanoseconds()
pkt.hasTimestamp = true
}
e.rcvMu.Unlock()
// Notify any waiters that there's data to be read now.
if wasEmpty {
e.waiterQueue.Notify(waiter.EventIn)
}
}
// HandleControlPacket implements stack.TransportEndpoint.HandleControlPacket.
func (e *endpoint) HandleControlPacket(id stack.TransportEndpointID, typ stack.ControlType, extra uint32, vv buffer.VectorisedView) {
}