blob: f62da5243e1e2467df4e539b7ddeb1d7f3efa7ae [file] [log] [blame]
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ip_test
import (
"testing"
"github.com/google/netstack/tcpip"
"github.com/google/netstack/tcpip/buffer"
"github.com/google/netstack/tcpip/header"
"github.com/google/netstack/tcpip/link/loopback"
"github.com/google/netstack/tcpip/network/ipv4"
"github.com/google/netstack/tcpip/network/ipv6"
"github.com/google/netstack/tcpip/stack"
"github.com/google/netstack/tcpip/transport/tcp"
"github.com/google/netstack/tcpip/transport/udp"
)
const (
localIpv4Addr = "\x0a\x00\x00\x01"
remoteIpv4Addr = "\x0a\x00\x00\x02"
ipv4SubnetAddr = "\x0a\x00\x00\x00"
ipv4SubnetMask = "\xff\xff\xff\x00"
ipv4Gateway = "\x0a\x00\x00\x03"
localIpv6Addr = "\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"
remoteIpv6Addr = "\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02"
ipv6SubnetAddr = "\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
ipv6SubnetMask = "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x00"
ipv6Gateway = "\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03"
)
// testObject implements two interfaces: LinkEndpoint and TransportDispatcher.
// The former is used to pretend that it's a link endpoint so that we can
// inspect packets written by the network endpoints. The latter is used to
// pretend that it's the network stack so that it can inspect incoming packets
// that have been handled by the network endpoints.
//
// Packets are checked by comparing their fields/values against the expected
// values stored in the test object itself.
type testObject struct {
t *testing.T
protocol tcpip.TransportProtocolNumber
contents []byte
srcAddr tcpip.Address
dstAddr tcpip.Address
v4 bool
typ stack.ControlType
extra uint32
dataCalls int
controlCalls int
}
// checkValues verifies that the transport protocol, data contents, src & dst
// addresses of a packet match what's expected. If any field doesn't match, the
// test fails.
func (t *testObject) checkValues(protocol tcpip.TransportProtocolNumber, vv buffer.VectorisedView, srcAddr, dstAddr tcpip.Address) {
v := vv.ToView()
if protocol != t.protocol {
t.t.Errorf("protocol = %v, want %v", protocol, t.protocol)
}
if srcAddr != t.srcAddr {
t.t.Errorf("srcAddr = %v, want %v", srcAddr, t.srcAddr)
}
if dstAddr != t.dstAddr {
t.t.Errorf("dstAddr = %v, want %v", dstAddr, t.dstAddr)
}
if len(v) != len(t.contents) {
t.t.Fatalf("len(payload) = %v, want %v", len(v), len(t.contents))
}
for i := range t.contents {
if t.contents[i] != v[i] {
t.t.Fatalf("payload[%v] = %v, want %v", i, v[i], t.contents[i])
}
}
}
// DeliverTransportPacket is called by network endpoints after parsing incoming
// packets. This is used by the test object to verify that the results of the
// parsing are expected.
func (t *testObject) DeliverTransportPacket(r *stack.Route, protocol tcpip.TransportProtocolNumber, vv buffer.VectorisedView) {
t.checkValues(protocol, vv, r.RemoteAddress, r.LocalAddress)
t.dataCalls++
}
// DeliverTransportControlPacket is called by network endpoints after parsing
// incoming control (ICMP) packets. This is used by the test object to verify
// that the results of the parsing are expected.
func (t *testObject) DeliverTransportControlPacket(local, remote tcpip.Address, net tcpip.NetworkProtocolNumber, trans tcpip.TransportProtocolNumber, typ stack.ControlType, extra uint32, vv buffer.VectorisedView) {
t.checkValues(trans, vv, remote, local)
if typ != t.typ {
t.t.Errorf("typ = %v, want %v", typ, t.typ)
}
if extra != t.extra {
t.t.Errorf("extra = %v, want %v", extra, t.extra)
}
t.controlCalls++
}
// Attach is only implemented to satisfy the LinkEndpoint interface.
func (*testObject) Attach(stack.NetworkDispatcher) {}
// IsAttached implements stack.LinkEndpoint.IsAttached.
func (*testObject) IsAttached() bool {
return true
}
// MTU implements stack.LinkEndpoint.MTU. It just returns a constant that
// matches the linux loopback MTU.
func (*testObject) MTU() uint32 {
return 65536
}
// Capabilities implements stack.LinkEndpoint.Capabilities.
func (*testObject) Capabilities() stack.LinkEndpointCapabilities {
return 0
}
// MaxHeaderLength is only implemented to satisfy the LinkEndpoint interface.
func (*testObject) MaxHeaderLength() uint16 {
return 0
}
// LinkAddress returns the link address of this endpoint.
func (*testObject) LinkAddress() tcpip.LinkAddress {
return ""
}
// WritePacket is called by network endpoints after producing a packet and
// writing it to the link endpoint. This is used by the test object to verify
// that the produced packet is as expected.
func (t *testObject) WritePacket(_ *stack.Route, hdr buffer.Prependable, payload buffer.VectorisedView, protocol tcpip.NetworkProtocolNumber) *tcpip.Error {
var prot tcpip.TransportProtocolNumber
var srcAddr tcpip.Address
var dstAddr tcpip.Address
if t.v4 {
h := header.IPv4(hdr.View())
prot = tcpip.TransportProtocolNumber(h.Protocol())
srcAddr = h.SourceAddress()
dstAddr = h.DestinationAddress()
} else {
h := header.IPv6(hdr.View())
prot = tcpip.TransportProtocolNumber(h.NextHeader())
srcAddr = h.SourceAddress()
dstAddr = h.DestinationAddress()
}
t.checkValues(prot, payload, srcAddr, dstAddr)
return nil
}
func buildIPv4Route(local, remote tcpip.Address) (stack.Route, *tcpip.Error) {
s := stack.New([]string{ipv4.ProtocolName}, []string{udp.ProtocolName, tcp.ProtocolName}, stack.Options{})
s.CreateNIC(1, loopback.New())
s.AddAddress(1, ipv4.ProtocolNumber, local)
s.SetRouteTable([]tcpip.Route{{
Destination: ipv4SubnetAddr,
Mask: ipv4SubnetMask,
Gateway: ipv4Gateway,
NIC: 1,
}})
return s.FindRoute(1, local, remote, ipv4.ProtocolNumber)
}
func buildIPv6Route(local, remote tcpip.Address) (stack.Route, *tcpip.Error) {
s := stack.New([]string{ipv6.ProtocolName}, []string{udp.ProtocolName, tcp.ProtocolName}, stack.Options{})
s.CreateNIC(1, loopback.New())
s.AddAddress(1, ipv6.ProtocolNumber, local)
s.SetRouteTable([]tcpip.Route{{
Destination: ipv6SubnetAddr,
Mask: ipv6SubnetMask,
Gateway: ipv6Gateway,
NIC: 1,
}})
return s.FindRoute(1, local, remote, ipv6.ProtocolNumber)
}
func TestIPv4Send(t *testing.T) {
o := testObject{t: t, v4: true}
proto := ipv4.NewProtocol()
ep, err := proto.NewEndpoint(1, localIpv4Addr, nil, nil, &o)
if err != nil {
t.Fatalf("NewEndpoint failed: %v", err)
}
// Allocate and initialize the payload view.
payload := buffer.NewView(100)
for i := 0; i < len(payload); i++ {
payload[i] = uint8(i)
}
// Allocate the header buffer.
hdr := buffer.NewPrependable(int(ep.MaxHeaderLength()))
// Issue the write.
o.protocol = 123
o.srcAddr = localIpv4Addr
o.dstAddr = remoteIpv4Addr
o.contents = payload
r, err := buildIPv4Route(localIpv4Addr, remoteIpv4Addr)
if err != nil {
t.Fatalf("could not find route: %v", err)
}
if err := ep.WritePacket(&r, hdr, payload.ToVectorisedView(), 123, 123); err != nil {
t.Fatalf("WritePacket failed: %v", err)
}
}
func TestIPv4Receive(t *testing.T) {
o := testObject{t: t, v4: true}
proto := ipv4.NewProtocol()
ep, err := proto.NewEndpoint(1, localIpv4Addr, nil, &o, nil)
if err != nil {
t.Fatalf("NewEndpoint failed: %v", err)
}
totalLen := header.IPv4MinimumSize + 30
view := buffer.NewView(totalLen)
ip := header.IPv4(view)
ip.Encode(&header.IPv4Fields{
IHL: header.IPv4MinimumSize,
TotalLength: uint16(totalLen),
TTL: 20,
Protocol: 10,
SrcAddr: remoteIpv4Addr,
DstAddr: localIpv4Addr,
})
// Make payload be non-zero.
for i := header.IPv4MinimumSize; i < totalLen; i++ {
view[i] = uint8(i)
}
// Give packet to ipv4 endpoint, dispatcher will validate that it's ok.
o.protocol = 10
o.srcAddr = remoteIpv4Addr
o.dstAddr = localIpv4Addr
o.contents = view[header.IPv4MinimumSize:totalLen]
r, err := buildIPv4Route(localIpv4Addr, remoteIpv4Addr)
if err != nil {
t.Fatalf("could not find route: %v", err)
}
ep.HandlePacket(&r, view.ToVectorisedView())
if o.dataCalls != 1 {
t.Fatalf("Bad number of data calls: got %x, want 1", o.dataCalls)
}
}
func TestIPv4ReceiveControl(t *testing.T) {
const mtu = 0xbeef - header.IPv4MinimumSize
cases := []struct {
name string
expectedCount int
fragmentOffset uint16
code uint8
expectedTyp stack.ControlType
expectedExtra uint32
trunc int
}{
{"FragmentationNeeded", 1, 0, header.ICMPv4FragmentationNeeded, stack.ControlPacketTooBig, mtu, 0},
{"Truncated (10 bytes missing)", 0, 0, header.ICMPv4FragmentationNeeded, stack.ControlPacketTooBig, mtu, 10},
{"Truncated (missing IPv4 header)", 0, 0, header.ICMPv4FragmentationNeeded, stack.ControlPacketTooBig, mtu, header.IPv4MinimumSize + 8},
{"Truncated (missing 'extra info')", 0, 0, header.ICMPv4FragmentationNeeded, stack.ControlPacketTooBig, mtu, 4 + header.IPv4MinimumSize + 8},
{"Truncated (missing ICMP header)", 0, 0, header.ICMPv4FragmentationNeeded, stack.ControlPacketTooBig, mtu, header.ICMPv4DstUnreachableMinimumSize + header.IPv4MinimumSize + 8},
{"Port unreachable", 1, 0, header.ICMPv4PortUnreachable, stack.ControlPortUnreachable, 0, 0},
{"Non-zero fragment offset", 0, 100, header.ICMPv4PortUnreachable, stack.ControlPortUnreachable, 0, 0},
{"Zero-length packet", 0, 0, header.ICMPv4PortUnreachable, stack.ControlPortUnreachable, 0, 2*header.IPv4MinimumSize + header.ICMPv4DstUnreachableMinimumSize + 8},
}
r := stack.Route{
LocalAddress: localIpv4Addr,
RemoteAddress: "\x0a\x00\x00\xbb",
}
for _, c := range cases {
t.Run(c.name, func(t *testing.T) {
o := testObject{t: t}
proto := ipv4.NewProtocol()
ep, err := proto.NewEndpoint(1, localIpv4Addr, nil, &o, nil)
if err != nil {
t.Fatalf("NewEndpoint failed: %v", err)
}
defer ep.Close()
const dataOffset = header.IPv4MinimumSize*2 + header.ICMPv4MinimumSize + 4
view := buffer.NewView(dataOffset + 8)
// Create the outer IPv4 header.
ip := header.IPv4(view)
ip.Encode(&header.IPv4Fields{
IHL: header.IPv4MinimumSize,
TotalLength: uint16(len(view) - c.trunc),
TTL: 20,
Protocol: uint8(header.ICMPv4ProtocolNumber),
SrcAddr: "\x0a\x00\x00\xbb",
DstAddr: localIpv4Addr,
})
// Create the ICMP header.
icmp := header.ICMPv4(view[header.IPv4MinimumSize:])
icmp.SetType(header.ICMPv4DstUnreachable)
icmp.SetCode(c.code)
copy(view[header.IPv4MinimumSize+header.ICMPv4MinimumSize:], []byte{0xde, 0xad, 0xbe, 0xef})
// Create the inner IPv4 header.
ip = header.IPv4(view[header.IPv4MinimumSize+header.ICMPv4MinimumSize+4:])
ip.Encode(&header.IPv4Fields{
IHL: header.IPv4MinimumSize,
TotalLength: 100,
TTL: 20,
Protocol: 10,
FragmentOffset: c.fragmentOffset,
SrcAddr: localIpv4Addr,
DstAddr: remoteIpv4Addr,
})
// Make payload be non-zero.
for i := dataOffset; i < len(view); i++ {
view[i] = uint8(i)
}
// Give packet to IPv4 endpoint, dispatcher will validate that
// it's ok.
o.protocol = 10
o.srcAddr = remoteIpv4Addr
o.dstAddr = localIpv4Addr
o.contents = view[dataOffset:]
o.typ = c.expectedTyp
o.extra = c.expectedExtra
vv := view[:len(view)-c.trunc].ToVectorisedView()
ep.HandlePacket(&r, vv)
if want := c.expectedCount; o.controlCalls != want {
t.Fatalf("Bad number of control calls for %q case: got %v, want %v", c.name, o.controlCalls, want)
}
})
}
}
func TestIPv4FragmentationReceive(t *testing.T) {
o := testObject{t: t, v4: true}
proto := ipv4.NewProtocol()
ep, err := proto.NewEndpoint(1, localIpv4Addr, nil, &o, nil)
if err != nil {
t.Fatalf("NewEndpoint failed: %v", err)
}
totalLen := header.IPv4MinimumSize + 24
frag1 := buffer.NewView(totalLen)
ip1 := header.IPv4(frag1)
ip1.Encode(&header.IPv4Fields{
IHL: header.IPv4MinimumSize,
TotalLength: uint16(totalLen),
TTL: 20,
Protocol: 10,
FragmentOffset: 0,
Flags: header.IPv4FlagMoreFragments,
SrcAddr: remoteIpv4Addr,
DstAddr: localIpv4Addr,
})
// Make payload be non-zero.
for i := header.IPv4MinimumSize; i < totalLen; i++ {
frag1[i] = uint8(i)
}
frag2 := buffer.NewView(totalLen)
ip2 := header.IPv4(frag2)
ip2.Encode(&header.IPv4Fields{
IHL: header.IPv4MinimumSize,
TotalLength: uint16(totalLen),
TTL: 20,
Protocol: 10,
FragmentOffset: 24,
SrcAddr: remoteIpv4Addr,
DstAddr: localIpv4Addr,
})
// Make payload be non-zero.
for i := header.IPv4MinimumSize; i < totalLen; i++ {
frag2[i] = uint8(i)
}
// Give packet to ipv4 endpoint, dispatcher will validate that it's ok.
o.protocol = 10
o.srcAddr = remoteIpv4Addr
o.dstAddr = localIpv4Addr
o.contents = append(frag1[header.IPv4MinimumSize:totalLen], frag2[header.IPv4MinimumSize:totalLen]...)
r, err := buildIPv4Route(localIpv4Addr, remoteIpv4Addr)
if err != nil {
t.Fatalf("could not find route: %v", err)
}
// Send first segment.
ep.HandlePacket(&r, frag1.ToVectorisedView())
if o.dataCalls != 0 {
t.Fatalf("Bad number of data calls: got %x, want 0", o.dataCalls)
}
// Send second segment.
ep.HandlePacket(&r, frag2.ToVectorisedView())
if o.dataCalls != 1 {
t.Fatalf("Bad number of data calls: got %x, want 1", o.dataCalls)
}
}
func TestIPv6Send(t *testing.T) {
o := testObject{t: t}
proto := ipv6.NewProtocol()
ep, err := proto.NewEndpoint(1, localIpv6Addr, nil, nil, &o)
if err != nil {
t.Fatalf("NewEndpoint failed: %v", err)
}
// Allocate and initialize the payload view.
payload := buffer.NewView(100)
for i := 0; i < len(payload); i++ {
payload[i] = uint8(i)
}
// Allocate the header buffer.
hdr := buffer.NewPrependable(int(ep.MaxHeaderLength()))
// Issue the write.
o.protocol = 123
o.srcAddr = localIpv6Addr
o.dstAddr = remoteIpv6Addr
o.contents = payload
r, err := buildIPv6Route(localIpv6Addr, remoteIpv6Addr)
if err != nil {
t.Fatalf("could not find route: %v", err)
}
if err := ep.WritePacket(&r, hdr, payload.ToVectorisedView(), 123, 123); err != nil {
t.Fatalf("WritePacket failed: %v", err)
}
}
func TestIPv6Receive(t *testing.T) {
o := testObject{t: t}
proto := ipv6.NewProtocol()
ep, err := proto.NewEndpoint(1, localIpv6Addr, nil, &o, nil)
if err != nil {
t.Fatalf("NewEndpoint failed: %v", err)
}
totalLen := header.IPv6MinimumSize + 30
view := buffer.NewView(totalLen)
ip := header.IPv6(view)
ip.Encode(&header.IPv6Fields{
PayloadLength: uint16(totalLen - header.IPv6MinimumSize),
NextHeader: 10,
HopLimit: 20,
SrcAddr: remoteIpv6Addr,
DstAddr: localIpv6Addr,
})
// Make payload be non-zero.
for i := header.IPv6MinimumSize; i < totalLen; i++ {
view[i] = uint8(i)
}
// Give packet to ipv6 endpoint, dispatcher will validate that it's ok.
o.protocol = 10
o.srcAddr = remoteIpv6Addr
o.dstAddr = localIpv6Addr
o.contents = view[header.IPv6MinimumSize:totalLen]
r, err := buildIPv6Route(localIpv6Addr, remoteIpv6Addr)
if err != nil {
t.Fatalf("could not find route: %v", err)
}
ep.HandlePacket(&r, view.ToVectorisedView())
if o.dataCalls != 1 {
t.Fatalf("Bad number of data calls: got %x, want 1", o.dataCalls)
}
}
func TestIPv6ReceiveControl(t *testing.T) {
newUint16 := func(v uint16) *uint16 { return &v }
const mtu = 0xffff
cases := []struct {
name string
expectedCount int
fragmentOffset *uint16
typ header.ICMPv6Type
code uint8
expectedTyp stack.ControlType
expectedExtra uint32
trunc int
}{
{"PacketTooBig", 1, nil, header.ICMPv6PacketTooBig, 0, stack.ControlPacketTooBig, mtu, 0},
{"Truncated (10 bytes missing)", 0, nil, header.ICMPv6PacketTooBig, 0, stack.ControlPacketTooBig, mtu, 10},
{"Truncated (missing IPv6 header)", 0, nil, header.ICMPv6PacketTooBig, 0, stack.ControlPacketTooBig, mtu, header.IPv6MinimumSize + 8},
{"Truncated PacketTooBig (missing 'extra info')", 0, nil, header.ICMPv6PacketTooBig, 0, stack.ControlPacketTooBig, mtu, 4 + header.IPv6MinimumSize + 8},
{"Truncated (missing ICMP header)", 0, nil, header.ICMPv6PacketTooBig, 0, stack.ControlPacketTooBig, mtu, header.ICMPv6PacketTooBigMinimumSize + header.IPv6MinimumSize + 8},
{"Port unreachable", 1, nil, header.ICMPv6DstUnreachable, header.ICMPv6PortUnreachable, stack.ControlPortUnreachable, 0, 0},
{"Truncated DstUnreachable (missing 'extra info')", 0, nil, header.ICMPv6DstUnreachable, header.ICMPv6PortUnreachable, stack.ControlPortUnreachable, 0, 4 + header.IPv6MinimumSize + 8},
{"Fragmented, zero offset", 1, newUint16(0), header.ICMPv6DstUnreachable, header.ICMPv6PortUnreachable, stack.ControlPortUnreachable, 0, 0},
{"Non-zero fragment offset", 0, newUint16(100), header.ICMPv6DstUnreachable, header.ICMPv6PortUnreachable, stack.ControlPortUnreachable, 0, 0},
{"Zero-length packet", 0, nil, header.ICMPv6DstUnreachable, header.ICMPv6PortUnreachable, stack.ControlPortUnreachable, 0, 2*header.IPv6MinimumSize + header.ICMPv6DstUnreachableMinimumSize + 8},
}
r := stack.Route{
LocalAddress: localIpv6Addr,
RemoteAddress: "\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaa",
}
for _, c := range cases {
t.Run(c.name, func(t *testing.T) {
o := testObject{t: t}
proto := ipv6.NewProtocol()
ep, err := proto.NewEndpoint(1, localIpv6Addr, nil, &o, nil)
if err != nil {
t.Fatalf("NewEndpoint failed: %v", err)
}
defer ep.Close()
dataOffset := header.IPv6MinimumSize*2 + header.ICMPv6MinimumSize + 4
if c.fragmentOffset != nil {
dataOffset += header.IPv6FragmentHeaderSize
}
view := buffer.NewView(dataOffset + 8)
// Create the outer IPv6 header.
ip := header.IPv6(view)
ip.Encode(&header.IPv6Fields{
PayloadLength: uint16(len(view) - header.IPv6MinimumSize - c.trunc),
NextHeader: uint8(header.ICMPv6ProtocolNumber),
HopLimit: 20,
SrcAddr: "\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaa",
DstAddr: localIpv6Addr,
})
// Create the ICMP header.
icmp := header.ICMPv6(view[header.IPv6MinimumSize:])
icmp.SetType(c.typ)
icmp.SetCode(c.code)
copy(view[header.IPv6MinimumSize+header.ICMPv6MinimumSize:], []byte{0xde, 0xad, 0xbe, 0xef})
// Create the inner IPv6 header.
ip = header.IPv6(view[header.IPv6MinimumSize+header.ICMPv6MinimumSize+4:])
ip.Encode(&header.IPv6Fields{
PayloadLength: 100,
NextHeader: 10,
HopLimit: 20,
SrcAddr: localIpv6Addr,
DstAddr: remoteIpv6Addr,
})
// Build the fragmentation header if needed.
if c.fragmentOffset != nil {
ip.SetNextHeader(header.IPv6FragmentHeader)
frag := header.IPv6Fragment(view[2*header.IPv6MinimumSize+header.ICMPv6MinimumSize+4:])
frag.Encode(&header.IPv6FragmentFields{
NextHeader: 10,
FragmentOffset: *c.fragmentOffset,
M: true,
Identification: 0x12345678,
})
}
// Make payload be non-zero.
for i := dataOffset; i < len(view); i++ {
view[i] = uint8(i)
}
// Give packet to IPv6 endpoint, dispatcher will validate that
// it's ok.
o.protocol = 10
o.srcAddr = remoteIpv6Addr
o.dstAddr = localIpv6Addr
o.contents = view[dataOffset:]
o.typ = c.expectedTyp
o.extra = c.expectedExtra
vv := view[:len(view)-c.trunc].ToVectorisedView()
ep.HandlePacket(&r, vv)
if want := c.expectedCount; o.controlCalls != want {
t.Fatalf("Bad number of control calls for %q case: got %v, want %v", c.name, o.controlCalls, want)
}
})
}
}