| .section #gk110_builtin_code |
| // DIV U32 |
| // |
| // UNR recurrence (q = a / b): |
| // look for z such that 2^32 - b <= b * z < 2^32 |
| // then q - 1 <= (a * z) / 2^32 <= q |
| // |
| // INPUT: $r0: dividend, $r1: divisor |
| // OUTPUT: $r0: result, $r1: modulus |
| // CLOBBER: $r2 - $r3, $p0 - $p1 |
| // SIZE: 22 / 14 * 8 bytes |
| // |
| gk110_div_u32: |
| sched 0x28 0x04 0x28 0x04 0x28 0x28 0x28 |
| bfind u32 $r2 $r1 |
| xor b32 $r2 $r2 0x1f |
| mov b32 $r3 0x1 |
| shl b32 $r2 $r3 clamp $r2 |
| cvt u32 $r1 neg u32 $r1 |
| mul $r3 u32 $r1 u32 $r2 |
| add $r2 (mul high u32 $r2 u32 $r3) $r2 |
| sched 0x28 0x28 0x28 0x28 0x28 0x28 0x28 |
| mul $r3 u32 $r1 u32 $r2 |
| add $r2 (mul high u32 $r2 u32 $r3) $r2 |
| mul $r3 u32 $r1 u32 $r2 |
| add $r2 (mul high u32 $r2 u32 $r3) $r2 |
| mul $r3 u32 $r1 u32 $r2 |
| add $r2 (mul high u32 $r2 u32 $r3) $r2 |
| mul $r3 u32 $r1 u32 $r2 |
| sched 0x04 0x28 0x04 0x28 0x28 0x2c 0x04 |
| add $r2 (mul high u32 $r2 u32 $r3) $r2 |
| mov b32 $r3 $r0 |
| mul high $r0 u32 $r0 u32 $r2 |
| cvt u32 $r2 neg u32 $r1 |
| add $r1 (mul u32 $r1 u32 $r0) $r3 |
| set $p0 0x1 ge u32 $r1 $r2 |
| $p0 sub b32 $r1 $r1 $r2 |
| sched 0x28 0x2c 0x04 0x20 0x2e 0x28 0x20 |
| $p0 add b32 $r0 $r0 0x1 |
| $p0 set $p0 0x1 ge u32 $r1 $r2 |
| $p0 sub b32 $r1 $r1 $r2 |
| $p0 add b32 $r0 $r0 0x1 |
| ret |
| |
| // DIV S32, like DIV U32 after taking ABS(inputs) |
| // |
| // INPUT: $r0: dividend, $r1: divisor |
| // OUTPUT: $r0: result, $r1: modulus |
| // CLOBBER: $r2 - $r3, $p0 - $p3 |
| // |
| gk110_div_s32: |
| set $p2 0x1 lt s32 $r0 0x0 |
| set $p3 0x1 lt s32 $r1 0x0 xor $p2 |
| sched 0x20 0x28 0x28 0x04 0x28 0x04 0x28 |
| cvt s32 $r0 abs s32 $r0 |
| cvt s32 $r1 abs s32 $r1 |
| bfind u32 $r2 $r1 |
| xor b32 $r2 $r2 0x1f |
| mov b32 $r3 0x1 |
| shl b32 $r2 $r3 clamp $r2 |
| cvt u32 $r1 neg u32 $r1 |
| sched 0x28 0x28 0x28 0x28 0x28 0x28 0x28 |
| mul $r3 u32 $r1 u32 $r2 |
| add $r2 (mul high u32 $r2 u32 $r3) $r2 |
| mul $r3 u32 $r1 u32 $r2 |
| add $r2 (mul high u32 $r2 u32 $r3) $r2 |
| mul $r3 u32 $r1 u32 $r2 |
| add $r2 (mul high u32 $r2 u32 $r3) $r2 |
| mul $r3 u32 $r1 u32 $r2 |
| sched 0x28 0x28 0x04 0x28 0x04 0x28 0x28 |
| add $r2 (mul high u32 $r2 u32 $r3) $r2 |
| mul $r3 u32 $r1 u32 $r2 |
| add $r2 (mul high u32 $r2 u32 $r3) $r2 |
| mov b32 $r3 $r0 |
| mul high $r0 u32 $r0 u32 $r2 |
| cvt u32 $r2 neg u32 $r1 |
| add $r1 (mul u32 $r1 u32 $r0) $r3 |
| sched 0x2c 0x04 0x28 0x2c 0x04 0x28 0x20 |
| set $p0 0x1 ge u32 $r1 $r2 |
| $p0 sub b32 $r1 $r1 $r2 |
| $p0 add b32 $r0 $r0 0x1 |
| $p0 set $p0 0x1 ge u32 $r1 $r2 |
| $p0 sub b32 $r1 $r1 $r2 |
| $p0 add b32 $r0 $r0 0x1 |
| $p3 cvt s32 $r0 neg s32 $r0 |
| sched 0x04 0x2e 0x28 0x04 0x28 0x28 0x28 |
| $p2 cvt s32 $r1 neg s32 $r1 |
| ret |
| |
| // RCP F64 |
| // |
| // INPUT: $r0d |
| // OUTPUT: $r0d |
| // CLOBBER: $r2 - $r9, $p0 |
| // |
| // The core of RCP and RSQ implementation is Newton-Raphson step, which is |
| // used to find successively better approximation from an imprecise initial |
| // value (single precision rcp in RCP and rsqrt64h in RSQ). |
| // |
| gk110_rcp_f64: |
| // Step 1: classify input according to exponent and value, and calculate |
| // result for 0/inf/nan. $r2 holds the exponent value, which starts at |
| // bit 52 (bit 20 of the upper half) and is 11 bits in length |
| ext u32 $r2 $r1 0xb14 |
| add b32 $r3 $r2 0xffffffff |
| joinat #rcp_rejoin |
| // We want to check whether the exponent is 0 or 0x7ff (i.e. NaN, inf, |
| // denorm, or 0). Do this by subtracting 1 from the exponent, which will |
| // mean that it's > 0x7fd in those cases when doing unsigned comparison |
| set b32 $p0 0x1 gt u32 $r3 0x7fd |
| // $r3: 0 for norms, 0x36 for denorms, -1 for others |
| mov b32 $r3 0x0 |
| sched 0x2f 0x04 0x2d 0x2b 0x2f 0x28 0x28 |
| join (not $p0) nop |
| // Process all special values: NaN, inf, denorm, 0 |
| mov b32 $r3 0xffffffff |
| // A number is NaN if its abs value is greater than or unordered with inf |
| set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000 |
| (not $p0) bra #rcp_inf_or_denorm_or_zero |
| // NaN -> NaN, the next line sets the "quiet" bit of the result. This |
| // behavior is both seen on the CPU and the blob |
| join or b32 $r1 $r1 0x80000 |
| rcp_inf_or_denorm_or_zero: |
| and b32 $r4 $r1 0x7ff00000 |
| // Other values with nonzero in exponent field should be inf |
| set b32 $p0 0x1 eq s32 $r4 0x0 |
| sched 0x2b 0x04 0x2f 0x2d 0x2b 0x2f 0x20 |
| $p0 bra #rcp_denorm_or_zero |
| // +/-Inf -> +/-0 |
| xor b32 $r1 $r1 0x7ff00000 |
| join mov b32 $r0 0x0 |
| rcp_denorm_or_zero: |
| set $p0 0x1 gtu f64 abs $r0d 0x0 |
| $p0 bra #rcp_denorm |
| // +/-0 -> +/-Inf |
| join or b32 $r1 $r1 0x7ff00000 |
| rcp_denorm: |
| // non-0 denorms: multiply with 2^54 (the 0x36 in $r3), join with norms |
| mul rn f64 $r0d $r0d 0x4350000000000000 |
| sched 0x2f 0x28 0x2b 0x28 0x28 0x04 0x28 |
| join mov b32 $r3 0x36 |
| rcp_rejoin: |
| // All numbers with -1 in $r3 have their result ready in $r0d, return them |
| // others need further calculation |
| set b32 $p0 0x1 lt s32 $r3 0x0 |
| $p0 bra #rcp_end |
| // Step 2: Before the real calculation goes on, renormalize the values to |
| // range [1, 2) by setting exponent field to 0x3ff (the exponent of 1) |
| // result in $r6d. The exponent will be recovered later. |
| ext u32 $r2 $r1 0xb14 |
| and b32 $r7 $r1 0x800fffff |
| add b32 $r7 $r7 0x3ff00000 |
| mov b32 $r6 $r0 |
| sched 0x2b 0x04 0x28 0x28 0x2a 0x2b 0x2e |
| // Step 3: Convert new value to float (no overflow will occur due to step |
| // 2), calculate rcp and do newton-raphson step once |
| cvt rz f32 $r5 f64 $r6d |
| rcp f32 $r4 $r5 |
| mov b32 $r0 0xbf800000 |
| fma rn f32 $r5 $r4 $r5 $r0 |
| fma rn f32 $r0 neg $r4 $r5 $r4 |
| // Step 4: convert result $r0 back to double, do newton-raphson steps |
| cvt f64 $r0d f32 $r0 |
| cvt f64 $r6d f64 neg $r6d |
| sched 0x2e 0x29 0x29 0x29 0x29 0x29 0x29 |
| cvt f64 $r8d f32 0x3f800000 |
| // 4 Newton-Raphson Steps, tmp in $r4d, result in $r0d |
| // The formula used here (and above) is: |
| // RCP_{n + 1} = 2 * RCP_{n} - x * RCP_{n} * RCP_{n} |
| // The following code uses 2 FMAs for each step, and it will basically |
| // looks like: |
| // tmp = -src * RCP_{n} + 1 |
| // RCP_{n + 1} = RCP_{n} * tmp + RCP_{n} |
| fma rn f64 $r4d $r6d $r0d $r8d |
| fma rn f64 $r0d $r0d $r4d $r0d |
| fma rn f64 $r4d $r6d $r0d $r8d |
| fma rn f64 $r0d $r0d $r4d $r0d |
| fma rn f64 $r4d $r6d $r0d $r8d |
| fma rn f64 $r0d $r0d $r4d $r0d |
| sched 0x29 0x20 0x28 0x28 0x28 0x28 0x28 |
| fma rn f64 $r4d $r6d $r0d $r8d |
| fma rn f64 $r0d $r0d $r4d $r0d |
| // Step 5: Exponent recovery and final processing |
| // The exponent is recovered by adding what we added to the exponent. |
| // Suppose we want to calculate rcp(x), but we have rcp(cx), then |
| // rcp(x) = c * rcp(cx) |
| // The delta in exponent comes from two sources: |
| // 1) The renormalization in step 2. The delta is: |
| // 0x3ff - $r2 |
| // 2) (For the denorm input) The 2^54 we multiplied at rcp_denorm, stored |
| // in $r3 |
| // These 2 sources are calculated in the first two lines below, and then |
| // added to the exponent extracted from the result above. |
| // Note that after processing, the new exponent may >= 0x7ff (inf) |
| // or <= 0 (denorm). Those cases will be handled respectively below |
| subr b32 $r2 $r2 0x3ff |
| add b32 $r4 $r2 $r3 |
| ext u32 $r3 $r1 0xb14 |
| // New exponent in $r3 |
| add b32 $r3 $r3 $r4 |
| add b32 $r2 $r3 0xffffffff |
| sched 0x28 0x2b 0x28 0x2b 0x28 0x28 0x2b |
| // (exponent-1) < 0x7fe (unsigned) means the result is in norm range |
| // (same logic as in step 1) |
| set b32 $p0 0x1 lt u32 $r2 0x7fe |
| (not $p0) bra #rcp_result_inf_or_denorm |
| // Norms: convert exponents back and return |
| shl b32 $r4 $r4 clamp 0x14 |
| add b32 $r1 $r4 $r1 |
| bra #rcp_end |
| rcp_result_inf_or_denorm: |
| // New exponent >= 0x7ff means that result is inf |
| set b32 $p0 0x1 ge s32 $r3 0x7ff |
| (not $p0) bra #rcp_result_denorm |
| sched 0x20 0x25 0x28 0x2b 0x23 0x25 0x2f |
| // Infinity |
| and b32 $r1 $r1 0x80000000 |
| mov b32 $r0 0x0 |
| add b32 $r1 $r1 0x7ff00000 |
| bra #rcp_end |
| rcp_result_denorm: |
| // Denorm result comes from huge input. The greatest possible fp64, i.e. |
| // 0x7fefffffffffffff's rcp is 0x0004000000000000, 1/4 of the smallest |
| // normal value. Other rcp result should be greater than that. If we |
| // set the exponent field to 1, we can recover the result by multiplying |
| // it with 1/2 or 1/4. 1/2 is used if the "exponent" $r3 is 0, otherwise |
| // 1/4 ($r3 should be -1 then). This is quite tricky but greatly simplifies |
| // the logic here. |
| set b32 $p0 0x1 ne u32 $r3 0x0 |
| and b32 $r1 $r1 0x800fffff |
| // 0x3e800000: 1/4 |
| $p0 cvt f64 $r6d f32 0x3e800000 |
| sched 0x2f 0x28 0x2c 0x2e 0x2a 0x20 0x27 |
| // 0x3f000000: 1/2 |
| (not $p0) cvt f64 $r6d f32 0x3f000000 |
| add b32 $r1 $r1 0x00100000 |
| mul rn f64 $r0d $r0d $r6d |
| rcp_end: |
| ret |
| |
| // RSQ F64 |
| // |
| // INPUT: $r0d |
| // OUTPUT: $r0d |
| // CLOBBER: $r2 - $r9, $p0 - $p1 |
| // |
| gk110_rsq_f64: |
| // Before getting initial result rsqrt64h, two special cases should be |
| // handled first. |
| // 1. NaN: set the highest bit in mantissa so it'll be surely recognized |
| // as NaN in rsqrt64h |
| set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000 |
| $p0 or b32 $r1 $r1 0x00080000 |
| and b32 $r2 $r1 0x7fffffff |
| sched 0x27 0x20 0x28 0x2c 0x25 0x28 0x28 |
| // 2. denorms and small normal values: using their original value will |
| // lose precision either at rsqrt64h or the first step in newton-raphson |
| // steps below. Take 2 as a threshold in exponent field, and multiply |
| // with 2^54 if the exponent is smaller or equal. (will multiply 2^27 |
| // to recover in the end) |
| ext u32 $r3 $r1 0xb14 |
| set b32 $p1 0x1 le u32 $r3 0x2 |
| or b32 $r2 $r0 $r2 |
| $p1 mul rn f64 $r0d $r0d 0x4350000000000000 |
| rsqrt64h f32 $r5 $r1 |
| // rsqrt64h will give correct result for 0/inf/nan, the following logic |
| // checks whether the input is one of those (exponent is 0x7ff or all 0 |
| // except for the sign bit) |
| set b32 $r6 ne u32 $r3 0x7ff |
| and b32 $r2 $r2 $r6 |
| sched 0x28 0x2b 0x20 0x27 0x28 0x2e 0x28 |
| set b32 $p0 0x1 ne u32 $r2 0x0 |
| $p0 bra #rsq_norm |
| // For 0/inf/nan, make sure the sign bit agrees with input and return |
| and b32 $r1 $r1 0x80000000 |
| mov b32 $r0 0x0 |
| or b32 $r1 $r1 $r5 |
| ret |
| rsq_norm: |
| // For others, do 4 Newton-Raphson steps with the formula: |
| // RSQ_{n + 1} = RSQ_{n} * (1.5 - 0.5 * x * RSQ_{n} * RSQ_{n}) |
| // In the code below, each step is written as: |
| // tmp1 = 0.5 * x * RSQ_{n} |
| // tmp2 = -RSQ_{n} * tmp1 + 0.5 |
| // RSQ_{n + 1} = RSQ_{n} * tmp2 + RSQ_{n} |
| mov b32 $r4 0x0 |
| sched 0x2f 0x29 0x29 0x29 0x29 0x29 0x29 |
| // 0x3f000000: 1/2 |
| cvt f64 $r8d f32 0x3f000000 |
| mul rn f64 $r2d $r0d $r8d |
| mul rn f64 $r0d $r2d $r4d |
| fma rn f64 $r6d neg $r4d $r0d $r8d |
| fma rn f64 $r4d $r4d $r6d $r4d |
| mul rn f64 $r0d $r2d $r4d |
| fma rn f64 $r6d neg $r4d $r0d $r8d |
| sched 0x29 0x29 0x29 0x29 0x29 0x29 0x29 |
| fma rn f64 $r4d $r4d $r6d $r4d |
| mul rn f64 $r0d $r2d $r4d |
| fma rn f64 $r6d neg $r4d $r0d $r8d |
| fma rn f64 $r4d $r4d $r6d $r4d |
| mul rn f64 $r0d $r2d $r4d |
| fma rn f64 $r6d neg $r4d $r0d $r8d |
| fma rn f64 $r4d $r4d $r6d $r4d |
| sched 0x29 0x20 0x28 0x2e 0x00 0x00 0x00 |
| // Multiply 2^27 to result for small inputs to recover |
| $p1 mul rn f64 $r4d $r4d 0x41a0000000000000 |
| mov b32 $r1 $r5 |
| mov b32 $r0 $r4 |
| ret |
| |
| .section #gk110_builtin_offsets |
| .b64 #gk110_div_u32 |
| .b64 #gk110_div_s32 |
| .b64 #gk110_rcp_f64 |
| .b64 #gk110_rsq_f64 |