blob: 66626b471b3c77f40787c81debe9768dfd8e85db [file] [log] [blame] [edit]
.section #gk110_builtin_code
// DIV U32
//
// UNR recurrence (q = a / b):
// look for z such that 2^32 - b <= b * z < 2^32
// then q - 1 <= (a * z) / 2^32 <= q
//
// INPUT: $r0: dividend, $r1: divisor
// OUTPUT: $r0: result, $r1: modulus
// CLOBBER: $r2 - $r3, $p0 - $p1
// SIZE: 22 / 14 * 8 bytes
//
gk110_div_u32:
sched 0x28 0x04 0x28 0x04 0x28 0x28 0x28
bfind u32 $r2 $r1
xor b32 $r2 $r2 0x1f
mov b32 $r3 0x1
shl b32 $r2 $r3 clamp $r2
cvt u32 $r1 neg u32 $r1
mul $r3 u32 $r1 u32 $r2
add $r2 (mul high u32 $r2 u32 $r3) $r2
sched 0x28 0x28 0x28 0x28 0x28 0x28 0x28
mul $r3 u32 $r1 u32 $r2
add $r2 (mul high u32 $r2 u32 $r3) $r2
mul $r3 u32 $r1 u32 $r2
add $r2 (mul high u32 $r2 u32 $r3) $r2
mul $r3 u32 $r1 u32 $r2
add $r2 (mul high u32 $r2 u32 $r3) $r2
mul $r3 u32 $r1 u32 $r2
sched 0x04 0x28 0x04 0x28 0x28 0x2c 0x04
add $r2 (mul high u32 $r2 u32 $r3) $r2
mov b32 $r3 $r0
mul high $r0 u32 $r0 u32 $r2
cvt u32 $r2 neg u32 $r1
add $r1 (mul u32 $r1 u32 $r0) $r3
set $p0 0x1 ge u32 $r1 $r2
$p0 sub b32 $r1 $r1 $r2
sched 0x28 0x2c 0x04 0x20 0x2e 0x28 0x20
$p0 add b32 $r0 $r0 0x1
$p0 set $p0 0x1 ge u32 $r1 $r2
$p0 sub b32 $r1 $r1 $r2
$p0 add b32 $r0 $r0 0x1
ret
// DIV S32, like DIV U32 after taking ABS(inputs)
//
// INPUT: $r0: dividend, $r1: divisor
// OUTPUT: $r0: result, $r1: modulus
// CLOBBER: $r2 - $r3, $p0 - $p3
//
gk110_div_s32:
set $p2 0x1 lt s32 $r0 0x0
set $p3 0x1 lt s32 $r1 0x0 xor $p2
sched 0x20 0x28 0x28 0x04 0x28 0x04 0x28
cvt s32 $r0 abs s32 $r0
cvt s32 $r1 abs s32 $r1
bfind u32 $r2 $r1
xor b32 $r2 $r2 0x1f
mov b32 $r3 0x1
shl b32 $r2 $r3 clamp $r2
cvt u32 $r1 neg u32 $r1
sched 0x28 0x28 0x28 0x28 0x28 0x28 0x28
mul $r3 u32 $r1 u32 $r2
add $r2 (mul high u32 $r2 u32 $r3) $r2
mul $r3 u32 $r1 u32 $r2
add $r2 (mul high u32 $r2 u32 $r3) $r2
mul $r3 u32 $r1 u32 $r2
add $r2 (mul high u32 $r2 u32 $r3) $r2
mul $r3 u32 $r1 u32 $r2
sched 0x28 0x28 0x04 0x28 0x04 0x28 0x28
add $r2 (mul high u32 $r2 u32 $r3) $r2
mul $r3 u32 $r1 u32 $r2
add $r2 (mul high u32 $r2 u32 $r3) $r2
mov b32 $r3 $r0
mul high $r0 u32 $r0 u32 $r2
cvt u32 $r2 neg u32 $r1
add $r1 (mul u32 $r1 u32 $r0) $r3
sched 0x2c 0x04 0x28 0x2c 0x04 0x28 0x20
set $p0 0x1 ge u32 $r1 $r2
$p0 sub b32 $r1 $r1 $r2
$p0 add b32 $r0 $r0 0x1
$p0 set $p0 0x1 ge u32 $r1 $r2
$p0 sub b32 $r1 $r1 $r2
$p0 add b32 $r0 $r0 0x1
$p3 cvt s32 $r0 neg s32 $r0
sched 0x04 0x2e 0x28 0x04 0x28 0x28 0x28
$p2 cvt s32 $r1 neg s32 $r1
ret
// RCP F64
//
// INPUT: $r0d
// OUTPUT: $r0d
// CLOBBER: $r2 - $r9, $p0
//
// The core of RCP and RSQ implementation is Newton-Raphson step, which is
// used to find successively better approximation from an imprecise initial
// value (single precision rcp in RCP and rsqrt64h in RSQ).
//
gk110_rcp_f64:
// Step 1: classify input according to exponent and value, and calculate
// result for 0/inf/nan. $r2 holds the exponent value, which starts at
// bit 52 (bit 20 of the upper half) and is 11 bits in length
ext u32 $r2 $r1 0xb14
add b32 $r3 $r2 0xffffffff
joinat #rcp_rejoin
// We want to check whether the exponent is 0 or 0x7ff (i.e. NaN, inf,
// denorm, or 0). Do this by subtracting 1 from the exponent, which will
// mean that it's > 0x7fd in those cases when doing unsigned comparison
set b32 $p0 0x1 gt u32 $r3 0x7fd
// $r3: 0 for norms, 0x36 for denorms, -1 for others
mov b32 $r3 0x0
sched 0x2f 0x04 0x2d 0x2b 0x2f 0x28 0x28
join (not $p0) nop
// Process all special values: NaN, inf, denorm, 0
mov b32 $r3 0xffffffff
// A number is NaN if its abs value is greater than or unordered with inf
set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000
(not $p0) bra #rcp_inf_or_denorm_or_zero
// NaN -> NaN, the next line sets the "quiet" bit of the result. This
// behavior is both seen on the CPU and the blob
join or b32 $r1 $r1 0x80000
rcp_inf_or_denorm_or_zero:
and b32 $r4 $r1 0x7ff00000
// Other values with nonzero in exponent field should be inf
set b32 $p0 0x1 eq s32 $r4 0x0
sched 0x2b 0x04 0x2f 0x2d 0x2b 0x2f 0x20
$p0 bra #rcp_denorm_or_zero
// +/-Inf -> +/-0
xor b32 $r1 $r1 0x7ff00000
join mov b32 $r0 0x0
rcp_denorm_or_zero:
set $p0 0x1 gtu f64 abs $r0d 0x0
$p0 bra #rcp_denorm
// +/-0 -> +/-Inf
join or b32 $r1 $r1 0x7ff00000
rcp_denorm:
// non-0 denorms: multiply with 2^54 (the 0x36 in $r3), join with norms
mul rn f64 $r0d $r0d 0x4350000000000000
sched 0x2f 0x28 0x2b 0x28 0x28 0x04 0x28
join mov b32 $r3 0x36
rcp_rejoin:
// All numbers with -1 in $r3 have their result ready in $r0d, return them
// others need further calculation
set b32 $p0 0x1 lt s32 $r3 0x0
$p0 bra #rcp_end
// Step 2: Before the real calculation goes on, renormalize the values to
// range [1, 2) by setting exponent field to 0x3ff (the exponent of 1)
// result in $r6d. The exponent will be recovered later.
ext u32 $r2 $r1 0xb14
and b32 $r7 $r1 0x800fffff
add b32 $r7 $r7 0x3ff00000
mov b32 $r6 $r0
sched 0x2b 0x04 0x28 0x28 0x2a 0x2b 0x2e
// Step 3: Convert new value to float (no overflow will occur due to step
// 2), calculate rcp and do newton-raphson step once
cvt rz f32 $r5 f64 $r6d
rcp f32 $r4 $r5
mov b32 $r0 0xbf800000
fma rn f32 $r5 $r4 $r5 $r0
fma rn f32 $r0 neg $r4 $r5 $r4
// Step 4: convert result $r0 back to double, do newton-raphson steps
cvt f64 $r0d f32 $r0
cvt f64 $r6d f64 neg $r6d
sched 0x2e 0x29 0x29 0x29 0x29 0x29 0x29
cvt f64 $r8d f32 0x3f800000
// 4 Newton-Raphson Steps, tmp in $r4d, result in $r0d
// The formula used here (and above) is:
// RCP_{n + 1} = 2 * RCP_{n} - x * RCP_{n} * RCP_{n}
// The following code uses 2 FMAs for each step, and it will basically
// looks like:
// tmp = -src * RCP_{n} + 1
// RCP_{n + 1} = RCP_{n} * tmp + RCP_{n}
fma rn f64 $r4d $r6d $r0d $r8d
fma rn f64 $r0d $r0d $r4d $r0d
fma rn f64 $r4d $r6d $r0d $r8d
fma rn f64 $r0d $r0d $r4d $r0d
fma rn f64 $r4d $r6d $r0d $r8d
fma rn f64 $r0d $r0d $r4d $r0d
sched 0x29 0x20 0x28 0x28 0x28 0x28 0x28
fma rn f64 $r4d $r6d $r0d $r8d
fma rn f64 $r0d $r0d $r4d $r0d
// Step 5: Exponent recovery and final processing
// The exponent is recovered by adding what we added to the exponent.
// Suppose we want to calculate rcp(x), but we have rcp(cx), then
// rcp(x) = c * rcp(cx)
// The delta in exponent comes from two sources:
// 1) The renormalization in step 2. The delta is:
// 0x3ff - $r2
// 2) (For the denorm input) The 2^54 we multiplied at rcp_denorm, stored
// in $r3
// These 2 sources are calculated in the first two lines below, and then
// added to the exponent extracted from the result above.
// Note that after processing, the new exponent may >= 0x7ff (inf)
// or <= 0 (denorm). Those cases will be handled respectively below
subr b32 $r2 $r2 0x3ff
add b32 $r4 $r2 $r3
ext u32 $r3 $r1 0xb14
// New exponent in $r3
add b32 $r3 $r3 $r4
add b32 $r2 $r3 0xffffffff
sched 0x28 0x2b 0x28 0x2b 0x28 0x28 0x2b
// (exponent-1) < 0x7fe (unsigned) means the result is in norm range
// (same logic as in step 1)
set b32 $p0 0x1 lt u32 $r2 0x7fe
(not $p0) bra #rcp_result_inf_or_denorm
// Norms: convert exponents back and return
shl b32 $r4 $r4 clamp 0x14
add b32 $r1 $r4 $r1
bra #rcp_end
rcp_result_inf_or_denorm:
// New exponent >= 0x7ff means that result is inf
set b32 $p0 0x1 ge s32 $r3 0x7ff
(not $p0) bra #rcp_result_denorm
sched 0x20 0x25 0x28 0x2b 0x23 0x25 0x2f
// Infinity
and b32 $r1 $r1 0x80000000
mov b32 $r0 0x0
add b32 $r1 $r1 0x7ff00000
bra #rcp_end
rcp_result_denorm:
// Denorm result comes from huge input. The greatest possible fp64, i.e.
// 0x7fefffffffffffff's rcp is 0x0004000000000000, 1/4 of the smallest
// normal value. Other rcp result should be greater than that. If we
// set the exponent field to 1, we can recover the result by multiplying
// it with 1/2 or 1/4. 1/2 is used if the "exponent" $r3 is 0, otherwise
// 1/4 ($r3 should be -1 then). This is quite tricky but greatly simplifies
// the logic here.
set b32 $p0 0x1 ne u32 $r3 0x0
and b32 $r1 $r1 0x800fffff
// 0x3e800000: 1/4
$p0 cvt f64 $r6d f32 0x3e800000
sched 0x2f 0x28 0x2c 0x2e 0x2a 0x20 0x27
// 0x3f000000: 1/2
(not $p0) cvt f64 $r6d f32 0x3f000000
add b32 $r1 $r1 0x00100000
mul rn f64 $r0d $r0d $r6d
rcp_end:
ret
// RSQ F64
//
// INPUT: $r0d
// OUTPUT: $r0d
// CLOBBER: $r2 - $r9, $p0 - $p1
//
gk110_rsq_f64:
// Before getting initial result rsqrt64h, two special cases should be
// handled first.
// 1. NaN: set the highest bit in mantissa so it'll be surely recognized
// as NaN in rsqrt64h
set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000
$p0 or b32 $r1 $r1 0x00080000
and b32 $r2 $r1 0x7fffffff
sched 0x27 0x20 0x28 0x2c 0x25 0x28 0x28
// 2. denorms and small normal values: using their original value will
// lose precision either at rsqrt64h or the first step in newton-raphson
// steps below. Take 2 as a threshold in exponent field, and multiply
// with 2^54 if the exponent is smaller or equal. (will multiply 2^27
// to recover in the end)
ext u32 $r3 $r1 0xb14
set b32 $p1 0x1 le u32 $r3 0x2
or b32 $r2 $r0 $r2
$p1 mul rn f64 $r0d $r0d 0x4350000000000000
rsqrt64h f32 $r5 $r1
// rsqrt64h will give correct result for 0/inf/nan, the following logic
// checks whether the input is one of those (exponent is 0x7ff or all 0
// except for the sign bit)
set b32 $r6 ne u32 $r3 0x7ff
and b32 $r2 $r2 $r6
sched 0x28 0x2b 0x20 0x27 0x28 0x2e 0x28
set b32 $p0 0x1 ne u32 $r2 0x0
$p0 bra #rsq_norm
// For 0/inf/nan, make sure the sign bit agrees with input and return
and b32 $r1 $r1 0x80000000
mov b32 $r0 0x0
or b32 $r1 $r1 $r5
ret
rsq_norm:
// For others, do 4 Newton-Raphson steps with the formula:
// RSQ_{n + 1} = RSQ_{n} * (1.5 - 0.5 * x * RSQ_{n} * RSQ_{n})
// In the code below, each step is written as:
// tmp1 = 0.5 * x * RSQ_{n}
// tmp2 = -RSQ_{n} * tmp1 + 0.5
// RSQ_{n + 1} = RSQ_{n} * tmp2 + RSQ_{n}
mov b32 $r4 0x0
sched 0x2f 0x29 0x29 0x29 0x29 0x29 0x29
// 0x3f000000: 1/2
cvt f64 $r8d f32 0x3f000000
mul rn f64 $r2d $r0d $r8d
mul rn f64 $r0d $r2d $r4d
fma rn f64 $r6d neg $r4d $r0d $r8d
fma rn f64 $r4d $r4d $r6d $r4d
mul rn f64 $r0d $r2d $r4d
fma rn f64 $r6d neg $r4d $r0d $r8d
sched 0x29 0x29 0x29 0x29 0x29 0x29 0x29
fma rn f64 $r4d $r4d $r6d $r4d
mul rn f64 $r0d $r2d $r4d
fma rn f64 $r6d neg $r4d $r0d $r8d
fma rn f64 $r4d $r4d $r6d $r4d
mul rn f64 $r0d $r2d $r4d
fma rn f64 $r6d neg $r4d $r0d $r8d
fma rn f64 $r4d $r4d $r6d $r4d
sched 0x29 0x20 0x28 0x2e 0x00 0x00 0x00
// Multiply 2^27 to result for small inputs to recover
$p1 mul rn f64 $r4d $r4d 0x41a0000000000000
mov b32 $r1 $r5
mov b32 $r0 $r4
ret
.section #gk110_builtin_offsets
.b64 #gk110_div_u32
.b64 #gk110_div_s32
.b64 #gk110_rcp_f64
.b64 #gk110_rsq_f64