| .section #gm107_builtin_code |
| // DIV U32 |
| // |
| // UNR recurrence (q = a / b): |
| // look for z such that 2^32 - b <= b * z < 2^32 |
| // then q - 1 <= (a * z) / 2^32 <= q |
| // |
| // INPUT: $r0: dividend, $r1: divisor |
| // OUTPUT: $r0: result, $r1: modulus |
| // CLOBBER: $r2 - $r3, $p0 - $p1 |
| // SIZE: 22 / 14 * 8 bytes |
| // |
| gm107_div_u32: |
| sched (st 0xd wr 0x0 wt 0x3f) (st 0x1 wt 0x1) (st 0x6) |
| flo u32 $r2 $r1 |
| lop xor 1 $r2 $r2 0x1f |
| mov $r3 0x1 0xf |
| sched (st 0x1) (st 0xf wr 0x0) (st 0x6 wr 0x0 wt 0x1) |
| shl $r2 $r3 $r2 |
| i2i u32 u32 $r1 neg $r1 |
| imul u32 u32 $r3 $r1 $r2 |
| sched (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1) |
| imad u32 u32 hi $r2 $r2 $r3 $r2 |
| imul u32 u32 $r3 $r1 $r2 |
| imad u32 u32 hi $r2 $r2 $r3 $r2 |
| sched (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1) |
| imul u32 u32 $r3 $r1 $r2 |
| imad u32 u32 hi $r2 $r2 $r3 $r2 |
| imul u32 u32 $r3 $r1 $r2 |
| sched (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 rd 0x1 wt 0x1) |
| imad u32 u32 hi $r2 $r2 $r3 $r2 |
| imul u32 u32 $r3 $r1 $r2 |
| imad u32 u32 hi $r2 $r2 $r3 $r2 |
| sched (st 0x6 wt 0x2) (st 0x6 wr 0x0 rd 0x1 wt 0x1) (st 0xf wr 0x0 rd 0x1 wt 0x2) |
| mov $r3 $r0 0xf |
| imul u32 u32 hi $r0 $r0 $r2 |
| i2i u32 u32 $r2 neg $r1 |
| sched (st 0x6 wr 0x0 wt 0x3) (st 0xd wt 0x1) (st 0x1) |
| imad u32 u32 $r1 $r1 $r0 $r3 |
| isetp ge u32 and $p0 1 $r1 $r2 1 |
| $p0 iadd $r1 $r1 neg $r2 |
| sched (st 0x5) (st 0xd) (st 0x1) |
| $p0 iadd $r0 $r0 0x1 |
| $p0 isetp ge u32 and $p0 1 $r1 $r2 1 |
| $p0 iadd $r1 $r1 neg $r2 |
| sched (st 0x1) (st 0xf) (st 0xf) |
| $p0 iadd $r0 $r0 0x1 |
| ret |
| nop 0 |
| |
| // DIV S32, like DIV U32 after taking ABS(inputs) |
| // |
| // INPUT: $r0: dividend, $r1: divisor |
| // OUTPUT: $r0: result, $r1: modulus |
| // CLOBBER: $r2 - $r3, $p0 - $p3 |
| // |
| gm107_div_s32: |
| sched (st 0xd wt 0x3f) (st 0x1) (st 0x1 wr 0x0) |
| isetp lt and $p2 0x1 $r0 0 1 |
| isetp lt xor $p3 1 $r1 0 $p2 |
| i2i s32 s32 $r0 abs $r0 |
| sched (st 0xf wr 0x1) (st 0xd wr 0x1 wt 0x2) (st 0x1 wt 0x2) |
| i2i s32 s32 $r1 abs $r1 |
| flo u32 $r2 $r1 |
| lop xor 1 $r2 $r2 0x1f |
| sched (st 0x6) (st 0x1) (st 0xf wr 0x1) |
| mov $r3 0x1 0xf |
| shl $r2 $r3 $r2 |
| i2i u32 u32 $r1 neg $r1 |
| sched (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) |
| imul u32 u32 $r3 $r1 $r2 |
| imad u32 u32 hi $r2 $r2 $r3 $r2 |
| imul u32 u32 $r3 $r1 $r2 |
| sched (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) |
| imad u32 u32 hi $r2 $r2 $r3 $r2 |
| imul u32 u32 $r3 $r1 $r2 |
| imad u32 u32 hi $r2 $r2 $r3 $r2 |
| sched (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) |
| imul u32 u32 $r3 $r1 $r2 |
| imad u32 u32 hi $r2 $r2 $r3 $r2 |
| imul u32 u32 $r3 $r1 $r2 |
| sched (st 0x6 wr 0x1 rd 0x2 wt 0x2) (st 0x2 wt 0x5) (st 0x6 wr 0x0 rd 0x1 wt 0x2) |
| imad u32 u32 hi $r2 $r2 $r3 $r2 |
| mov $r3 $r0 0xf |
| imul u32 u32 hi $r0 $r0 $r2 |
| sched (st 0xf wr 0x1 rd 0x2 wt 0x2) (st 0x6 wr 0x0 wt 0x5) (st 0xd wt 0x3) |
| i2i u32 u32 $r2 neg $r1 |
| imad u32 u32 $r1 $r1 $r0 $r3 |
| isetp ge u32 and $p0 1 $r1 $r2 1 |
| sched (st 0x1) (st 0x5) (st 0xd) |
| $p0 iadd $r1 $r1 neg $r2 |
| $p0 iadd $r0 $r0 0x1 |
| $p0 isetp ge u32 and $p0 1 $r1 $r2 1 |
| sched (st 0x1) (st 0x2) (st 0xf wr 0x0) |
| $p0 iadd $r1 $r1 neg $r2 |
| $p0 iadd $r0 $r0 0x1 |
| $p3 i2i s32 s32 $r0 neg $r0 |
| sched (st 0xf wr 0x1) (st 0xf wt 0x3) (st 0xf) |
| $p2 i2i s32 s32 $r1 neg $r1 |
| ret |
| nop 0 |
| |
| // RCP F64 |
| // |
| // INPUT: $r0d |
| // OUTPUT: $r0d |
| // CLOBBER: $r2 - $r9, $p0 |
| // |
| // The core of RCP and RSQ implementation is Newton-Raphson step, which is |
| // used to find successively better approximation from an imprecise initial |
| // value (single precision rcp in RCP and rsqrt64h in RSQ). |
| // |
| gm107_rcp_f64: |
| // Step 1: classify input according to exponent and value, and calculate |
| // result for 0/inf/nan. $r2 holds the exponent value, which starts at |
| // bit 52 (bit 20 of the upper half) and is 11 bits in length |
| sched (st 0x0) (st 0x0) (st 0x0) |
| bfe u32 $r2 $r1 0xb14 |
| iadd32i $r3 $r2 -1 |
| ssy #rcp_rejoin |
| // We want to check whether the exponent is 0 or 0x7ff (i.e. NaN, inf, |
| // denorm, or 0). Do this by subtracting 1 from the exponent, which will |
| // mean that it's > 0x7fd in those cases when doing unsigned comparison |
| sched (st 0x0) (st 0x0) (st 0x0) |
| isetp gt u32 and $p0 1 $r3 0x7fd 1 |
| // $r3: 0 for norms, 0x36 for denorms, -1 for others |
| mov $r3 0x0 0xf |
| not $p0 sync |
| // Process all special values: NaN, inf, denorm, 0 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| mov32i $r3 0xffffffff 0xf |
| // A number is NaN if its abs value is greater than or unordered with inf |
| dsetp gtu and $p0 1 abs $r0 0x7ff0000000000000 1 |
| not $p0 bra #rcp_inf_or_denorm_or_zero |
| // NaN -> NaN, the next line sets the "quiet" bit of the result. This |
| // behavior is both seen on the CPU and the blob |
| sched (st 0x0) (st 0x0) (st 0x0) |
| lop32i or $r1 $r1 0x80000 |
| sync |
| rcp_inf_or_denorm_or_zero: |
| lop32i and $r4 $r1 0x7ff00000 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| // Other values with nonzero in exponent field should be inf |
| isetp eq and $p0 1 $r4 0x0 1 |
| $p0 bra #rcp_denorm_or_zero |
| // +/-Inf -> +/-0 |
| lop32i xor $r1 $r1 0x7ff00000 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| mov $r0 0x0 0xf |
| sync |
| rcp_denorm_or_zero: |
| dsetp gtu and $p0 1 abs $r0 0x0 1 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| $p0 bra #rcp_denorm |
| // +/-0 -> +/-Inf |
| lop32i or $r1 $r1 0x7ff00000 |
| sync |
| rcp_denorm: |
| // non-0 denorms: multiply with 2^54 (the 0x36 in $r3), join with norms |
| sched (st 0x0) (st 0x0) (st 0x0) |
| dmul $r0 $r0 0x4350000000000000 |
| mov $r3 0x36 0xf |
| sync |
| rcp_rejoin: |
| // All numbers with -1 in $r3 have their result ready in $r0d, return them |
| // others need further calculation |
| sched (st 0x0) (st 0x0) (st 0x0) |
| isetp lt and $p0 1 $r3 0x0 1 |
| $p0 bra #rcp_end |
| // Step 2: Before the real calculation goes on, renormalize the values to |
| // range [1, 2) by setting exponent field to 0x3ff (the exponent of 1) |
| // result in $r6d. The exponent will be recovered later. |
| bfe u32 $r2 $r1 0xb14 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| lop32i and $r7 $r1 0x800fffff |
| iadd32i $r7 $r7 0x3ff00000 |
| mov $r6 $r0 0xf |
| // Step 3: Convert new value to float (no overflow will occur due to step |
| // 2), calculate rcp and do newton-raphson step once |
| sched (st 0x0) (st 0x0) (st 0x0) |
| f2f ftz f64 f32 $r5 $r6 |
| mufu rcp $r4 $r5 |
| mov32i $r0 0xbf800000 0xf |
| sched (st 0x0) (st 0x0) (st 0x0) |
| ffma $r5 $r4 $r5 $r0 |
| ffma $r0 $r5 neg $r4 $r4 |
| // Step 4: convert result $r0 back to double, do newton-raphson steps |
| f2f f32 f64 $r0 $r0 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| f2f f64 f64 $r6 neg $r6 |
| f2f f32 f64 $r8 0x3f800000 |
| // 4 Newton-Raphson Steps, tmp in $r4d, result in $r0d |
| // The formula used here (and above) is: |
| // RCP_{n + 1} = 2 * RCP_{n} - x * RCP_{n} * RCP_{n} |
| // The following code uses 2 FMAs for each step, and it will basically |
| // looks like: |
| // tmp = -src * RCP_{n} + 1 |
| // RCP_{n + 1} = RCP_{n} * tmp + RCP_{n} |
| dfma $r4 $r6 $r0 $r8 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| dfma $r0 $r0 $r4 $r0 |
| dfma $r4 $r6 $r0 $r8 |
| dfma $r0 $r0 $r4 $r0 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| dfma $r4 $r6 $r0 $r8 |
| dfma $r0 $r0 $r4 $r0 |
| dfma $r4 $r6 $r0 $r8 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| dfma $r0 $r0 $r4 $r0 |
| // Step 5: Exponent recovery and final processing |
| // The exponent is recovered by adding what we added to the exponent. |
| // Suppose we want to calculate rcp(x), but we have rcp(cx), then |
| // rcp(x) = c * rcp(cx) |
| // The delta in exponent comes from two sources: |
| // 1) The renormalization in step 2. The delta is: |
| // 0x3ff - $r2 |
| // 2) (For the denorm input) The 2^54 we multiplied at rcp_denorm, stored |
| // in $r3 |
| // These 2 sources are calculated in the first two lines below, and then |
| // added to the exponent extracted from the result above. |
| // Note that after processing, the new exponent may >= 0x7ff (inf) |
| // or <= 0 (denorm). Those cases will be handled respectively below |
| iadd $r2 neg $r2 0x3ff |
| iadd $r4 $r2 $r3 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| bfe u32 $r3 $r1 0xb14 |
| // New exponent in $r3 |
| iadd $r3 $r3 $r4 |
| iadd32i $r2 $r3 -1 |
| // (exponent-1) < 0x7fe (unsigned) means the result is in norm range |
| // (same logic as in step 1) |
| sched (st 0x0) (st 0x0) (st 0x0) |
| isetp lt u32 and $p0 1 $r2 0x7fe 1 |
| not $p0 bra #rcp_result_inf_or_denorm |
| // Norms: convert exponents back and return |
| shl $r4 $r4 0x14 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| iadd $r1 $r4 $r1 |
| bra #rcp_end |
| rcp_result_inf_or_denorm: |
| // New exponent >= 0x7ff means that result is inf |
| isetp ge and $p0 1 $r3 0x7ff 1 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| not $p0 bra #rcp_result_denorm |
| // Infinity |
| lop32i and $r1 $r1 0x80000000 |
| mov $r0 0x0 0xf |
| sched (st 0x0) (st 0x0) (st 0x0) |
| iadd32i $r1 $r1 0x7ff00000 |
| bra #rcp_end |
| rcp_result_denorm: |
| // Denorm result comes from huge input. The greatest possible fp64, i.e. |
| // 0x7fefffffffffffff's rcp is 0x0004000000000000, 1/4 of the smallest |
| // normal value. Other rcp result should be greater than that. If we |
| // set the exponent field to 1, we can recover the result by multiplying |
| // it with 1/2 or 1/4. 1/2 is used if the "exponent" $r3 is 0, otherwise |
| // 1/4 ($r3 should be -1 then). This is quite tricky but greatly simplifies |
| // the logic here. |
| isetp ne u32 and $p0 1 $r3 0x0 1 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| lop32i and $r1 $r1 0x800fffff |
| // 0x3e800000: 1/4 |
| $p0 f2f f32 f64 $r6 0x3e800000 |
| // 0x3f000000: 1/2 |
| not $p0 f2f f32 f64 $r6 0x3f000000 |
| sched (st 0x0) (st 0x0) (st 0x0) |
| iadd32i $r1 $r1 0x00100000 |
| dmul $r0 $r0 $r6 |
| rcp_end: |
| ret |
| |
| // RSQ F64 |
| // |
| // INPUT: $r0d |
| // OUTPUT: $r0d |
| // CLOBBER: $r2 - $r9, $p0 - $p1 |
| // |
| gm107_rsq_f64: |
| // Before getting initial result rsqrt64h, two special cases should be |
| // handled first. |
| // 1. NaN: set the highest bit in mantissa so it'll be surely recognized |
| // as NaN in rsqrt64h |
| sched (st 0xd wr 0x0 wt 0x3f) (st 0xd wt 0x1) (st 0xd) |
| dsetp gtu and $p0 1 abs $r0 0x7ff0000000000000 1 |
| $p0 lop32i or $r1 $r1 0x00080000 |
| lop32i and $r2 $r1 0x7fffffff |
| // 2. denorms and small normal values: using their original value will |
| // lose precision either at rsqrt64h or the first step in newton-raphson |
| // steps below. Take 2 as a threshold in exponent field, and multiply |
| // with 2^54 if the exponent is smaller or equal. (will multiply 2^27 |
| // to recover in the end) |
| sched (st 0xd) (st 0xd) (st 0xd) |
| bfe u32 $r3 $r1 0xb14 |
| isetp le u32 and $p1 1 $r3 0x2 1 |
| lop or 1 $r2 $r0 $r2 |
| sched (st 0xd wr 0x0) (st 0xd wr 0x0 wt 0x1) (st 0xd) |
| $p1 dmul $r0 $r0 0x4350000000000000 |
| mufu rsq64h $r5 $r1 |
| // rsqrt64h will give correct result for 0/inf/nan, the following logic |
| // checks whether the input is one of those (exponent is 0x7ff or all 0 |
| // except for the sign bit) |
| iset ne u32 and $r6 $r3 0x7ff 1 |
| sched (st 0xd) (st 0xd) (st 0xd) |
| lop and 1 $r2 $r2 $r6 |
| isetp ne u32 and $p0 1 $r2 0x0 1 |
| $p0 bra #rsq_norm |
| // For 0/inf/nan, make sure the sign bit agrees with input and return |
| sched (st 0xd) (st 0xd) (st 0xd wt 0x1) |
| lop32i and $r1 $r1 0x80000000 |
| mov $r0 0x0 0xf |
| lop or 1 $r1 $r1 $r5 |
| sched (st 0xd) (st 0xf) (st 0xf) |
| ret |
| nop 0 |
| nop 0 |
| rsq_norm: |
| // For others, do 4 Newton-Raphson steps with the formula: |
| // RSQ_{n + 1} = RSQ_{n} * (1.5 - 0.5 * x * RSQ_{n} * RSQ_{n}) |
| // In the code below, each step is written as: |
| // tmp1 = 0.5 * x * RSQ_{n} |
| // tmp2 = -RSQ_{n} * tmp1 + 0.5 |
| // RSQ_{n + 1} = RSQ_{n} * tmp2 + RSQ_{n} |
| sched (st 0xd) (st 0xd wr 0x1) (st 0xd wr 0x1 rd 0x0 wt 0x3) |
| mov $r4 0x0 0xf |
| // 0x3f000000: 1/2 |
| f2f f32 f64 $r8 0x3f000000 |
| dmul $r2 $r0 $r8 |
| sched (st 0xd wr 0x0 wt 0x3) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) |
| dmul $r0 $r2 $r4 |
| dfma $r6 $r0 neg $r4 $r8 |
| dfma $r4 $r4 $r6 $r4 |
| sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) |
| dmul $r0 $r2 $r4 |
| dfma $r6 $r0 neg $r4 $r8 |
| dfma $r4 $r4 $r6 $r4 |
| sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) |
| dmul $r0 $r2 $r4 |
| dfma $r6 $r0 neg $r4 $r8 |
| dfma $r4 $r4 $r6 $r4 |
| sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) |
| dmul $r0 $r2 $r4 |
| dfma $r6 $r0 neg $r4 $r8 |
| dfma $r4 $r4 $r6 $r4 |
| // Multiply 2^27 to result for small inputs to recover |
| sched (st 0xd wr 0x0 wt 0x1) (st 0xd wt 0x1) (st 0xd) |
| $p1 dmul $r4 $r4 0x41a0000000000000 |
| mov $r1 $r5 0xf |
| mov $r0 $r4 0xf |
| sched (st 0xd) (st 0xf) (st 0xf) |
| ret |
| nop 0 |
| nop 0 |
| |
| .section #gm107_builtin_offsets |
| .b64 #gm107_div_u32 |
| .b64 #gm107_div_s32 |
| .b64 #gm107_rcp_f64 |
| .b64 #gm107_rsq_f64 |