blob: b0f670e0d4d17c630975ca601267e2d065b5107b [file] [log] [blame] [edit]
.section #gm107_builtin_code
// DIV U32
//
// UNR recurrence (q = a / b):
// look for z such that 2^32 - b <= b * z < 2^32
// then q - 1 <= (a * z) / 2^32 <= q
//
// INPUT: $r0: dividend, $r1: divisor
// OUTPUT: $r0: result, $r1: modulus
// CLOBBER: $r2 - $r3, $p0 - $p1
// SIZE: 22 / 14 * 8 bytes
//
gm107_div_u32:
sched (st 0xd wr 0x0 wt 0x3f) (st 0x1 wt 0x1) (st 0x6)
flo u32 $r2 $r1
lop xor 1 $r2 $r2 0x1f
mov $r3 0x1 0xf
sched (st 0x1) (st 0xf wr 0x0) (st 0x6 wr 0x0 wt 0x1)
shl $r2 $r3 $r2
i2i u32 u32 $r1 neg $r1
imul u32 u32 $r3 $r1 $r2
sched (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1)
imad u32 u32 hi $r2 $r2 $r3 $r2
imul u32 u32 $r3 $r1 $r2
imad u32 u32 hi $r2 $r2 $r3 $r2
sched (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1)
imul u32 u32 $r3 $r1 $r2
imad u32 u32 hi $r2 $r2 $r3 $r2
imul u32 u32 $r3 $r1 $r2
sched (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 rd 0x1 wt 0x1)
imad u32 u32 hi $r2 $r2 $r3 $r2
imul u32 u32 $r3 $r1 $r2
imad u32 u32 hi $r2 $r2 $r3 $r2
sched (st 0x6 wt 0x2) (st 0x6 wr 0x0 rd 0x1 wt 0x1) (st 0xf wr 0x0 rd 0x1 wt 0x2)
mov $r3 $r0 0xf
imul u32 u32 hi $r0 $r0 $r2
i2i u32 u32 $r2 neg $r1
sched (st 0x6 wr 0x0 wt 0x3) (st 0xd wt 0x1) (st 0x1)
imad u32 u32 $r1 $r1 $r0 $r3
isetp ge u32 and $p0 1 $r1 $r2 1
$p0 iadd $r1 $r1 neg $r2
sched (st 0x5) (st 0xd) (st 0x1)
$p0 iadd $r0 $r0 0x1
$p0 isetp ge u32 and $p0 1 $r1 $r2 1
$p0 iadd $r1 $r1 neg $r2
sched (st 0x1) (st 0xf) (st 0xf)
$p0 iadd $r0 $r0 0x1
ret
nop 0
// DIV S32, like DIV U32 after taking ABS(inputs)
//
// INPUT: $r0: dividend, $r1: divisor
// OUTPUT: $r0: result, $r1: modulus
// CLOBBER: $r2 - $r3, $p0 - $p3
//
gm107_div_s32:
sched (st 0xd wt 0x3f) (st 0x1) (st 0x1 wr 0x0)
isetp lt and $p2 0x1 $r0 0 1
isetp lt xor $p3 1 $r1 0 $p2
i2i s32 s32 $r0 abs $r0
sched (st 0xf wr 0x1) (st 0xd wr 0x1 wt 0x2) (st 0x1 wt 0x2)
i2i s32 s32 $r1 abs $r1
flo u32 $r2 $r1
lop xor 1 $r2 $r2 0x1f
sched (st 0x6) (st 0x1) (st 0xf wr 0x1)
mov $r3 0x1 0xf
shl $r2 $r3 $r2
i2i u32 u32 $r1 neg $r1
sched (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2)
imul u32 u32 $r3 $r1 $r2
imad u32 u32 hi $r2 $r2 $r3 $r2
imul u32 u32 $r3 $r1 $r2
sched (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2)
imad u32 u32 hi $r2 $r2 $r3 $r2
imul u32 u32 $r3 $r1 $r2
imad u32 u32 hi $r2 $r2 $r3 $r2
sched (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2)
imul u32 u32 $r3 $r1 $r2
imad u32 u32 hi $r2 $r2 $r3 $r2
imul u32 u32 $r3 $r1 $r2
sched (st 0x6 wr 0x1 rd 0x2 wt 0x2) (st 0x2 wt 0x5) (st 0x6 wr 0x0 rd 0x1 wt 0x2)
imad u32 u32 hi $r2 $r2 $r3 $r2
mov $r3 $r0 0xf
imul u32 u32 hi $r0 $r0 $r2
sched (st 0xf wr 0x1 rd 0x2 wt 0x2) (st 0x6 wr 0x0 wt 0x5) (st 0xd wt 0x3)
i2i u32 u32 $r2 neg $r1
imad u32 u32 $r1 $r1 $r0 $r3
isetp ge u32 and $p0 1 $r1 $r2 1
sched (st 0x1) (st 0x5) (st 0xd)
$p0 iadd $r1 $r1 neg $r2
$p0 iadd $r0 $r0 0x1
$p0 isetp ge u32 and $p0 1 $r1 $r2 1
sched (st 0x1) (st 0x2) (st 0xf wr 0x0)
$p0 iadd $r1 $r1 neg $r2
$p0 iadd $r0 $r0 0x1
$p3 i2i s32 s32 $r0 neg $r0
sched (st 0xf wr 0x1) (st 0xf wt 0x3) (st 0xf)
$p2 i2i s32 s32 $r1 neg $r1
ret
nop 0
// RCP F64
//
// INPUT: $r0d
// OUTPUT: $r0d
// CLOBBER: $r2 - $r9, $p0
//
// The core of RCP and RSQ implementation is Newton-Raphson step, which is
// used to find successively better approximation from an imprecise initial
// value (single precision rcp in RCP and rsqrt64h in RSQ).
//
gm107_rcp_f64:
// Step 1: classify input according to exponent and value, and calculate
// result for 0/inf/nan. $r2 holds the exponent value, which starts at
// bit 52 (bit 20 of the upper half) and is 11 bits in length
sched (st 0x0) (st 0x0) (st 0x0)
bfe u32 $r2 $r1 0xb14
iadd32i $r3 $r2 -1
ssy #rcp_rejoin
// We want to check whether the exponent is 0 or 0x7ff (i.e. NaN, inf,
// denorm, or 0). Do this by subtracting 1 from the exponent, which will
// mean that it's > 0x7fd in those cases when doing unsigned comparison
sched (st 0x0) (st 0x0) (st 0x0)
isetp gt u32 and $p0 1 $r3 0x7fd 1
// $r3: 0 for norms, 0x36 for denorms, -1 for others
mov $r3 0x0 0xf
not $p0 sync
// Process all special values: NaN, inf, denorm, 0
sched (st 0x0) (st 0x0) (st 0x0)
mov32i $r3 0xffffffff 0xf
// A number is NaN if its abs value is greater than or unordered with inf
dsetp gtu and $p0 1 abs $r0 0x7ff0000000000000 1
not $p0 bra #rcp_inf_or_denorm_or_zero
// NaN -> NaN, the next line sets the "quiet" bit of the result. This
// behavior is both seen on the CPU and the blob
sched (st 0x0) (st 0x0) (st 0x0)
lop32i or $r1 $r1 0x80000
sync
rcp_inf_or_denorm_or_zero:
lop32i and $r4 $r1 0x7ff00000
sched (st 0x0) (st 0x0) (st 0x0)
// Other values with nonzero in exponent field should be inf
isetp eq and $p0 1 $r4 0x0 1
$p0 bra #rcp_denorm_or_zero
// +/-Inf -> +/-0
lop32i xor $r1 $r1 0x7ff00000
sched (st 0x0) (st 0x0) (st 0x0)
mov $r0 0x0 0xf
sync
rcp_denorm_or_zero:
dsetp gtu and $p0 1 abs $r0 0x0 1
sched (st 0x0) (st 0x0) (st 0x0)
$p0 bra #rcp_denorm
// +/-0 -> +/-Inf
lop32i or $r1 $r1 0x7ff00000
sync
rcp_denorm:
// non-0 denorms: multiply with 2^54 (the 0x36 in $r3), join with norms
sched (st 0x0) (st 0x0) (st 0x0)
dmul $r0 $r0 0x4350000000000000
mov $r3 0x36 0xf
sync
rcp_rejoin:
// All numbers with -1 in $r3 have their result ready in $r0d, return them
// others need further calculation
sched (st 0x0) (st 0x0) (st 0x0)
isetp lt and $p0 1 $r3 0x0 1
$p0 bra #rcp_end
// Step 2: Before the real calculation goes on, renormalize the values to
// range [1, 2) by setting exponent field to 0x3ff (the exponent of 1)
// result in $r6d. The exponent will be recovered later.
bfe u32 $r2 $r1 0xb14
sched (st 0x0) (st 0x0) (st 0x0)
lop32i and $r7 $r1 0x800fffff
iadd32i $r7 $r7 0x3ff00000
mov $r6 $r0 0xf
// Step 3: Convert new value to float (no overflow will occur due to step
// 2), calculate rcp and do newton-raphson step once
sched (st 0x0) (st 0x0) (st 0x0)
f2f ftz f64 f32 $r5 $r6
mufu rcp $r4 $r5
mov32i $r0 0xbf800000 0xf
sched (st 0x0) (st 0x0) (st 0x0)
ffma $r5 $r4 $r5 $r0
ffma $r0 $r5 neg $r4 $r4
// Step 4: convert result $r0 back to double, do newton-raphson steps
f2f f32 f64 $r0 $r0
sched (st 0x0) (st 0x0) (st 0x0)
f2f f64 f64 $r6 neg $r6
f2f f32 f64 $r8 0x3f800000
// 4 Newton-Raphson Steps, tmp in $r4d, result in $r0d
// The formula used here (and above) is:
// RCP_{n + 1} = 2 * RCP_{n} - x * RCP_{n} * RCP_{n}
// The following code uses 2 FMAs for each step, and it will basically
// looks like:
// tmp = -src * RCP_{n} + 1
// RCP_{n + 1} = RCP_{n} * tmp + RCP_{n}
dfma $r4 $r6 $r0 $r8
sched (st 0x0) (st 0x0) (st 0x0)
dfma $r0 $r0 $r4 $r0
dfma $r4 $r6 $r0 $r8
dfma $r0 $r0 $r4 $r0
sched (st 0x0) (st 0x0) (st 0x0)
dfma $r4 $r6 $r0 $r8
dfma $r0 $r0 $r4 $r0
dfma $r4 $r6 $r0 $r8
sched (st 0x0) (st 0x0) (st 0x0)
dfma $r0 $r0 $r4 $r0
// Step 5: Exponent recovery and final processing
// The exponent is recovered by adding what we added to the exponent.
// Suppose we want to calculate rcp(x), but we have rcp(cx), then
// rcp(x) = c * rcp(cx)
// The delta in exponent comes from two sources:
// 1) The renormalization in step 2. The delta is:
// 0x3ff - $r2
// 2) (For the denorm input) The 2^54 we multiplied at rcp_denorm, stored
// in $r3
// These 2 sources are calculated in the first two lines below, and then
// added to the exponent extracted from the result above.
// Note that after processing, the new exponent may >= 0x7ff (inf)
// or <= 0 (denorm). Those cases will be handled respectively below
iadd $r2 neg $r2 0x3ff
iadd $r4 $r2 $r3
sched (st 0x0) (st 0x0) (st 0x0)
bfe u32 $r3 $r1 0xb14
// New exponent in $r3
iadd $r3 $r3 $r4
iadd32i $r2 $r3 -1
// (exponent-1) < 0x7fe (unsigned) means the result is in norm range
// (same logic as in step 1)
sched (st 0x0) (st 0x0) (st 0x0)
isetp lt u32 and $p0 1 $r2 0x7fe 1
not $p0 bra #rcp_result_inf_or_denorm
// Norms: convert exponents back and return
shl $r4 $r4 0x14
sched (st 0x0) (st 0x0) (st 0x0)
iadd $r1 $r4 $r1
bra #rcp_end
rcp_result_inf_or_denorm:
// New exponent >= 0x7ff means that result is inf
isetp ge and $p0 1 $r3 0x7ff 1
sched (st 0x0) (st 0x0) (st 0x0)
not $p0 bra #rcp_result_denorm
// Infinity
lop32i and $r1 $r1 0x80000000
mov $r0 0x0 0xf
sched (st 0x0) (st 0x0) (st 0x0)
iadd32i $r1 $r1 0x7ff00000
bra #rcp_end
rcp_result_denorm:
// Denorm result comes from huge input. The greatest possible fp64, i.e.
// 0x7fefffffffffffff's rcp is 0x0004000000000000, 1/4 of the smallest
// normal value. Other rcp result should be greater than that. If we
// set the exponent field to 1, we can recover the result by multiplying
// it with 1/2 or 1/4. 1/2 is used if the "exponent" $r3 is 0, otherwise
// 1/4 ($r3 should be -1 then). This is quite tricky but greatly simplifies
// the logic here.
isetp ne u32 and $p0 1 $r3 0x0 1
sched (st 0x0) (st 0x0) (st 0x0)
lop32i and $r1 $r1 0x800fffff
// 0x3e800000: 1/4
$p0 f2f f32 f64 $r6 0x3e800000
// 0x3f000000: 1/2
not $p0 f2f f32 f64 $r6 0x3f000000
sched (st 0x0) (st 0x0) (st 0x0)
iadd32i $r1 $r1 0x00100000
dmul $r0 $r0 $r6
rcp_end:
ret
// RSQ F64
//
// INPUT: $r0d
// OUTPUT: $r0d
// CLOBBER: $r2 - $r9, $p0 - $p1
//
gm107_rsq_f64:
// Before getting initial result rsqrt64h, two special cases should be
// handled first.
// 1. NaN: set the highest bit in mantissa so it'll be surely recognized
// as NaN in rsqrt64h
sched (st 0xd wr 0x0 wt 0x3f) (st 0xd wt 0x1) (st 0xd)
dsetp gtu and $p0 1 abs $r0 0x7ff0000000000000 1
$p0 lop32i or $r1 $r1 0x00080000
lop32i and $r2 $r1 0x7fffffff
// 2. denorms and small normal values: using their original value will
// lose precision either at rsqrt64h or the first step in newton-raphson
// steps below. Take 2 as a threshold in exponent field, and multiply
// with 2^54 if the exponent is smaller or equal. (will multiply 2^27
// to recover in the end)
sched (st 0xd) (st 0xd) (st 0xd)
bfe u32 $r3 $r1 0xb14
isetp le u32 and $p1 1 $r3 0x2 1
lop or 1 $r2 $r0 $r2
sched (st 0xd wr 0x0) (st 0xd wr 0x0 wt 0x1) (st 0xd)
$p1 dmul $r0 $r0 0x4350000000000000
mufu rsq64h $r5 $r1
// rsqrt64h will give correct result for 0/inf/nan, the following logic
// checks whether the input is one of those (exponent is 0x7ff or all 0
// except for the sign bit)
iset ne u32 and $r6 $r3 0x7ff 1
sched (st 0xd) (st 0xd) (st 0xd)
lop and 1 $r2 $r2 $r6
isetp ne u32 and $p0 1 $r2 0x0 1
$p0 bra #rsq_norm
// For 0/inf/nan, make sure the sign bit agrees with input and return
sched (st 0xd) (st 0xd) (st 0xd wt 0x1)
lop32i and $r1 $r1 0x80000000
mov $r0 0x0 0xf
lop or 1 $r1 $r1 $r5
sched (st 0xd) (st 0xf) (st 0xf)
ret
nop 0
nop 0
rsq_norm:
// For others, do 4 Newton-Raphson steps with the formula:
// RSQ_{n + 1} = RSQ_{n} * (1.5 - 0.5 * x * RSQ_{n} * RSQ_{n})
// In the code below, each step is written as:
// tmp1 = 0.5 * x * RSQ_{n}
// tmp2 = -RSQ_{n} * tmp1 + 0.5
// RSQ_{n + 1} = RSQ_{n} * tmp2 + RSQ_{n}
sched (st 0xd) (st 0xd wr 0x1) (st 0xd wr 0x1 rd 0x0 wt 0x3)
mov $r4 0x0 0xf
// 0x3f000000: 1/2
f2f f32 f64 $r8 0x3f000000
dmul $r2 $r0 $r8
sched (st 0xd wr 0x0 wt 0x3) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
dmul $r0 $r2 $r4
dfma $r6 $r0 neg $r4 $r8
dfma $r4 $r4 $r6 $r4
sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
dmul $r0 $r2 $r4
dfma $r6 $r0 neg $r4 $r8
dfma $r4 $r4 $r6 $r4
sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
dmul $r0 $r2 $r4
dfma $r6 $r0 neg $r4 $r8
dfma $r4 $r4 $r6 $r4
sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
dmul $r0 $r2 $r4
dfma $r6 $r0 neg $r4 $r8
dfma $r4 $r4 $r6 $r4
// Multiply 2^27 to result for small inputs to recover
sched (st 0xd wr 0x0 wt 0x1) (st 0xd wt 0x1) (st 0xd)
$p1 dmul $r4 $r4 0x41a0000000000000
mov $r1 $r5 0xf
mov $r0 $r4 0xf
sched (st 0xd) (st 0xf) (st 0xf)
ret
nop 0
nop 0
.section #gm107_builtin_offsets
.b64 #gm107_div_u32
.b64 #gm107_div_s32
.b64 #gm107_rcp_f64
.b64 #gm107_rsq_f64