blob: bd7a747c6f74d8d7f9da356f1cb8d250c72e7d6b [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott (cwabbott0@gmail.com)
*
*/
#include "nir.h"
#include "nir_builder.h"
#include "util/u_math.h"
#include "util/set.h"
struct lower_sysval_state {
const nir_lower_compute_system_values_options *options;
/* List of intrinsics that have already been lowered and shouldn't be
* lowered again.
*/
struct set *lower_once_list;
};
static nir_ssa_def *
sanitize_32bit_sysval(nir_builder *b, nir_intrinsic_instr *intrin)
{
assert(intrin->dest.is_ssa);
const unsigned bit_size = intrin->dest.ssa.bit_size;
if (bit_size == 32)
return NULL;
intrin->dest.ssa.bit_size = 32;
return nir_u2u(b, &intrin->dest.ssa, bit_size);
}
static nir_ssa_def*
build_global_group_size(nir_builder *b, unsigned bit_size)
{
nir_ssa_def *group_size = nir_load_workgroup_size(b);
nir_ssa_def *num_workgroups = nir_load_num_workgroups(b, bit_size);
return nir_imul(b, nir_u2u(b, group_size, bit_size),
num_workgroups);
}
static bool
lower_system_value_filter(const nir_instr *instr, const void *_state)
{
return instr->type == nir_instr_type_intrinsic;
}
static nir_ssa_def *
lower_system_value_instr(nir_builder *b, nir_instr *instr, void *_state)
{
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
/* All the intrinsics we care about are loads */
if (!nir_intrinsic_infos[intrin->intrinsic].has_dest)
return NULL;
assert(intrin->dest.is_ssa);
const unsigned bit_size = intrin->dest.ssa.bit_size;
switch (intrin->intrinsic) {
case nir_intrinsic_load_vertex_id:
if (b->shader->options->vertex_id_zero_based) {
return nir_iadd(b, nir_load_vertex_id_zero_base(b),
nir_load_first_vertex(b));
} else {
return NULL;
}
case nir_intrinsic_load_base_vertex:
/**
* From the OpenGL 4.6 (11.1.3.9 Shader Inputs) specification:
*
* "gl_BaseVertex holds the integer value passed to the baseVertex
* parameter to the command that resulted in the current shader
* invocation. In the case where the command has no baseVertex
* parameter, the value of gl_BaseVertex is zero."
*/
if (b->shader->options->lower_base_vertex) {
return nir_iand(b, nir_load_is_indexed_draw(b),
nir_load_first_vertex(b));
} else {
return NULL;
}
case nir_intrinsic_load_helper_invocation:
if (b->shader->options->lower_helper_invocation) {
nir_ssa_def *tmp;
tmp = nir_ishl(b, nir_imm_int(b, 1),
nir_load_sample_id_no_per_sample(b));
tmp = nir_iand(b, nir_load_sample_mask_in(b), tmp);
return nir_inot(b, nir_i2b(b, tmp));
} else {
return NULL;
}
case nir_intrinsic_load_local_invocation_id:
case nir_intrinsic_load_local_invocation_index:
case nir_intrinsic_load_workgroup_size:
return sanitize_32bit_sysval(b, intrin);
case nir_intrinsic_load_deref: {
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (!nir_deref_mode_is(deref, nir_var_system_value))
return NULL;
nir_ssa_def *column = NULL;
if (deref->deref_type != nir_deref_type_var) {
/* The only one system values that aren't plane variables are
* gl_SampleMask which is always an array of one element and a
* couple of ray-tracing intrinsics which are matrices.
*/
assert(deref->deref_type == nir_deref_type_array);
assert(deref->arr.index.is_ssa);
column = deref->arr.index.ssa;
deref = nir_deref_instr_parent(deref);
assert(deref->deref_type == nir_deref_type_var);
assert(deref->var->data.location == SYSTEM_VALUE_SAMPLE_MASK_IN ||
deref->var->data.location == SYSTEM_VALUE_RAY_OBJECT_TO_WORLD ||
deref->var->data.location == SYSTEM_VALUE_RAY_WORLD_TO_OBJECT ||
deref->var->data.location == SYSTEM_VALUE_MESH_VIEW_INDICES);
}
nir_variable *var = deref->var;
switch (var->data.location) {
case SYSTEM_VALUE_INSTANCE_INDEX:
return nir_iadd(b, nir_load_instance_id(b),
nir_load_base_instance(b));
case SYSTEM_VALUE_SUBGROUP_EQ_MASK:
case SYSTEM_VALUE_SUBGROUP_GE_MASK:
case SYSTEM_VALUE_SUBGROUP_GT_MASK:
case SYSTEM_VALUE_SUBGROUP_LE_MASK:
case SYSTEM_VALUE_SUBGROUP_LT_MASK: {
nir_intrinsic_op op =
nir_intrinsic_from_system_value(var->data.location);
nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, op);
nir_ssa_dest_init_for_type(&load->instr, &load->dest,
var->type, NULL);
load->num_components = load->dest.ssa.num_components;
nir_builder_instr_insert(b, &load->instr);
return &load->dest.ssa;
}
case SYSTEM_VALUE_DEVICE_INDEX:
if (b->shader->options->lower_device_index_to_zero)
return nir_imm_int(b, 0);
break;
case SYSTEM_VALUE_GLOBAL_GROUP_SIZE:
return build_global_group_size(b, bit_size);
case SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL:
return nir_load_barycentric(b, nir_intrinsic_load_barycentric_pixel,
INTERP_MODE_NOPERSPECTIVE);
case SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID:
return nir_load_barycentric(b, nir_intrinsic_load_barycentric_centroid,
INTERP_MODE_NOPERSPECTIVE);
case SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE:
return nir_load_barycentric(b, nir_intrinsic_load_barycentric_sample,
INTERP_MODE_NOPERSPECTIVE);
case SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL:
return nir_load_barycentric(b, nir_intrinsic_load_barycentric_pixel,
INTERP_MODE_SMOOTH);
case SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID:
return nir_load_barycentric(b, nir_intrinsic_load_barycentric_centroid,
INTERP_MODE_SMOOTH);
case SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE:
return nir_load_barycentric(b, nir_intrinsic_load_barycentric_sample,
INTERP_MODE_SMOOTH);
case SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL:
return nir_load_barycentric(b, nir_intrinsic_load_barycentric_model,
INTERP_MODE_NONE);
case SYSTEM_VALUE_HELPER_INVOCATION: {
/* When demote operation is used, reading the HelperInvocation
* needs to use Volatile memory access semantics to provide the
* correct (dynamic) value. See OpDemoteToHelperInvocation.
*/
if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE)
return nir_is_helper_invocation(b, 1);
break;
}
case SYSTEM_VALUE_MESH_VIEW_INDICES:
return nir_load_mesh_view_indices(b, intrin->dest.ssa.num_components,
bit_size, column, .base = 0,
.range = intrin->dest.ssa.num_components * bit_size / 8);
default:
break;
}
nir_intrinsic_op sysval_op =
nir_intrinsic_from_system_value(var->data.location);
if (glsl_type_is_matrix(var->type)) {
assert(nir_intrinsic_infos[sysval_op].index_map[NIR_INTRINSIC_COLUMN] > 0);
unsigned num_cols = glsl_get_matrix_columns(var->type);
ASSERTED unsigned num_rows = glsl_get_vector_elements(var->type);
assert(num_rows == intrin->dest.ssa.num_components);
nir_ssa_def *cols[4];
for (unsigned i = 0; i < num_cols; i++) {
cols[i] = nir_load_system_value(b, sysval_op, i,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size);
assert(cols[i]->num_components == num_rows);
}
return nir_select_from_ssa_def_array(b, cols, num_cols, column);
} else {
return nir_load_system_value(b, sysval_op, 0,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size);
}
}
default:
return NULL;
}
}
bool
nir_lower_system_values(nir_shader *shader)
{
bool progress = nir_shader_lower_instructions(shader,
lower_system_value_filter,
lower_system_value_instr,
NULL);
/* We're going to delete the variables so we need to clean up all those
* derefs we left lying around.
*/
if (progress)
nir_remove_dead_derefs(shader);
nir_foreach_variable_with_modes_safe(var, shader, nir_var_system_value)
exec_node_remove(&var->node);
return progress;
}
static nir_ssa_def *
lower_id_to_index_no_umod(nir_builder *b, nir_ssa_def *index,
nir_ssa_def *size, unsigned bit_size)
{
/* We lower ID to Index with the following formula:
*
* id.z = index / (size.x * size.y)
* id.y = (index - (id.z * (size.x * size.y))) / size.x
* id.x = index - ((id.z * (size.x * size.y)) + (id.y * size.x))
*
* This is more efficient on HW that doesn't have a
* modulo division instruction and when the size is either
* not compile time known or not a power of two.
*/
nir_ssa_def *size_x = nir_channel(b, size, 0);
nir_ssa_def *size_y = nir_channel(b, size, 1);
nir_ssa_def *size_x_y = nir_imul(b, size_x, size_y);
nir_ssa_def *id_z = nir_udiv(b, index, size_x_y);
nir_ssa_def *z_portion = nir_imul(b, id_z, size_x_y);
nir_ssa_def *id_y = nir_udiv(b, nir_isub(b, index, z_portion), size_x);
nir_ssa_def *y_portion = nir_imul(b, id_y, size_x);
nir_ssa_def *id_x = nir_isub(b, index, nir_iadd(b, z_portion, y_portion));
return nir_u2u(b, nir_vec3(b, id_x, id_y, id_z), bit_size);
}
static nir_ssa_def *
lower_id_to_index(nir_builder *b, nir_ssa_def *index, nir_ssa_def *size,
unsigned bit_size)
{
/* We lower gl_LocalInvocationID to gl_LocalInvocationIndex based
* on this formula:
*
* id.x = index % size.x;
* id.y = (index / size.x) % gl_WorkGroupSize.y;
* id.z = (index / (size.x * size.y)) % size.z;
*
* However, the final % size.z does nothing unless we
* accidentally end up with an index that is too
* large so it can safely be omitted.
*
* Because no hardware supports a local workgroup size greater than
* about 1K, this calculation can be done in 32-bit and can save some
* 64-bit arithmetic.
*/
nir_ssa_def *size_x = nir_channel(b, size, 0);
nir_ssa_def *size_y = nir_channel(b, size, 1);
nir_ssa_def *id_x = nir_umod(b, index, size_x);
nir_ssa_def *id_y = nir_umod(b, nir_udiv(b, index, size_x), size_y);
nir_ssa_def *id_z = nir_udiv(b, index, nir_imul(b, size_x, size_y));
return nir_u2u(b, nir_vec3(b, id_x, id_y, id_z), bit_size);
}
static bool
lower_compute_system_value_filter(const nir_instr *instr, const void *_state)
{
return instr->type == nir_instr_type_intrinsic;
}
static nir_ssa_def *
lower_compute_system_value_instr(nir_builder *b,
nir_instr *instr, void *_state)
{
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
struct lower_sysval_state *state = (struct lower_sysval_state *)_state;
const nir_lower_compute_system_values_options *options = state->options;
/* All the intrinsics we care about are loads */
if (!nir_intrinsic_infos[intrin->intrinsic].has_dest)
return NULL;
assert(intrin->dest.is_ssa);
const unsigned bit_size = intrin->dest.ssa.bit_size;
switch (intrin->intrinsic) {
case nir_intrinsic_load_local_invocation_id:
/* If lower_cs_local_id_to_index is true, then we replace
* local_invocation_id with a formula based on local_invocation_index.
*/
if (b->shader->options->lower_cs_local_id_to_index ||
(options && options->lower_cs_local_id_to_index)) {
nir_ssa_def *local_index = nir_load_local_invocation_index(b);
if (!b->shader->info.workgroup_size_variable) {
/* Shortcut for 1 dimensional workgroups:
* Use local_invocation_index directly, which is better than
* lower_id_to_index + constant folding, because
* this way we don't leave behind extra ALU instrs.
*/
/* size_x = 1, size_y = 1, therefore Z = local index */
if (b->shader->info.workgroup_size[0] == 1 &&
b->shader->info.workgroup_size[1] == 1)
return nir_vec3(b, nir_imm_int(b, 0), nir_imm_int(b, 0), local_index);
/* size_x = 1, size_z = 1, therefore Y = local index */
if (b->shader->info.workgroup_size[0] == 1 &&
b->shader->info.workgroup_size[2] == 1)
return nir_vec3(b, nir_imm_int(b, 0), local_index, nir_imm_int(b, 0));
/* size_y = 1, size_z = 1, therefore X = local index */
if (b->shader->info.workgroup_size[1] == 1 &&
b->shader->info.workgroup_size[2] == 1)
return nir_vec3(b, local_index, nir_imm_int(b, 0), nir_imm_int(b, 0));
}
nir_ssa_def *local_size = nir_load_workgroup_size(b);
return lower_id_to_index(b, local_index, local_size, bit_size);
}
if (options && options->shuffle_local_ids_for_quad_derivatives &&
b->shader->info.cs.derivative_group == DERIVATIVE_GROUP_QUADS &&
_mesa_set_search(state->lower_once_list, instr) == NULL) {
nir_ssa_def *ids = nir_load_local_invocation_id(b);
_mesa_set_add(state->lower_once_list, ids->parent_instr);
nir_ssa_def *x = nir_channel(b, ids, 0);
nir_ssa_def *y = nir_channel(b, ids, 1);
nir_ssa_def *z = nir_channel(b, ids, 2);
unsigned size_x = b->shader->info.workgroup_size[0];
nir_ssa_def *size_x_imm;
if (b->shader->info.workgroup_size_variable)
size_x_imm = nir_channel(b, nir_load_workgroup_size(b), 0);
else
size_x_imm = nir_imm_int(b, size_x);
/* Remap indices from:
* | 0| 1| 2| 3|
* | 4| 5| 6| 7|
* | 8| 9|10|11|
* |12|13|14|15|
* to:
* | 0| 1| 4| 5|
* | 2| 3| 6| 7|
* | 8| 9|12|13|
* |10|11|14|15|
*
* That's the layout required by AMD hardware for derivatives to
* work. Other hardware may work differently.
*
* It's a classic tiling pattern that can be implemented by inserting
* bit y[0] between bits x[0] and x[1] like this:
*
* x[0],y[0],x[1],...x[last],y[1],...,y[last]
*
* If the width is a power of two, use:
* i = ((x & 1) | ((y & 1) << 1) | ((x & ~1) << 1)) | ((y & ~1) << logbase2(size_x))
*
* If the width is not a power of two or the local size is variable, use:
* i = ((x & 1) | ((y & 1) << 1) | ((x & ~1) << 1)) + ((y & ~1) * size_x)
*
* GL_NV_compute_shader_derivatives requires that the width and height
* are a multiple of two, which is also a requirement for the second
* expression to work.
*
* The 2D result is: (x,y) = (i % w, i / w)
*/
nir_ssa_def *one = nir_imm_int(b, 1);
nir_ssa_def *inv_one = nir_imm_int(b, ~1);
nir_ssa_def *x_bit0 = nir_iand(b, x, one);
nir_ssa_def *y_bit0 = nir_iand(b, y, one);
nir_ssa_def *x_bits_1n = nir_iand(b, x, inv_one);
nir_ssa_def *y_bits_1n = nir_iand(b, y, inv_one);
nir_ssa_def *bits_01 = nir_ior(b, x_bit0, nir_ishl(b, y_bit0, one));
nir_ssa_def *bits_01x = nir_ior(b, bits_01,
nir_ishl(b, x_bits_1n, one));
nir_ssa_def *i;
if (!b->shader->info.workgroup_size_variable &&
util_is_power_of_two_nonzero(size_x)) {
nir_ssa_def *log2_size_x = nir_imm_int(b, util_logbase2(size_x));
i = nir_ior(b, bits_01x, nir_ishl(b, y_bits_1n, log2_size_x));
} else {
i = nir_iadd(b, bits_01x, nir_imul(b, y_bits_1n, size_x_imm));
}
/* This should be fast if size_x is an immediate or even a power
* of two.
*/
x = nir_umod(b, i, size_x_imm);
y = nir_udiv(b, i, size_x_imm);
return nir_vec3(b, x, y, z);
}
/* If a workgroup size dimension is 1, then the local invocation id must be zero. */
nir_component_mask_t is_zero = 0;
is_zero |= b->shader->info.workgroup_size[0] == 1 ? 0x1 : 0x0;
is_zero |= b->shader->info.workgroup_size[1] == 1 ? 0x2 : 0x0;
is_zero |= b->shader->info.workgroup_size[2] == 1 ? 0x4 : 0x0;
if (!b->shader->info.workgroup_size_variable && is_zero) {
nir_ssa_scalar defs[3];
for (unsigned i = 0; i < 3; i++) {
defs[i] = is_zero & (1 << i) ? nir_get_ssa_scalar(nir_imm_zero(b, 1, 32), 0) :
nir_get_ssa_scalar(&intrin->dest.ssa, i);
}
return nir_vec_scalars(b, defs, 3);
}
return NULL;
case nir_intrinsic_load_local_invocation_index:
/* If lower_cs_local_index_to_id is true, then we replace
* local_invocation_index with a formula based on local_invocation_id.
*/
if (b->shader->options->lower_cs_local_index_to_id ||
(options && options->lower_local_invocation_index)) {
/* From the GLSL man page for gl_LocalInvocationIndex:
*
* "The value of gl_LocalInvocationIndex is equal to
* gl_LocalInvocationID.z * gl_WorkGroupSize.x *
* gl_WorkGroupSize.y + gl_LocalInvocationID.y *
* gl_WorkGroupSize.x + gl_LocalInvocationID.x"
*/
nir_ssa_def *local_id = nir_load_local_invocation_id(b);
nir_ssa_def *local_size = nir_load_workgroup_size(b);
nir_ssa_def *size_x = nir_channel(b, local_size, 0);
nir_ssa_def *size_y = nir_channel(b, local_size, 1);
/* Because no hardware supports a local workgroup size greater than
* about 1K, this calculation can be done in 32-bit and can save some
* 64-bit arithmetic.
*/
nir_ssa_def *index;
index = nir_imul(b, nir_channel(b, local_id, 2),
nir_imul(b, size_x, size_y));
index = nir_iadd(b, index,
nir_imul(b, nir_channel(b, local_id, 1), size_x));
index = nir_iadd(b, index, nir_channel(b, local_id, 0));
return nir_u2u(b, index, bit_size);
} else {
return NULL;
}
case nir_intrinsic_load_workgroup_size:
if (b->shader->info.workgroup_size_variable) {
/* If the local work group size is variable it can't be lowered at
* this point. We do, however, have to make sure that the intrinsic
* is only 32-bit.
*/
return NULL;
} else {
/* using a 32 bit constant is safe here as no device/driver needs more
* than 32 bits for the local size */
nir_const_value workgroup_size_const[3];
memset(workgroup_size_const, 0, sizeof(workgroup_size_const));
workgroup_size_const[0].u32 = b->shader->info.workgroup_size[0];
workgroup_size_const[1].u32 = b->shader->info.workgroup_size[1];
workgroup_size_const[2].u32 = b->shader->info.workgroup_size[2];
return nir_u2u(b, nir_build_imm(b, 3, 32, workgroup_size_const), bit_size);
}
case nir_intrinsic_load_global_invocation_id_zero_base: {
if ((options && options->has_base_workgroup_id) ||
!b->shader->options->has_cs_global_id) {
nir_ssa_def *group_size = nir_load_workgroup_size(b);
nir_ssa_def *group_id = nir_load_workgroup_id(b, bit_size);
nir_ssa_def *local_id = nir_load_local_invocation_id(b);
return nir_iadd(b, nir_imul(b, group_id,
nir_u2u(b, group_size, bit_size)),
nir_u2u(b, local_id, bit_size));
} else {
return NULL;
}
}
case nir_intrinsic_load_global_invocation_id: {
if (options && options->has_base_global_invocation_id)
return nir_iadd(b, nir_load_global_invocation_id_zero_base(b, bit_size),
nir_load_base_global_invocation_id(b, bit_size));
else if ((options && options->has_base_workgroup_id) ||
!b->shader->options->has_cs_global_id)
return nir_load_global_invocation_id_zero_base(b, bit_size);
else
return NULL;
}
case nir_intrinsic_load_global_invocation_index: {
/* OpenCL's global_linear_id explicitly removes the global offset before computing this */
assert(b->shader->info.stage == MESA_SHADER_KERNEL);
nir_ssa_def *global_base_id = nir_load_base_global_invocation_id(b, bit_size);
nir_ssa_def *global_id = nir_isub(b, nir_load_global_invocation_id(b, bit_size), global_base_id);
nir_ssa_def *global_size = build_global_group_size(b, bit_size);
/* index = id.x + ((id.y + (id.z * size.y)) * size.x) */
nir_ssa_def *index;
index = nir_imul(b, nir_channel(b, global_id, 2),
nir_channel(b, global_size, 1));
index = nir_iadd(b, nir_channel(b, global_id, 1), index);
index = nir_imul(b, nir_channel(b, global_size, 0), index);
index = nir_iadd(b, nir_channel(b, global_id, 0), index);
return index;
}
case nir_intrinsic_load_workgroup_id: {
if (options && options->has_base_workgroup_id)
return nir_iadd(b, nir_u2u(b, nir_load_workgroup_id_zero_base(b), bit_size),
nir_load_base_workgroup_id(b, bit_size));
else if (options && options->lower_workgroup_id_to_index)
return lower_id_to_index_no_umod(b, nir_load_workgroup_index(b),
nir_load_num_workgroups(b, bit_size),
bit_size);
return NULL;
}
default:
return NULL;
}
}
bool
nir_lower_compute_system_values(nir_shader *shader,
const nir_lower_compute_system_values_options *options)
{
if (!gl_shader_stage_uses_workgroup(shader->info.stage))
return false;
struct lower_sysval_state state;
state.options = options;
state.lower_once_list = _mesa_pointer_set_create(NULL);
bool progress =
nir_shader_lower_instructions(shader,
lower_compute_system_value_filter,
lower_compute_system_value_instr,
(void*)&state);
ralloc_free(state.lower_once_list);
/* Update this so as not to lower it again. */
if (options && options->shuffle_local_ids_for_quad_derivatives &&
shader->info.cs.derivative_group == DERIVATIVE_GROUP_QUADS)
shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
return progress;
}