blob: 3d9a4f611534150a6e9d6e59017bce26cfa15512 [file] [log] [blame] [edit]
//! Timer optimized for I/O related operations
#![allow(deprecated, missing_debug_implementations)]
extern crate slab;
use {convert, io, Ready, Poll, PollOpt, Registration, SetReadiness, Token};
use event::Evented;
use lazycell::LazyCell;
use std::{cmp, error, fmt, u64, usize, iter, thread};
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::time::{Duration, Instant};
use self::TimerErrorKind::TimerOverflow;
pub struct Timer<T> {
// Size of each tick in milliseconds
tick_ms: u64,
// Slab of timeout entries
entries: Slab<Entry<T>>,
// Timeout wheel. Each tick, the timer will look at the next slot for
// timeouts that match the current tick.
wheel: Vec<WheelEntry>,
// Tick 0's time instant
start: Instant,
// The current tick
tick: Tick,
// The next entry to possibly timeout
next: Token,
// Masks the target tick to get the slot
mask: u64,
// Set on registration with Poll
inner: LazyCell<Inner>,
}
pub struct Builder {
// Approximate duration of each tick
tick: Duration,
// Number of slots in the timer wheel
num_slots: usize,
// Max number of timeouts that can be in flight at a given time.
capacity: usize,
}
#[derive(Clone, Debug)]
pub struct Timeout {
// Reference into the timer entry slab
token: Token,
// Tick that it should match up with
tick: u64,
}
struct Inner {
registration: Registration,
set_readiness: SetReadiness,
wakeup_state: WakeupState,
wakeup_thread: thread::JoinHandle<()>,
}
impl Drop for Inner {
fn drop(&mut self) {
// 1. Set wakeup state to TERMINATE_THREAD (https://github.com/carllerche/mio/blob/master/src/timer.rs#L451)
self.wakeup_state.store(TERMINATE_THREAD, Ordering::Release);
// 2. Wake him up
self.wakeup_thread.thread().unpark();
}
}
#[derive(Copy, Clone, Debug)]
struct WheelEntry {
next_tick: Tick,
head: Token,
}
// Doubly linked list of timer entries. Allows for efficient insertion /
// removal of timeouts.
struct Entry<T> {
state: T,
links: EntryLinks,
}
#[derive(Copy, Clone)]
struct EntryLinks {
tick: Tick,
prev: Token,
next: Token
}
type Tick = u64;
const TICK_MAX: Tick = u64::MAX;
// Manages communication with wakeup thread
type WakeupState = Arc<AtomicUsize>;
type Slab<T> = slab::Slab<T, ::Token>;
pub type Result<T> = ::std::result::Result<T, TimerError>;
// TODO: remove
pub type TimerResult<T> = Result<T>;
#[derive(Debug)]
pub struct TimerError {
kind: TimerErrorKind,
desc: &'static str,
}
#[derive(Debug)]
pub enum TimerErrorKind {
TimerOverflow,
}
// TODO: Remove
pub type OldTimerResult<T> = Result<T>;
const TERMINATE_THREAD: usize = 0;
const EMPTY: Token = Token(usize::MAX);
impl Builder {
pub fn tick_duration(mut self, duration: Duration) -> Builder {
self.tick = duration;
self
}
pub fn num_slots(mut self, num_slots: usize) -> Builder {
self.num_slots = num_slots;
self
}
pub fn capacity(mut self, capacity: usize) -> Builder {
self.capacity = capacity;
self
}
pub fn build<T>(self) -> Timer<T> {
Timer::new(convert::millis(self.tick), self.num_slots, self.capacity, Instant::now())
}
}
impl Default for Builder {
fn default() -> Builder {
Builder {
tick: Duration::from_millis(100),
num_slots: 256,
capacity: 65_536,
}
}
}
impl<T> Timer<T> {
fn new(tick_ms: u64, num_slots: usize, capacity: usize, start: Instant) -> Timer<T> {
let num_slots = num_slots.next_power_of_two();
let capacity = capacity.next_power_of_two();
let mask = (num_slots as u64) - 1;
let wheel = iter::repeat(WheelEntry { next_tick: TICK_MAX, head: EMPTY })
.take(num_slots).collect();
Timer {
tick_ms: tick_ms,
entries: Slab::with_capacity(capacity),
wheel: wheel,
start: start,
tick: 0,
next: EMPTY,
mask: mask,
inner: LazyCell::new(),
}
}
pub fn set_timeout(&mut self, delay_from_now: Duration, state: T) -> Result<Timeout> {
let delay_from_start = self.start.elapsed() + delay_from_now;
self.set_timeout_at(delay_from_start, state)
}
fn set_timeout_at(&mut self, delay_from_start: Duration, state: T) -> Result<Timeout> {
let mut tick = duration_to_tick(delay_from_start, self.tick_ms);
trace!("setting timeout; delay={:?}; tick={:?}; current-tick={:?}", delay_from_start, tick, self.tick);
// Always target at least 1 tick in the future
if tick <= self.tick {
tick = self.tick + 1;
}
self.insert(tick, state)
}
fn insert(&mut self, tick: Tick, state: T) -> Result<Timeout> {
// Get the slot for the requested tick
let slot = (tick & self.mask) as usize;
let curr = self.wheel[slot];
// Insert the new entry
let token = self.entries.insert(Entry::new(state, tick, curr.head))
.map_err(|_| TimerError::overflow())?;
if curr.head != EMPTY {
// If there was a previous entry, set its prev pointer to the new
// entry
self.entries[curr.head].links.prev = token;
}
// Update the head slot
self.wheel[slot] = WheelEntry {
next_tick: cmp::min(tick, curr.next_tick),
head: token,
};
self.schedule_readiness(tick);
trace!("inserted timeout; slot={}; token={:?}", slot, token);
// Return the new timeout
Ok(Timeout {
token: token,
tick: tick
})
}
pub fn cancel_timeout(&mut self, timeout: &Timeout) -> Option<T> {
let links = match self.entries.get(timeout.token) {
Some(e) => e.links,
None => return None
};
// Sanity check
if links.tick != timeout.tick {
return None;
}
self.unlink(&links, timeout.token);
self.entries.remove(timeout.token).map(|e| e.state)
}
pub fn poll(&mut self) -> Option<T> {
let target_tick = current_tick(self.start, self.tick_ms);
self.poll_to(target_tick)
}
fn poll_to(&mut self, mut target_tick: Tick) -> Option<T> {
trace!("tick_to; target_tick={}; current_tick={}", target_tick, self.tick);
if target_tick < self.tick {
target_tick = self.tick;
}
while self.tick <= target_tick {
let curr = self.next;
trace!("ticking; curr={:?}", curr);
if curr == EMPTY {
self.tick += 1;
let slot = self.slot_for(self.tick);
self.next = self.wheel[slot].head;
// Handle the case when a slot has a single timeout which gets
// canceled before the timeout expires. In this case, the
// slot's head is EMPTY but there is a value for next_tick. Not
// resetting next_tick here causes the timer to get stuck in a
// loop.
if self.next == EMPTY {
self.wheel[slot].next_tick = TICK_MAX;
}
} else {
let slot = self.slot_for(self.tick);
if curr == self.wheel[slot].head {
self.wheel[slot].next_tick = TICK_MAX;
}
let links = self.entries[curr].links;
if links.tick <= self.tick {
trace!("triggering; token={:?}", curr);
// Unlink will also advance self.next
self.unlink(&links, curr);
// Remove and return the token
return self.entries.remove(curr)
.map(|e| e.state);
} else {
let next_tick = self.wheel[slot].next_tick;
self.wheel[slot].next_tick = cmp::min(next_tick, links.tick);
self.next = links.next;
}
}
}
// No more timeouts to poll
if let Some(inner) = self.inner.borrow() {
trace!("unsetting readiness");
let _ = inner.set_readiness.set_readiness(Ready::empty());
if let Some(tick) = self.next_tick() {
self.schedule_readiness(tick);
}
}
None
}
fn unlink(&mut self, links: &EntryLinks, token: Token) {
trace!("unlinking timeout; slot={}; token={:?}",
self.slot_for(links.tick), token);
if links.prev == EMPTY {
let slot = self.slot_for(links.tick);
self.wheel[slot].head = links.next;
} else {
self.entries[links.prev].links.next = links.next;
}
if links.next != EMPTY {
self.entries[links.next].links.prev = links.prev;
if token == self.next {
self.next = links.next;
}
} else if token == self.next {
self.next = EMPTY;
}
}
fn schedule_readiness(&self, tick: Tick) {
if let Some(inner) = self.inner.borrow() {
// Coordinate setting readiness w/ the wakeup thread
let mut curr = inner.wakeup_state.load(Ordering::Acquire);
loop {
if curr as Tick <= tick {
// Nothing to do, wakeup is already scheduled
return;
}
// Attempt to move the wakeup time forward
trace!("advancing the wakeup time; target={}; curr={}", tick, curr);
let actual = inner.wakeup_state.compare_and_swap(curr, tick as usize, Ordering::Release);
if actual == curr {
// Signal to the wakeup thread that the wakeup time has
// been changed.
trace!("unparking wakeup thread");
inner.wakeup_thread.thread().unpark();
return;
}
curr = actual;
}
}
}
// Next tick containing a timeout
fn next_tick(&self) -> Option<Tick> {
if self.next != EMPTY {
let slot = self.slot_for(self.entries[self.next].links.tick);
if self.wheel[slot].next_tick == self.tick {
// There is data ready right now
return Some(self.tick);
}
}
self.wheel.iter().map(|e| e.next_tick).min()
}
fn slot_for(&self, tick: Tick) -> usize {
(self.mask & tick) as usize
}
}
impl<T> Default for Timer<T> {
fn default() -> Timer<T> {
Builder::default().build()
}
}
impl<T> Evented for Timer<T> {
fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> {
if self.inner.borrow().is_some() {
return Err(io::Error::new(io::ErrorKind::Other, "timer already registered"));
}
let (registration, set_readiness) = Registration::new(poll, token, interest, opts);
let wakeup_state = Arc::new(AtomicUsize::new(usize::MAX));
let thread_handle = spawn_wakeup_thread(
wakeup_state.clone(),
set_readiness.clone(),
self.start, self.tick_ms);
self.inner.fill(Inner {
registration: registration,
set_readiness: set_readiness,
wakeup_state: wakeup_state,
wakeup_thread: thread_handle,
}).ok().expect("timer already registered");
if let Some(next_tick) = self.next_tick() {
self.schedule_readiness(next_tick);
}
Ok(())
}
fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> {
match self.inner.borrow() {
Some(inner) => inner.registration.update(poll, token, interest, opts),
None => Err(io::Error::new(io::ErrorKind::Other, "receiver not registered")),
}
}
fn deregister(&self, poll: &Poll) -> io::Result<()> {
match self.inner.borrow() {
Some(inner) => inner.registration.deregister(poll),
None => Err(io::Error::new(io::ErrorKind::Other, "receiver not registered")),
}
}
}
impl fmt::Debug for Inner {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("Inner")
.field("registration", &self.registration)
.field("wakeup_state", &self.wakeup_state.load(Ordering::Relaxed))
.finish()
}
}
fn spawn_wakeup_thread(state: WakeupState, set_readiness: SetReadiness, start: Instant, tick_ms: u64) -> thread::JoinHandle<()> {
thread::spawn(move || {
let mut sleep_until_tick = state.load(Ordering::Acquire) as Tick;
loop {
if sleep_until_tick == TERMINATE_THREAD as Tick {
return;
}
let now_tick = current_tick(start, tick_ms);
trace!("wakeup thread: sleep_until_tick={:?}; now_tick={:?}", sleep_until_tick, now_tick);
if now_tick < sleep_until_tick {
// Calling park_timeout with u64::MAX leads to undefined
// behavior in pthread, causing the park to return immediately
// and causing the thread to tightly spin. Instead of u64::MAX
// on large values, simply use a blocking park.
match tick_ms.checked_mul(sleep_until_tick - now_tick) {
Some(sleep_duration) => {
trace!("sleeping; tick_ms={}; now_tick={}; sleep_until_tick={}; duration={:?}",
tick_ms, now_tick, sleep_until_tick, sleep_duration);
thread::park_timeout(Duration::from_millis(sleep_duration));
}
None => {
trace!("sleeping; tick_ms={}; now_tick={}; blocking sleep",
tick_ms, now_tick);
thread::park();
}
}
sleep_until_tick = state.load(Ordering::Acquire) as Tick;
} else {
let actual = state.compare_and_swap(sleep_until_tick as usize, usize::MAX, Ordering::AcqRel) as Tick;
if actual == sleep_until_tick {
trace!("setting readiness from wakeup thread");
let _ = set_readiness.set_readiness(Ready::readable());
sleep_until_tick = usize::MAX as Tick;
} else {
sleep_until_tick = actual as Tick;
}
}
}
})
}
fn duration_to_tick(elapsed: Duration, tick_ms: u64) -> Tick {
// Calculate tick rounding up to the closest one
let elapsed_ms = convert::millis(elapsed);
elapsed_ms.saturating_add(tick_ms / 2) / tick_ms
}
fn current_tick(start: Instant, tick_ms: u64) -> Tick {
duration_to_tick(start.elapsed(), tick_ms)
}
impl<T> Entry<T> {
fn new(state: T, tick: u64, next: Token) -> Entry<T> {
Entry {
state: state,
links: EntryLinks {
tick: tick,
prev: EMPTY,
next: next,
},
}
}
}
impl fmt::Display for TimerError {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{}: {}", self.kind, self.desc)
}
}
impl TimerError {
fn overflow() -> TimerError {
TimerError {
kind: TimerOverflow,
desc: "too many timer entries"
}
}
}
impl error::Error for TimerError {
fn description(&self) -> &str {
self.desc
}
}
impl fmt::Display for TimerErrorKind {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
TimerOverflow => write!(fmt, "TimerOverflow"),
}
}
}