blob: 8763a4144e329b69f0d5d2865979bd5f0fa85521 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_private.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
#include "genxml/gen_rt_pack.h"
#include "common/intel_l3_config.h"
#include "common/intel_sample_positions.h"
#include "nir/nir_xfb_info.h"
#include "vk_util.h"
#include "vk_format.h"
#include "vk_log.h"
#include "vk_render_pass.h"
static uint32_t
vertex_element_comp_control(enum isl_format format, unsigned comp)
{
uint8_t bits;
switch (comp) {
case 0: bits = isl_format_layouts[format].channels.r.bits; break;
case 1: bits = isl_format_layouts[format].channels.g.bits; break;
case 2: bits = isl_format_layouts[format].channels.b.bits; break;
case 3: bits = isl_format_layouts[format].channels.a.bits; break;
default: unreachable("Invalid component");
}
/*
* Take in account hardware restrictions when dealing with 64-bit floats.
*
* From Broadwell spec, command reference structures, page 586:
* "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
* 64-bit components are stored * in the URB without any conversion. In
* this case, vertex elements must be written as 128 or 256 bits, with
* VFCOMP_STORE_0 being used to pad the output as required. E.g., if
* R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
* Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
* set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
* Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
* a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
* Component 3 to be specified as VFCOMP_STORE_0 in order to output a
* 256-bit vertex element."
*/
if (bits) {
return VFCOMP_STORE_SRC;
} else if (comp >= 2 &&
!isl_format_layouts[format].channels.b.bits &&
isl_format_layouts[format].channels.r.type == ISL_RAW) {
/* When emitting 64-bit attributes, we need to write either 128 or 256
* bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
* VFCOMP_STORE_0 to pad the written chunk */
return VFCOMP_NOSTORE;
} else if (comp < 3 ||
isl_format_layouts[format].channels.r.type == ISL_RAW) {
/* Note we need to pad with value 0, not 1, due hardware restrictions
* (see comment above) */
return VFCOMP_STORE_0;
} else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
isl_format_layouts[format].channels.r.type == ISL_SINT) {
assert(comp == 3);
return VFCOMP_STORE_1_INT;
} else {
assert(comp == 3);
return VFCOMP_STORE_1_FP;
}
}
static void
emit_vertex_input(struct anv_graphics_pipeline *pipeline,
const struct vk_vertex_input_state *vi)
{
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
/* Pull inputs_read out of the VS prog data */
const uint64_t inputs_read = vs_prog_data->inputs_read;
const uint64_t double_inputs_read =
vs_prog_data->double_inputs_read & inputs_read;
assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
vs_prog_data->uses_instanceid ||
vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance;
uint32_t elem_count = __builtin_popcount(elements) -
__builtin_popcount(elements_double) / 2;
const uint32_t total_elems =
MAX2(1, elem_count + needs_svgs_elem + vs_prog_data->uses_drawid);
uint32_t *p;
const uint32_t num_dwords = 1 + total_elems * 2;
p = anv_batch_emitn(&pipeline->base.batch, num_dwords,
GENX(3DSTATE_VERTEX_ELEMENTS));
if (!p)
return;
for (uint32_t i = 0; i < total_elems; i++) {
/* The SKL docs for VERTEX_ELEMENT_STATE say:
*
* "All elements must be valid from Element[0] to the last valid
* element. (I.e. if Element[2] is valid then Element[1] and
* Element[0] must also be valid)."
*
* The SKL docs for 3D_Vertex_Component_Control say:
*
* "Don't store this component. (Not valid for Component 0, but can
* be used for Component 1-3)."
*
* So we can't just leave a vertex element blank and hope for the best.
* We have to tell the VF hardware to put something in it; so we just
* store a bunch of zero.
*
* TODO: Compact vertex elements so we never end up with holes.
*/
struct GENX(VERTEX_ELEMENT_STATE) element = {
.Valid = true,
.Component0Control = VFCOMP_STORE_0,
.Component1Control = VFCOMP_STORE_0,
.Component2Control = VFCOMP_STORE_0,
.Component3Control = VFCOMP_STORE_0,
};
GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
}
u_foreach_bit(a, vi->attributes_valid) {
enum isl_format format = anv_get_isl_format(pipeline->base.device->info,
vi->attributes[a].format,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_TILING_LINEAR);
uint32_t binding = vi->attributes[a].binding;
assert(binding < MAX_VBS);
if ((elements & (1 << a)) == 0)
continue; /* Binding unused */
uint32_t slot =
__builtin_popcount(elements & ((1 << a) - 1)) -
DIV_ROUND_UP(__builtin_popcount(elements_double &
((1 << a) -1)), 2);
struct GENX(VERTEX_ELEMENT_STATE) element = {
.VertexBufferIndex = vi->attributes[a].binding,
.Valid = true,
.SourceElementFormat = format,
.EdgeFlagEnable = false,
.SourceElementOffset = vi->attributes[a].offset,
.Component0Control = vertex_element_comp_control(format, 0),
.Component1Control = vertex_element_comp_control(format, 1),
.Component2Control = vertex_element_comp_control(format, 2),
.Component3Control = vertex_element_comp_control(format, 3),
};
GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
#if GFX_VER >= 8
/* On Broadwell and later, we have a separate VF_INSTANCING packet
* that controls instancing. On Haswell and prior, that's part of
* VERTEX_BUFFER_STATE which we emit later.
*/
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
bool per_instance = pipeline->vb[binding].instanced;
uint32_t divisor = pipeline->vb[binding].instance_divisor *
pipeline->instance_multiplier;
vfi.InstancingEnable = per_instance;
vfi.VertexElementIndex = slot;
vfi.InstanceDataStepRate = per_instance ? divisor : 1;
}
#endif
}
const uint32_t id_slot = elem_count;
if (needs_svgs_elem) {
/* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
* "Within a VERTEX_ELEMENT_STATE structure, if a Component
* Control field is set to something other than VFCOMP_STORE_SRC,
* no higher-numbered Component Control fields may be set to
* VFCOMP_STORE_SRC"
*
* This means, that if we have BaseInstance, we need BaseVertex as
* well. Just do all or nothing.
*/
uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance) ?
VFCOMP_STORE_SRC : VFCOMP_STORE_0;
struct GENX(VERTEX_ELEMENT_STATE) element = {
.VertexBufferIndex = ANV_SVGS_VB_INDEX,
.Valid = true,
.SourceElementFormat = ISL_FORMAT_R32G32_UINT,
.Component0Control = base_ctrl,
.Component1Control = base_ctrl,
#if GFX_VER >= 8
.Component2Control = VFCOMP_STORE_0,
.Component3Control = VFCOMP_STORE_0,
#else
.Component2Control = VFCOMP_STORE_VID,
.Component3Control = VFCOMP_STORE_IID,
#endif
};
GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
#if GFX_VER >= 8
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
vfi.VertexElementIndex = id_slot;
}
#endif
}
#if GFX_VER >= 8
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_SGVS), sgvs) {
sgvs.VertexIDEnable = vs_prog_data->uses_vertexid;
sgvs.VertexIDComponentNumber = 2;
sgvs.VertexIDElementOffset = id_slot;
sgvs.InstanceIDEnable = vs_prog_data->uses_instanceid;
sgvs.InstanceIDComponentNumber = 3;
sgvs.InstanceIDElementOffset = id_slot;
}
#endif
const uint32_t drawid_slot = elem_count + needs_svgs_elem;
if (vs_prog_data->uses_drawid) {
struct GENX(VERTEX_ELEMENT_STATE) element = {
.VertexBufferIndex = ANV_DRAWID_VB_INDEX,
.Valid = true,
.SourceElementFormat = ISL_FORMAT_R32_UINT,
.Component0Control = VFCOMP_STORE_SRC,
.Component1Control = VFCOMP_STORE_0,
.Component2Control = VFCOMP_STORE_0,
.Component3Control = VFCOMP_STORE_0,
};
GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
&p[1 + drawid_slot * 2],
&element);
#if GFX_VER >= 8
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
vfi.VertexElementIndex = drawid_slot;
}
#endif
}
}
void
genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
const struct intel_l3_config *l3_config,
VkShaderStageFlags active_stages,
const unsigned entry_size[4],
enum intel_urb_deref_block_size *deref_block_size)
{
const struct intel_device_info *devinfo = device->info;
unsigned entries[4];
unsigned start[4];
bool constrained;
intel_get_urb_config(devinfo, l3_config,
active_stages &
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
entry_size, entries, start, deref_block_size,
&constrained);
#if GFX_VERx10 == 70
/* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
*
* "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
* needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
* 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
* 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL
* needs to be sent before any combination of VS associated 3DSTATE."
*/
anv_batch_emit(batch, GFX7_PIPE_CONTROL, pc) {
pc.DepthStallEnable = true;
pc.PostSyncOperation = WriteImmediateData;
pc.Address = device->workaround_address;
}
#endif
for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
urb._3DCommandSubOpcode += i;
urb.VSURBStartingAddress = start[i];
urb.VSURBEntryAllocationSize = entry_size[i] - 1;
urb.VSNumberofURBEntries = entries[i];
}
}
}
static void
emit_urb_setup(struct anv_graphics_pipeline *pipeline,
enum intel_urb_deref_block_size *deref_block_size)
{
unsigned entry_size[4];
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
const struct brw_vue_prog_data *prog_data =
!anv_pipeline_has_stage(pipeline, i) ? NULL :
(const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
}
genX(emit_urb_setup)(pipeline->base.device, &pipeline->base.batch,
pipeline->base.l3_config,
pipeline->active_stages, entry_size,
deref_block_size);
}
static void
emit_3dstate_sbe(struct anv_graphics_pipeline *pipeline)
{
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_SBE), sbe);
#if GFX_VER >= 8
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_SBE_SWIZ), sbe);
#endif
return;
}
struct GENX(3DSTATE_SBE) sbe = {
GENX(3DSTATE_SBE_header),
/* TODO(mesh): Figure out cases where we need attribute swizzling. See also
* calculate_urb_setup() and related functions.
*/
.AttributeSwizzleEnable = anv_pipeline_is_primitive(pipeline),
.PointSpriteTextureCoordinateOrigin = UPPERLEFT,
.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
.ConstantInterpolationEnable = wm_prog_data->flat_inputs,
};
#if GFX_VER >= 9
for (unsigned i = 0; i < 32; i++)
sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
#endif
#if GFX_VER >= 8
/* On Broadwell, they broke 3DSTATE_SBE into two packets */
struct GENX(3DSTATE_SBE_SWIZ) swiz = {
GENX(3DSTATE_SBE_SWIZ_header),
};
#else
# define swiz sbe
#endif
const struct brw_vue_map *fs_input_map =
&anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
int first_slot = brw_compute_first_urb_slot_required(wm_prog_data->inputs,
fs_input_map);
assert(first_slot % 2 == 0);
unsigned urb_entry_read_offset = first_slot / 2;
int max_source_attr = 0;
for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
uint8_t attr = wm_prog_data->urb_setup_attribs[idx];
int input_index = wm_prog_data->urb_setup[attr];
assert(0 <= input_index);
/* gl_Viewport, gl_Layer and FragmentShadingRateKHR are stored in the
* VUE header
*/
if (attr == VARYING_SLOT_VIEWPORT ||
attr == VARYING_SLOT_LAYER ||
attr == VARYING_SLOT_PRIMITIVE_SHADING_RATE) {
continue;
}
if (attr == VARYING_SLOT_PNTC) {
sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
continue;
}
const int slot = fs_input_map->varying_to_slot[attr];
if (slot == -1) {
/* This attribute does not exist in the VUE--that means that the
* vertex shader did not write to it. It could be that it's a regular
* varying read by the fragment shader but not written by the vertex
* shader or it's gl_PrimitiveID. In the first case the value is
* undefined, in the second it needs to be gl_PrimitiveID.
*/
swiz.Attribute[input_index].ConstantSource = PRIM_ID;
swiz.Attribute[input_index].ComponentOverrideX = true;
swiz.Attribute[input_index].ComponentOverrideY = true;
swiz.Attribute[input_index].ComponentOverrideZ = true;
swiz.Attribute[input_index].ComponentOverrideW = true;
continue;
}
/* We have to subtract two slots to account for the URB entry output
* read offset in the VS and GS stages.
*/
const int source_attr = slot - 2 * urb_entry_read_offset;
assert(source_attr >= 0 && source_attr < 32);
max_source_attr = MAX2(max_source_attr, source_attr);
/* The hardware can only do overrides on 16 overrides at a time, and the
* other up to 16 have to be lined up so that the input index = the
* output index. We'll need to do some tweaking to make sure that's the
* case.
*/
if (input_index < 16)
swiz.Attribute[input_index].SourceAttribute = source_attr;
else
assert(source_attr == input_index);
}
sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
#if GFX_VER >= 8
sbe.ForceVertexURBEntryReadOffset = true;
sbe.ForceVertexURBEntryReadLength = true;
#endif
uint32_t *dw = anv_batch_emit_dwords(&pipeline->base.batch,
GENX(3DSTATE_SBE_length));
if (!dw)
return;
GENX(3DSTATE_SBE_pack)(&pipeline->base.batch, dw, &sbe);
#if GFX_VER >= 8
dw = anv_batch_emit_dwords(&pipeline->base.batch, GENX(3DSTATE_SBE_SWIZ_length));
if (!dw)
return;
GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->base.batch, dw, &swiz);
#endif
}
/** Returns the final polygon mode for rasterization
*
* This function takes into account polygon mode, primitive topology and the
* different shader stages which might generate their own type of primitives.
*/
VkPolygonMode
genX(raster_polygon_mode)(struct anv_graphics_pipeline *pipeline,
VkPrimitiveTopology primitive_topology)
{
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
switch (get_gs_prog_data(pipeline)->output_topology) {
case _3DPRIM_POINTLIST:
return VK_POLYGON_MODE_POINT;
case _3DPRIM_LINELIST:
case _3DPRIM_LINESTRIP:
case _3DPRIM_LINELOOP:
return VK_POLYGON_MODE_LINE;
case _3DPRIM_TRILIST:
case _3DPRIM_TRIFAN:
case _3DPRIM_TRISTRIP:
case _3DPRIM_RECTLIST:
case _3DPRIM_QUADLIST:
case _3DPRIM_QUADSTRIP:
case _3DPRIM_POLYGON:
return pipeline->polygon_mode;
}
unreachable("Unsupported GS output topology");
} else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
switch (get_tes_prog_data(pipeline)->output_topology) {
case BRW_TESS_OUTPUT_TOPOLOGY_POINT:
return VK_POLYGON_MODE_POINT;
case BRW_TESS_OUTPUT_TOPOLOGY_LINE:
return VK_POLYGON_MODE_LINE;
case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW:
case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW:
return pipeline->polygon_mode;
}
unreachable("Unsupported TCS output topology");
} else {
switch (primitive_topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
return VK_POLYGON_MODE_POINT;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return VK_POLYGON_MODE_LINE;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return pipeline->polygon_mode;
default:
unreachable("Unsupported primitive topology");
}
}
}
uint32_t
genX(ms_rasterization_mode)(struct anv_graphics_pipeline *pipeline,
VkPolygonMode raster_mode)
{
#if GFX_VER <= 7
if (raster_mode == VK_POLYGON_MODE_LINE) {
switch (pipeline->line_mode) {
case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT:
return MSRASTMODE_ON_PATTERN;
case VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT:
case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT:
return MSRASTMODE_OFF_PIXEL;
default:
unreachable("Unsupported line rasterization mode");
}
} else {
return pipeline->rasterization_samples > 1 ?
MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
}
#else
unreachable("Only on gen7");
#endif
}
const uint32_t genX(vk_to_intel_cullmode)[] = {
[VK_CULL_MODE_NONE] = CULLMODE_NONE,
[VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT,
[VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK,
[VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
};
const uint32_t genX(vk_to_intel_fillmode)[] = {
[VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
[VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
[VK_POLYGON_MODE_POINT] = FILL_MODE_POINT,
};
const uint32_t genX(vk_to_intel_front_face)[] = {
[VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1,
[VK_FRONT_FACE_CLOCKWISE] = 0
};
void
genX(rasterization_mode)(VkPolygonMode raster_mode,
VkLineRasterizationModeEXT line_mode,
float line_width,
uint32_t *api_mode,
bool *msaa_rasterization_enable)
{
#if GFX_VER >= 8
if (raster_mode == VK_POLYGON_MODE_LINE) {
/* Unfortunately, configuring our line rasterization hardware on gfx8
* and later is rather painful. Instead of giving us bits to tell the
* hardware what line mode to use like we had on gfx7, we now have an
* arcane combination of API Mode and MSAA enable bits which do things
* in a table which are expected to magically put the hardware into the
* right mode for your API. Sadly, Vulkan isn't any of the APIs the
* hardware people thought of so nothing works the way you want it to.
*
* Look at the table titled "Multisample Rasterization Modes" in Vol 7
* of the Skylake PRM for more details.
*/
switch (line_mode) {
case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT:
*api_mode = DX100;
#if GFX_VER <= 9
/* Prior to ICL, the algorithm the HW uses to draw wide lines
* doesn't quite match what the CTS expects, at least for rectangular
* lines, so we set this to false here, making it draw parallelograms
* instead, which work well enough.
*/
*msaa_rasterization_enable = line_width < 1.0078125;
#else
*msaa_rasterization_enable = true;
#endif
break;
case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT:
case VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT:
*api_mode = DX9OGL;
*msaa_rasterization_enable = false;
break;
default:
unreachable("Unsupported line rasterization mode");
}
} else {
*api_mode = DX100;
*msaa_rasterization_enable = true;
}
#else
unreachable("Invalid call");
#endif
}
static void
emit_rs_state(struct anv_graphics_pipeline *pipeline,
const struct vk_input_assembly_state *ia,
const struct vk_rasterization_state *rs,
const struct vk_multisample_state *ms,
const struct vk_render_pass_state *rp,
enum intel_urb_deref_block_size urb_deref_block_size)
{
struct GENX(3DSTATE_SF) sf = {
GENX(3DSTATE_SF_header),
};
sf.ViewportTransformEnable = true;
sf.StatisticsEnable = true;
sf.VertexSubPixelPrecisionSelect = _8Bit;
sf.AALineDistanceMode = true;
switch (rs->provoking_vertex) {
case VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT:
sf.TriangleStripListProvokingVertexSelect = 0;
sf.LineStripListProvokingVertexSelect = 0;
sf.TriangleFanProvokingVertexSelect = 1;
break;
case VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT:
sf.TriangleStripListProvokingVertexSelect = 2;
sf.LineStripListProvokingVertexSelect = 1;
sf.TriangleFanProvokingVertexSelect = 2;
break;
default:
unreachable("Invalid provoking vertex mode");
}
#if GFX_VERx10 == 75
sf.LineStippleEnable = rs->line.stipple.enable;
#endif
#if GFX_VER >= 12
sf.DerefBlockSize = urb_deref_block_size;
#endif
bool point_from_shader;
const struct brw_vue_prog_data *last_vue_prog_data =
anv_pipeline_get_last_vue_prog_data(pipeline);
point_from_shader = last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ;
if (point_from_shader) {
sf.PointWidthSource = Vertex;
} else {
sf.PointWidthSource = State;
sf.PointWidth = 1.0;
}
#if GFX_VER >= 8
struct GENX(3DSTATE_RASTER) raster = {
GENX(3DSTATE_RASTER_header),
};
#else
# define raster sf
#endif
/* For details on 3DSTATE_RASTER multisample state, see the BSpec table
* "Multisample Modes State".
*/
#if GFX_VER >= 8
/* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
* computations. If we ever set this bit to a different value, they will
* need to be updated accordingly.
*/
raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
raster.ForceMultisampling = false;
#endif
raster.FrontFaceFillMode = genX(vk_to_intel_fillmode)[rs->polygon_mode];
raster.BackFaceFillMode = genX(vk_to_intel_fillmode)[rs->polygon_mode];
raster.ScissorRectangleEnable = true;
#if GFX_VER >= 9
/* GFX9+ splits ViewportZClipTestEnable into near and far enable bits */
raster.ViewportZFarClipTestEnable = pipeline->depth_clip_enable;
raster.ViewportZNearClipTestEnable = pipeline->depth_clip_enable;
#elif GFX_VER >= 8
raster.ViewportZClipTestEnable = pipeline->depth_clip_enable;
#endif
#if GFX_VER >= 9
raster.ConservativeRasterizationEnable =
rs->conservative_mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT;
#endif
#if GFX_VER == 7
/* Gfx7 requires that we provide the depth format in 3DSTATE_SF so that it
* can get the depth offsets correct.
*/
if (rp != NULL &&
rp->depth_attachment_format != VK_FORMAT_UNDEFINED) {
assert(vk_format_has_depth(rp->depth_attachment_format));
enum isl_format isl_format =
anv_get_isl_format(pipeline->base.device->info,
rp->depth_attachment_format,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_TILING_OPTIMAL);
sf.DepthBufferSurfaceFormat =
isl_format_get_depth_format(isl_format, false);
}
#endif
#if GFX_VER >= 8
GENX(3DSTATE_SF_pack)(NULL, pipeline->gfx8.sf, &sf);
GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gfx8.raster, &raster);
#else
# undef raster
GENX(3DSTATE_SF_pack)(NULL, &pipeline->gfx7.sf, &sf);
#endif
}
static void
emit_ms_state(struct anv_graphics_pipeline *pipeline,
const struct vk_multisample_state *ms)
{
#if GFX_VER >= 8
/* On Gfx8+ 3DSTATE_MULTISAMPLE only holds the number of samples. */
genX(emit_multisample)(&pipeline->base.batch,
pipeline->rasterization_samples,
NULL);
#endif
/* From the Vulkan 1.0 spec:
* If pSampleMask is NULL, it is treated as if the mask has all bits
* enabled, i.e. no coverage is removed from fragments.
*
* 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
*/
#if GFX_VER >= 8
uint32_t sample_mask = 0xffff;
#else
uint32_t sample_mask = 0xff;
#endif
if (ms != NULL)
sample_mask &= ms->sample_mask;
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
sm.SampleMask = sample_mask;
}
}
const uint32_t genX(vk_to_intel_logic_op)[] = {
[VK_LOGIC_OP_COPY] = LOGICOP_COPY,
[VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
[VK_LOGIC_OP_AND] = LOGICOP_AND,
[VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
[VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
[VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP,
[VK_LOGIC_OP_XOR] = LOGICOP_XOR,
[VK_LOGIC_OP_OR] = LOGICOP_OR,
[VK_LOGIC_OP_NOR] = LOGICOP_NOR,
[VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV,
[VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
[VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
[VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
[VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
[VK_LOGIC_OP_NAND] = LOGICOP_NAND,
[VK_LOGIC_OP_SET] = LOGICOP_SET,
};
static const uint32_t vk_to_intel_blend[] = {
[VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
[VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
[VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
[VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
[VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
[VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
[VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
[VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
[VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
[VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
[VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
};
static const uint32_t vk_to_intel_blend_op[] = {
[VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
[VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
[VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
[VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
[VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
};
const uint32_t genX(vk_to_intel_compare_op)[] = {
[VK_COMPARE_OP_NEVER] = PREFILTEROP_NEVER,
[VK_COMPARE_OP_LESS] = PREFILTEROP_LESS,
[VK_COMPARE_OP_EQUAL] = PREFILTEROP_EQUAL,
[VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROP_LEQUAL,
[VK_COMPARE_OP_GREATER] = PREFILTEROP_GREATER,
[VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROP_NOTEQUAL,
[VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROP_GEQUAL,
[VK_COMPARE_OP_ALWAYS] = PREFILTEROP_ALWAYS,
};
const uint32_t genX(vk_to_intel_stencil_op)[] = {
[VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
[VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
[VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
[VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT,
[VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT,
[VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
[VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR,
[VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR,
};
const uint32_t genX(vk_to_intel_primitive_type)[] = {
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
};
static bool
is_dual_src_blend_factor(VkBlendFactor factor)
{
return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
}
static inline uint32_t *
write_disabled_blend(uint32_t *state)
{
struct GENX(BLEND_STATE_ENTRY) entry = {
.WriteDisableAlpha = true,
.WriteDisableRed = true,
.WriteDisableGreen = true,
.WriteDisableBlue = true,
};
GENX(BLEND_STATE_ENTRY_pack)(NULL, state, &entry);
return state + GENX(BLEND_STATE_ENTRY_length);
}
static void
emit_cb_state(struct anv_graphics_pipeline *pipeline,
const struct vk_color_blend_state *cb,
const struct vk_multisample_state *ms)
{
struct anv_device *device = pipeline->base.device;
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
struct GENX(BLEND_STATE) blend_state = {
#if GFX_VER >= 8
.AlphaToCoverageEnable = ms && ms->alpha_to_coverage_enable,
.AlphaToOneEnable = ms && ms->alpha_to_one_enable,
#endif
};
uint32_t surface_count = 0;
struct anv_pipeline_bind_map *map;
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
surface_count = map->surface_count;
}
const struct intel_device_info *devinfo = pipeline->base.device->info;
uint32_t *blend_state_start = devinfo->ver >= 8 ?
pipeline->gfx8.blend_state : pipeline->gfx7.blend_state;
uint32_t *state_pos = blend_state_start;
state_pos += GENX(BLEND_STATE_length);
#if GFX_VER >= 8
struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
#endif
for (unsigned i = 0; i < surface_count; i++) {
struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
/* All color attachments are at the beginning of the binding table */
if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
break;
/* We can have at most 8 attachments */
assert(i < MAX_RTS);
if (cb == NULL || binding->index >= cb->attachment_count) {
state_pos = write_disabled_blend(state_pos);
continue;
}
const struct vk_color_blend_attachment_state *a =
&cb->attachments[binding->index];
struct GENX(BLEND_STATE_ENTRY) entry = {
#if GFX_VER < 8
.AlphaToCoverageEnable = ms && ms->alpha_to_coverage_enable,
.AlphaToOneEnable = ms && ms->alpha_to_one_enable,
#endif
.LogicOpEnable = cb->logic_op_enable,
/* Vulkan specification 1.2.168, VkLogicOp:
*
* "Logical operations are controlled by the logicOpEnable and
* logicOp members of VkPipelineColorBlendStateCreateInfo. If
* logicOpEnable is VK_TRUE, then a logical operation selected by
* logicOp is applied between each color attachment and the
* fragment’s corresponding output value, and blending of all
* attachments is treated as if it were disabled."
*
* From the Broadwell PRM Volume 2d: Command Reference: Structures:
* BLEND_STATE_ENTRY:
*
* "Enabling LogicOp and Color Buffer Blending at the same time is
* UNDEFINED"
*/
.ColorBufferBlendEnable = !cb->logic_op_enable && a->blend_enable,
.ColorClampRange = COLORCLAMP_RTFORMAT,
.PreBlendColorClampEnable = true,
.PostBlendColorClampEnable = true,
.SourceBlendFactor = vk_to_intel_blend[a->src_color_blend_factor],
.DestinationBlendFactor = vk_to_intel_blend[a->dst_color_blend_factor],
.ColorBlendFunction = vk_to_intel_blend_op[a->color_blend_op],
.SourceAlphaBlendFactor = vk_to_intel_blend[a->src_alpha_blend_factor],
.DestinationAlphaBlendFactor = vk_to_intel_blend[a->dst_alpha_blend_factor],
.AlphaBlendFunction = vk_to_intel_blend_op[a->alpha_blend_op],
};
if (a->src_color_blend_factor != a->src_alpha_blend_factor ||
a->dst_color_blend_factor != a->dst_alpha_blend_factor ||
a->color_blend_op != a->alpha_blend_op) {
#if GFX_VER >= 8
blend_state.IndependentAlphaBlendEnable = true;
#else
entry.IndependentAlphaBlendEnable = true;
#endif
}
/* The Dual Source Blending documentation says:
*
* "If SRC1 is included in a src/dst blend factor and
* a DualSource RT Write message is not used, results
* are UNDEFINED. (This reflects the same restriction in DX APIs,
* where undefined results are produced if “o1” is not written
* by a PS – there are no default values defined)."
*
* There is no way to gracefully fix this undefined situation
* so we just disable the blending to prevent possible issues.
*/
if (!wm_prog_data->dual_src_blend &&
(is_dual_src_blend_factor(a->src_color_blend_factor) ||
is_dual_src_blend_factor(a->dst_color_blend_factor) ||
is_dual_src_blend_factor(a->src_alpha_blend_factor) ||
is_dual_src_blend_factor(a->dst_alpha_blend_factor))) {
vk_logw(VK_LOG_OBJS(&device->vk.base),
"Enabled dual-src blend factors without writing both targets "
"in the shader. Disabling blending to avoid GPU hangs.");
entry.ColorBufferBlendEnable = false;
}
/* Our hardware applies the blend factor prior to the blend function
* regardless of what function is used. Technically, this means the
* hardware can do MORE than GL or Vulkan specify. However, it also
* means that, for MIN and MAX, we have to stomp the blend factor to
* ONE to make it a no-op.
*/
if (a->color_blend_op == VK_BLEND_OP_MIN ||
a->color_blend_op == VK_BLEND_OP_MAX) {
entry.SourceBlendFactor = BLENDFACTOR_ONE;
entry.DestinationBlendFactor = BLENDFACTOR_ONE;
}
if (a->alpha_blend_op == VK_BLEND_OP_MIN ||
a->alpha_blend_op == VK_BLEND_OP_MAX) {
entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
}
GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
state_pos += GENX(BLEND_STATE_ENTRY_length);
#if GFX_VER >= 8
if (i == 0)
bs0 = entry;
#endif
}
#if GFX_VER >= 8
struct GENX(3DSTATE_PS_BLEND) blend = {
GENX(3DSTATE_PS_BLEND_header),
};
blend.AlphaToCoverageEnable = blend_state.AlphaToCoverageEnable;
blend.ColorBufferBlendEnable = bs0.ColorBufferBlendEnable;
blend.SourceAlphaBlendFactor = bs0.SourceAlphaBlendFactor;
blend.DestinationAlphaBlendFactor = bs0.DestinationAlphaBlendFactor;
blend.SourceBlendFactor = bs0.SourceBlendFactor;
blend.DestinationBlendFactor = bs0.DestinationBlendFactor;
blend.AlphaTestEnable = false;
blend.IndependentAlphaBlendEnable = blend_state.IndependentAlphaBlendEnable;
GENX(3DSTATE_PS_BLEND_pack)(NULL, pipeline->gfx8.ps_blend, &blend);
#endif
GENX(BLEND_STATE_pack)(NULL, blend_state_start, &blend_state);
}
static void
emit_3dstate_clip(struct anv_graphics_pipeline *pipeline,
const struct vk_input_assembly_state *ia,
const struct vk_viewport_state *vp,
const struct vk_rasterization_state *rs)
{
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
(void) wm_prog_data;
struct GENX(3DSTATE_CLIP) clip = {
GENX(3DSTATE_CLIP_header),
};
clip.ClipEnable = true;
clip.StatisticsEnable = true;
clip.EarlyCullEnable = true;
clip.APIMode = pipeline->negative_one_to_one ? APIMODE_OGL : APIMODE_D3D;
clip.GuardbandClipTestEnable = true;
#if GFX_VER >= 8
clip.VertexSubPixelPrecisionSelect = _8Bit;
#endif
clip.ClipMode = CLIPMODE_NORMAL;
switch (rs->provoking_vertex) {
case VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT:
clip.TriangleStripListProvokingVertexSelect = 0;
clip.LineStripListProvokingVertexSelect = 0;
clip.TriangleFanProvokingVertexSelect = 1;
break;
case VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT:
clip.TriangleStripListProvokingVertexSelect = 2;
clip.LineStripListProvokingVertexSelect = 1;
clip.TriangleFanProvokingVertexSelect = 2;
break;
default:
unreachable("Invalid provoking vertex mode");
}
clip.MinimumPointWidth = 0.125;
clip.MaximumPointWidth = 255.875;
const struct brw_vue_prog_data *last =
anv_pipeline_get_last_vue_prog_data(pipeline);
/* From the Vulkan 1.0.45 spec:
*
* "If the last active vertex processing stage shader entry point's
* interface does not include a variable decorated with ViewportIndex,
* then the first viewport is used."
*/
if (vp && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
clip.MaximumVPIndex = vp->viewport_count > 0 ?
vp->viewport_count - 1 : 0;
} else {
clip.MaximumVPIndex = 0;
}
/* From the Vulkan 1.0.45 spec:
*
* "If the last active vertex processing stage shader entry point's
* interface does not include a variable decorated with Layer, then the
* first layer is used."
*/
clip.ForceZeroRTAIndexEnable =
!(last->vue_map.slots_valid & VARYING_BIT_LAYER);
#if GFX_VER == 7
clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
clip.FrontWinding = genX(vk_to_intel_front_face)[rs->front_face];
clip.CullMode = genX(vk_to_intel_cullmode)[rs->cull_mode];
clip.ViewportZClipTestEnable = pipeline->depth_clip_enable;
#endif
clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
wm_prog_data->uses_nonperspective_interp_modes : 0;
GENX(3DSTATE_CLIP_pack)(NULL, pipeline->gfx7.clip, &clip);
}
static void
emit_3dstate_streamout(struct anv_graphics_pipeline *pipeline,
const struct vk_rasterization_state *rs)
{
const struct brw_vue_prog_data *prog_data =
anv_pipeline_get_last_vue_prog_data(pipeline);
const struct brw_vue_map *vue_map = &prog_data->vue_map;
nir_xfb_info *xfb_info;
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
xfb_info = pipeline->shaders[MESA_SHADER_GEOMETRY]->xfb_info;
else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
xfb_info = pipeline->shaders[MESA_SHADER_TESS_EVAL]->xfb_info;
else
xfb_info = pipeline->shaders[MESA_SHADER_VERTEX]->xfb_info;
if (xfb_info) {
struct GENX(SO_DECL) so_decl[MAX_XFB_STREAMS][128];
int next_offset[MAX_XFB_BUFFERS] = {0, 0, 0, 0};
int decls[MAX_XFB_STREAMS] = {0, 0, 0, 0};
memset(so_decl, 0, sizeof(so_decl));
for (unsigned i = 0; i < xfb_info->output_count; i++) {
const nir_xfb_output_info *output = &xfb_info->outputs[i];
unsigned buffer = output->buffer;
unsigned stream = xfb_info->buffer_to_stream[buffer];
/* Our hardware is unusual in that it requires us to program SO_DECLs
* for fake "hole" components, rather than simply taking the offset
* for each real varying. Each hole can have size 1, 2, 3, or 4; we
* program as many size = 4 holes as we can, then a final hole to
* accommodate the final 1, 2, or 3 remaining.
*/
int hole_dwords = (output->offset - next_offset[buffer]) / 4;
while (hole_dwords > 0) {
so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
.HoleFlag = 1,
.OutputBufferSlot = buffer,
.ComponentMask = (1 << MIN2(hole_dwords, 4)) - 1,
};
hole_dwords -= 4;
}
int varying = output->location;
uint8_t component_mask = output->component_mask;
/* VARYING_SLOT_PSIZ contains four scalar fields packed together:
* - VARYING_SLOT_PRIMITIVE_SHADING_RATE in VARYING_SLOT_PSIZ.x
* - VARYING_SLOT_LAYER in VARYING_SLOT_PSIZ.y
* - VARYING_SLOT_VIEWPORT in VARYING_SLOT_PSIZ.z
* - VARYING_SLOT_PSIZ in VARYING_SLOT_PSIZ.w
*/
if (varying == VARYING_SLOT_PRIMITIVE_SHADING_RATE) {
varying = VARYING_SLOT_PSIZ;
component_mask = 1 << 0; // SO_DECL_COMPMASK_X
} else if (varying == VARYING_SLOT_LAYER) {
varying = VARYING_SLOT_PSIZ;
component_mask = 1 << 1; // SO_DECL_COMPMASK_Y
} else if (varying == VARYING_SLOT_VIEWPORT) {
varying = VARYING_SLOT_PSIZ;
component_mask = 1 << 2; // SO_DECL_COMPMASK_Z
} else if (varying == VARYING_SLOT_PSIZ) {
component_mask = 1 << 3; // SO_DECL_COMPMASK_W
}
next_offset[buffer] = output->offset +
__builtin_popcount(component_mask) * 4;
const int slot = vue_map->varying_to_slot[varying];
if (slot < 0) {
/* This can happen if the shader never writes to the varying.
* Insert a hole instead of actual varying data.
*/
so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
.HoleFlag = true,
.OutputBufferSlot = buffer,
.ComponentMask = component_mask,
};
} else {
so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
.OutputBufferSlot = buffer,
.RegisterIndex = slot,
.ComponentMask = component_mask,
};
}
}
int max_decls = 0;
for (unsigned s = 0; s < MAX_XFB_STREAMS; s++)
max_decls = MAX2(max_decls, decls[s]);
uint8_t sbs[MAX_XFB_STREAMS] = { };
for (unsigned b = 0; b < MAX_XFB_BUFFERS; b++) {
if (xfb_info->buffers_written & (1 << b))
sbs[xfb_info->buffer_to_stream[b]] |= 1 << b;
}
/* Wa_16011773973:
* If SOL is enabled and SO_DECL state has to be programmed,
* 1. Send 3D State SOL state with SOL disabled
* 2. Send SO_DECL NP state
* 3. Send 3D State SOL with SOL Enabled
*/
if (intel_device_info_is_dg2(pipeline->base.device->info))
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_STREAMOUT), so);
uint32_t *dw = anv_batch_emitn(&pipeline->base.batch, 3 + 2 * max_decls,
GENX(3DSTATE_SO_DECL_LIST),
.StreamtoBufferSelects0 = sbs[0],
.StreamtoBufferSelects1 = sbs[1],
.StreamtoBufferSelects2 = sbs[2],
.StreamtoBufferSelects3 = sbs[3],
.NumEntries0 = decls[0],
.NumEntries1 = decls[1],
.NumEntries2 = decls[2],
.NumEntries3 = decls[3]);
for (int i = 0; i < max_decls; i++) {
GENX(SO_DECL_ENTRY_pack)(NULL, dw + 3 + i * 2,
&(struct GENX(SO_DECL_ENTRY)) {
.Stream0Decl = so_decl[0][i],
.Stream1Decl = so_decl[1][i],
.Stream2Decl = so_decl[2][i],
.Stream3Decl = so_decl[3][i],
});
}
}
#if GFX_VER == 7
# define streamout_state_dw pipeline->gfx7.streamout_state
#else
# define streamout_state_dw pipeline->gfx8.streamout_state
#endif
struct GENX(3DSTATE_STREAMOUT) so = {
GENX(3DSTATE_STREAMOUT_header),
};
if (xfb_info) {
so.SOFunctionEnable = true;
so.SOStatisticsEnable = true;
switch (rs->provoking_vertex) {
case VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT:
so.ReorderMode = LEADING;
break;
case VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT:
so.ReorderMode = TRAILING;
break;
default:
unreachable("Invalid provoking vertex mode");
}
so.RenderStreamSelect = rs->rasterization_stream;
#if GFX_VER >= 8
so.Buffer0SurfacePitch = xfb_info->buffers[0].stride;
so.Buffer1SurfacePitch = xfb_info->buffers[1].stride;
so.Buffer2SurfacePitch = xfb_info->buffers[2].stride;
so.Buffer3SurfacePitch = xfb_info->buffers[3].stride;
#else
pipeline->gfx7.xfb_bo_pitch[0] = xfb_info->buffers[0].stride;
pipeline->gfx7.xfb_bo_pitch[1] = xfb_info->buffers[1].stride;
pipeline->gfx7.xfb_bo_pitch[2] = xfb_info->buffers[2].stride;
pipeline->gfx7.xfb_bo_pitch[3] = xfb_info->buffers[3].stride;
/* On Gfx7, the SO buffer enables live in 3DSTATE_STREAMOUT which
* is a bit inconvenient because we don't know what buffers will
* actually be enabled until draw time. We do our best here by
* setting them based on buffers_written and we disable them
* as-needed at draw time by setting EndAddress = BaseAddress.
*/
so.SOBufferEnable0 = xfb_info->buffers_written & (1 << 0);
so.SOBufferEnable1 = xfb_info->buffers_written & (1 << 1);
so.SOBufferEnable2 = xfb_info->buffers_written & (1 << 2);
so.SOBufferEnable3 = xfb_info->buffers_written & (1 << 3);
#endif
int urb_entry_read_offset = 0;
int urb_entry_read_length =
(prog_data->vue_map.num_slots + 1) / 2 - urb_entry_read_offset;
/* We always read the whole vertex. This could be reduced at some
* point by reading less and offsetting the register index in the
* SO_DECLs.
*/
so.Stream0VertexReadOffset = urb_entry_read_offset;
so.Stream0VertexReadLength = urb_entry_read_length - 1;
so.Stream1VertexReadOffset = urb_entry_read_offset;
so.Stream1VertexReadLength = urb_entry_read_length - 1;
so.Stream2VertexReadOffset = urb_entry_read_offset;
so.Stream2VertexReadLength = urb_entry_read_length - 1;
so.Stream3VertexReadOffset = urb_entry_read_offset;
so.Stream3VertexReadLength = urb_entry_read_length - 1;
}
GENX(3DSTATE_STREAMOUT_pack)(NULL, streamout_state_dw, &so);
}
static uint32_t
get_sampler_count(const struct anv_shader_bin *bin)
{
uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
/* We can potentially have way more than 32 samplers and that's ok.
* However, the 3DSTATE_XS packets only have 3 bits to specify how
* many to pre-fetch and all values above 4 are marked reserved.
*/
return MIN2(count_by_4, 4);
}
static UNUSED struct anv_address
get_scratch_address(struct anv_pipeline *pipeline,
gl_shader_stage stage,
const struct anv_shader_bin *bin)
{
return (struct anv_address) {
.bo = anv_scratch_pool_alloc(pipeline->device,
&pipeline->device->scratch_pool,
stage, bin->prog_data->total_scratch),
.offset = 0,
};
}
static UNUSED uint32_t
get_scratch_space(const struct anv_shader_bin *bin)
{
return ffs(bin->prog_data->total_scratch / 2048);
}
static UNUSED uint32_t
get_scratch_surf(struct anv_pipeline *pipeline,
gl_shader_stage stage,
const struct anv_shader_bin *bin)
{
if (bin->prog_data->total_scratch == 0)
return 0;
struct anv_bo *bo =
anv_scratch_pool_alloc(pipeline->device,
&pipeline->device->scratch_pool,
stage, bin->prog_data->total_scratch);
anv_reloc_list_add_bo(pipeline->batch.relocs,
pipeline->batch.alloc, bo);
return anv_scratch_pool_get_surf(pipeline->device,
&pipeline->device->scratch_pool,
bin->prog_data->total_scratch) >> 4;
}
static void
emit_3dstate_vs(struct anv_graphics_pipeline *pipeline)
{
const struct intel_device_info *devinfo = pipeline->base.device->info;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
const struct anv_shader_bin *vs_bin =
pipeline->shaders[MESA_SHADER_VERTEX];
assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VS), vs) {
vs.Enable = true;
vs.StatisticsEnable = true;
vs.KernelStartPointer = vs_bin->kernel.offset;
#if GFX_VER >= 8
vs.SIMD8DispatchEnable =
vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
#endif
assert(!vs_prog_data->base.base.use_alt_mode);
#if GFX_VER < 11
vs.SingleVertexDispatch = false;
#endif
vs.VectorMaskEnable = false;
/* Wa_1606682166:
* Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes.
* Disable the Sampler state prefetch functionality in the SARB by
* programming 0xB000[30] to '1'.
*/
vs.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(vs_bin);
vs.BindingTableEntryCount = vs_bin->bind_map.surface_count;
vs.FloatingPointMode = IEEE754;
vs.IllegalOpcodeExceptionEnable = false;
vs.SoftwareExceptionEnable = false;
vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
if (GFX_VER == 9 && devinfo->gt == 4 &&
anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
/* On Sky Lake GT4, we have experienced some hangs related to the VS
* cache and tessellation. It is unknown exactly what is happening
* but the Haswell docs for the "VS Reference Count Full Force Miss
* Enable" field of the "Thread Mode" register refer to a HSW bug in
* which the VUE handle reference count would overflow resulting in
* internal reference counting bugs. My (Jason's) best guess is that
* this bug cropped back up on SKL GT4 when we suddenly had more
* threads in play than any previous gfx9 hardware.
*
* What we do know for sure is that setting this bit when
* tessellation shaders are in use fixes a GPU hang in Batman: Arkham
* City when playing with DXVK (https://bugs.freedesktop.org/107280).
* Disabling the vertex cache with tessellation shaders should only
* have a minor performance impact as the tessellation shaders are
* likely generating and processing far more geometry than the vertex
* stage.
*/
vs.VertexCacheDisable = true;
}
vs.VertexURBEntryReadLength = vs_prog_data->base.urb_read_length;
vs.VertexURBEntryReadOffset = 0;
vs.DispatchGRFStartRegisterForURBData =
vs_prog_data->base.base.dispatch_grf_start_reg;
#if GFX_VER >= 8
vs.UserClipDistanceClipTestEnableBitmask =
vs_prog_data->base.clip_distance_mask;
vs.UserClipDistanceCullTestEnableBitmask =
vs_prog_data->base.cull_distance_mask;
#endif
#if GFX_VERx10 >= 125
vs.ScratchSpaceBuffer =
get_scratch_surf(&pipeline->base, MESA_SHADER_VERTEX, vs_bin);
#else
vs.PerThreadScratchSpace = get_scratch_space(vs_bin);
vs.ScratchSpaceBasePointer =
get_scratch_address(&pipeline->base, MESA_SHADER_VERTEX, vs_bin);
#endif
}
}
static void
emit_3dstate_hs_te_ds(struct anv_graphics_pipeline *pipeline,
const struct vk_tessellation_state *ts)
{
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_HS), hs);
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_TE), te);
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_DS), ds);
return;
}
const struct intel_device_info *devinfo = pipeline->base.device->info;
const struct anv_shader_bin *tcs_bin =
pipeline->shaders[MESA_SHADER_TESS_CTRL];
const struct anv_shader_bin *tes_bin =
pipeline->shaders[MESA_SHADER_TESS_EVAL];
const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_HS), hs) {
hs.Enable = true;
hs.StatisticsEnable = true;
hs.KernelStartPointer = tcs_bin->kernel.offset;
/* Wa_1606682166 */
hs.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(tcs_bin);
hs.BindingTableEntryCount = tcs_bin->bind_map.surface_count;
#if GFX_VER >= 12
/* Wa_1604578095:
*
* Hang occurs when the number of max threads is less than 2 times
* the number of instance count. The number of max threads must be
* more than 2 times the number of instance count.
*/
assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances);
#endif
hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
hs.IncludeVertexHandles = true;
hs.InstanceCount = tcs_prog_data->instances - 1;
hs.VertexURBEntryReadLength = 0;
hs.VertexURBEntryReadOffset = 0;
hs.DispatchGRFStartRegisterForURBData =
tcs_prog_data->base.base.dispatch_grf_start_reg & 0x1f;
#if GFX_VER >= 12
hs.DispatchGRFStartRegisterForURBData5 =
tcs_prog_data->base.base.dispatch_grf_start_reg >> 5;
#endif
#if GFX_VERx10 >= 125
hs.ScratchSpaceBuffer =
get_scratch_surf(&pipeline->base, MESA_SHADER_TESS_CTRL, tcs_bin);
#else
hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
hs.ScratchSpaceBasePointer =
get_scratch_address(&pipeline->base, MESA_SHADER_TESS_CTRL, tcs_bin);
#endif
#if GFX_VER == 12
/* Patch Count threshold specifies the maximum number of patches that
* will be accumulated before a thread dispatch is forced.
*/
hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold;
#endif
#if GFX_VER >= 9
hs.DispatchMode = tcs_prog_data->base.dispatch_mode;
hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
#endif
}
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_TE), te) {
te.Partitioning = tes_prog_data->partitioning;
if (ts->domain_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT) {
te.OutputTopology = tes_prog_data->output_topology;
} else {
/* When the origin is upper-left, we have to flip the winding order */
if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
te.OutputTopology = OUTPUT_TRI_CW;
} else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
te.OutputTopology = OUTPUT_TRI_CCW;
} else {
te.OutputTopology = tes_prog_data->output_topology;
}
}
te.TEDomain = tes_prog_data->domain;
te.TEEnable = true;
te.MaximumTessellationFactorOdd = 63.0;
te.MaximumTessellationFactorNotOdd = 64.0;
#if GFX_VERx10 >= 125
te.TessellationDistributionMode = TEDMODE_RR_FREE;
te.TessellationDistributionLevel = TEDLEVEL_PATCH;
/* 64_TRIANGLES */
te.SmallPatchThreshold = 3;
/* 1K_TRIANGLES */
te.TargetBlockSize = 8;
/* 1K_TRIANGLES */
te.LocalBOPAccumulatorThreshold = 1;
#endif
}
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_DS), ds) {
ds.Enable = true;
ds.StatisticsEnable = true;
ds.KernelStartPointer = tes_bin->kernel.offset;
/* Wa_1606682166 */
ds.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(tes_bin);
ds.BindingTableEntryCount = tes_bin->bind_map.surface_count;
ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
ds.ComputeWCoordinateEnable =
tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
ds.PatchURBEntryReadOffset = 0;
ds.DispatchGRFStartRegisterForURBData =
tes_prog_data->base.base.dispatch_grf_start_reg;
#if GFX_VER >= 8
#if GFX_VER < 11
ds.DispatchMode =
tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
DISPATCH_MODE_SIMD8_SINGLE_PATCH :
DISPATCH_MODE_SIMD4X2;
#else
assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
#endif
ds.UserClipDistanceClipTestEnableBitmask =
tes_prog_data->base.clip_distance_mask;
ds.UserClipDistanceCullTestEnableBitmask =
tes_prog_data->base.cull_distance_mask;
#endif
#if GFX_VER >= 12
ds.PrimitiveIDNotRequired = !tes_prog_data->include_primitive_id;
#endif
#if GFX_VERx10 >= 125
ds.ScratchSpaceBuffer =
get_scratch_surf(&pipeline->base, MESA_SHADER_TESS_EVAL, tes_bin);
#else
ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
ds.ScratchSpaceBasePointer =
get_scratch_address(&pipeline->base, MESA_SHADER_TESS_EVAL, tes_bin);
#endif
}
}
static void
emit_3dstate_gs(struct anv_graphics_pipeline *pipeline)
{
const struct intel_device_info *devinfo = pipeline->base.device->info;
const struct anv_shader_bin *gs_bin =
pipeline->shaders[MESA_SHADER_GEOMETRY];
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_GS), gs);
return;
}
const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_GS), gs) {
gs.Enable = true;
gs.StatisticsEnable = true;
gs.KernelStartPointer = gs_bin->kernel.offset;
gs.DispatchMode = gs_prog_data->base.dispatch_mode;
gs.SingleProgramFlow = false;
gs.VectorMaskEnable = false;
/* Wa_1606682166 */
gs.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(gs_bin);
gs.BindingTableEntryCount = gs_bin->bind_map.surface_count;
gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles;
gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
if (GFX_VER == 8) {
/* Broadwell is weird. It needs us to divide by 2. */
gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
} else {
gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
}
gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
gs.OutputTopology = gs_prog_data->output_topology;
gs.ControlDataFormat = gs_prog_data->control_data_format;
gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords;
gs.InstanceControl = MAX2(gs_prog_data->invocations, 1) - 1;
gs.ReorderMode = TRAILING;
#if GFX_VER >= 8
gs.ExpectedVertexCount = gs_prog_data->vertices_in;
gs.StaticOutput = gs_prog_data->static_vertex_count >= 0;
gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
gs_prog_data->static_vertex_count : 0;
#endif
gs.VertexURBEntryReadOffset = 0;
gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
gs.DispatchGRFStartRegisterForURBData =
gs_prog_data->base.base.dispatch_grf_start_reg;
#if GFX_VER >= 8
gs.UserClipDistanceClipTestEnableBitmask =
gs_prog_data->base.clip_distance_mask;
gs.UserClipDistanceCullTestEnableBitmask =
gs_prog_data->base.cull_distance_mask;
#endif
#if GFX_VERx10 >= 125
gs.ScratchSpaceBuffer =
get_scratch_surf(&pipeline->base, MESA_SHADER_GEOMETRY, gs_bin);
#else
gs.PerThreadScratchSpace = get_scratch_space(gs_bin);
gs.ScratchSpaceBasePointer =
get_scratch_address(&pipeline->base, MESA_SHADER_GEOMETRY, gs_bin);
#endif
}
}
static void
emit_3dstate_wm(struct anv_graphics_pipeline *pipeline,
const struct vk_input_assembly_state *ia,
const struct vk_rasterization_state *rs,
const struct vk_multisample_state *ms,
const struct vk_color_blend_state *cb,
const struct vk_render_pass_state *rp)
{
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
struct GENX(3DSTATE_WM) wm = {
GENX(3DSTATE_WM_header),
};
wm.StatisticsEnable = true;
wm.LineEndCapAntialiasingRegionWidth = _05pixels;
wm.LineAntialiasingRegionWidth = _10pixels;
wm.PointRasterizationRule = RASTRULE_UPPER_LEFT;
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
if (wm_prog_data->early_fragment_tests) {
wm.EarlyDepthStencilControl = EDSC_PREPS;
} else if (wm_prog_data->has_side_effects) {
wm.EarlyDepthStencilControl = EDSC_PSEXEC;
} else {
wm.EarlyDepthStencilControl = EDSC_NORMAL;
}
#if GFX_VER >= 8
/* Gen8 hardware tries to compute ThreadDispatchEnable for us but
* doesn't take into account KillPixels when no depth or stencil
* writes are enabled. In order for occlusion queries to work
* correctly with no attachments, we need to force-enable PS thread
* dispatch.
*
* The BDW docs are pretty clear that that this bit isn't validated
* and probably shouldn't be used in production:
*
* "This must always be set to Normal. This field should not be
* tested for functional validation."
*
* Unfortunately, however, the other mechanism we have for doing this
* is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW.
* Given two bad options, we choose the one which works.
*/
pipeline->force_fragment_thread_dispatch =
wm_prog_data->has_side_effects ||
wm_prog_data->uses_kill;
#endif
wm.BarycentricInterpolationMode =
wm_prog_data->barycentric_interp_modes;
#if GFX_VER < 8
wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
/* If the subpass has a depth or stencil self-dependency, then we
* need to force the hardware to do the depth/stencil write *after*
* fragment shader execution. Otherwise, the writes may hit memory
* before we get around to fetching from the input attachment and we
* may get the depth or stencil value from the current draw rather
* than the previous one.
*/
wm.PixelShaderKillsPixel = rp->depth_self_dependency ||
rp->stencil_self_dependency ||
wm_prog_data->uses_kill;
pipeline->force_fragment_thread_dispatch =
wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
wm_prog_data->has_side_effects ||
wm.PixelShaderKillsPixel;
if (ms != NULL && ms->rasterization_samples > 1) {
if (wm_prog_data->persample_dispatch) {
wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
} else {
wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
}
} else {
wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
}
#endif
wm.LineStippleEnable = rs->line.stipple.enable;
}
const struct intel_device_info *devinfo = pipeline->base.device->info;
uint32_t *dws = devinfo->ver >= 8 ? pipeline->gfx8.wm : pipeline->gfx7.wm;
GENX(3DSTATE_WM_pack)(NULL, dws, &wm);
}
static void
emit_3dstate_ps(struct anv_graphics_pipeline *pipeline,
const struct vk_multisample_state *ms,
const struct vk_color_blend_state *cb)
{
UNUSED const struct intel_device_info *devinfo =
pipeline->base.device->info;
const struct anv_shader_bin *fs_bin =
pipeline->shaders[MESA_SHADER_FRAGMENT];
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS), ps) {
#if GFX_VER == 7
/* Even if no fragments are ever dispatched, gfx7 hardware hangs if
* we don't at least set the maximum number of threads.
*/
ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
#endif
}
return;
}
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
#if GFX_VER < 8
/* The hardware wedges if you have this bit set but don't turn on any dual
* source blend factors.
*/
bool dual_src_blend = false;
if (wm_prog_data->dual_src_blend && cb) {
for (uint32_t i = 0; i < cb->attachment_count; i++) {
const struct vk_color_blend_attachment_state *a =
&cb->attachments[i];
if (a->blend_enable &&
(is_dual_src_blend_factor(a->src_color_blend_factor) ||
is_dual_src_blend_factor(a->dst_color_blend_factor) ||
is_dual_src_blend_factor(a->src_alpha_blend_factor) ||
is_dual_src_blend_factor(a->dst_alpha_blend_factor))) {
dual_src_blend = true;
break;
}
}
}
#endif
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS), ps) {
brw_fs_get_dispatch_enables(devinfo, wm_prog_data,
ms != NULL ? ms->rasterization_samples : 1,
&ps._8PixelDispatchEnable,
&ps._16PixelDispatchEnable,
&ps._32PixelDispatchEnable);
/* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
*
* "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
* Dispatch must not be enabled for PER_PIXEL dispatch mode."
*
* Since 16x MSAA is first introduced on SKL, we don't need to apply
* the workaround on any older hardware.
*/
if (GFX_VER >= 9 && !wm_prog_data->persample_dispatch &&
ms != NULL && ms->rasterization_samples == 16) {
assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
ps._32PixelDispatchEnable = false;
}
ps.KernelStartPointer0 = fs_bin->kernel.offset +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
ps.KernelStartPointer1 = fs_bin->kernel.offset +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
ps.KernelStartPointer2 = fs_bin->kernel.offset +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
ps.SingleProgramFlow = false;
ps.VectorMaskEnable = GFX_VER >= 8 &&
wm_prog_data->uses_vmask;
/* Wa_1606682166 */
ps.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(fs_bin);
ps.BindingTableEntryCount = fs_bin->bind_map.surface_count;
ps.PushConstantEnable = wm_prog_data->base.nr_params > 0 ||
wm_prog_data->base.ubo_ranges[0].length;
ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
POSOFFSET_SAMPLE: POSOFFSET_NONE;
#if GFX_VER < 8
ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
ps.DualSourceBlendEnable = dual_src_blend;
#endif
#if GFX_VERx10 == 75
/* Haswell requires the sample mask to be set in this packet as well
* as in 3DSTATE_SAMPLE_MASK; the values should match.
*/
ps.SampleMask = 0xff;
#endif
#if GFX_VER >= 8
ps.MaximumNumberofThreadsPerPSD =
devinfo->max_threads_per_psd - (GFX_VER == 8 ? 2 : 1);
#else
ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
#endif
ps.DispatchGRFStartRegisterForConstantSetupData0 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
ps.DispatchGRFStartRegisterForConstantSetupData1 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
ps.DispatchGRFStartRegisterForConstantSetupData2 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
#if GFX_VERx10 >= 125
ps.ScratchSpaceBuffer =
get_scratch_surf(&pipeline->base, MESA_SHADER_FRAGMENT, fs_bin);
#else
ps.PerThreadScratchSpace = get_scratch_space(fs_bin);
ps.ScratchSpaceBasePointer =
get_scratch_address(&pipeline->base, MESA_SHADER_FRAGMENT, fs_bin);
#endif
}
}
#if GFX_VER >= 8
static void
emit_3dstate_ps_extra(struct anv_graphics_pipeline *pipeline,
const struct vk_rasterization_state *rs,
const struct vk_render_pass_state *rp)
{
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS_EXTRA), ps);
return;
}
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS_EXTRA), ps) {
ps.PixelShaderValid = true;
ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
ps.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
/* If the subpass has a depth or stencil self-dependency, then we need
* to force the hardware to do the depth/stencil write *after* fragment
* shader execution. Otherwise, the writes may hit memory before we get
* around to fetching from the input attachment and we may get the depth
* or stencil value from the current draw rather than the previous one.
*/
ps.PixelShaderKillsPixel = rp->depth_self_dependency ||
rp->stencil_self_dependency ||
wm_prog_data->uses_kill;
#if GFX_VER >= 9
ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
ps.PixelShaderPullsBary = wm_prog_data->pulls_bary;
ps.InputCoverageMaskState = ICMS_NONE;
assert(!wm_prog_data->inner_coverage); /* Not available in SPIR-V */
if (!wm_prog_data->uses_sample_mask)
ps.InputCoverageMaskState = ICMS_NONE;
else if (wm_prog_data->per_coarse_pixel_dispatch)
ps.InputCoverageMaskState = ICMS_NORMAL;
else if (wm_prog_data->post_depth_coverage)
ps.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
else
ps.InputCoverageMaskState = ICMS_NORMAL;
#else
ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
#endif
#if GFX_VER >= 11
ps.PixelShaderRequiresSourceDepthandorWPlaneCoefficients =
wm_prog_data->uses_depth_w_coefficients;
ps.PixelShaderIsPerCoarsePixel = wm_prog_data->per_coarse_pixel_dispatch;
#endif
#if GFX_VERx10 >= 125
/* TODO: We should only require this when the last geometry shader uses
* a fragment shading rate that is not constant.
*/
ps.EnablePSDependencyOnCPsizeChange = wm_prog_data->per_coarse_pixel_dispatch;
#endif
}
}
#endif
static void
emit_3dstate_vf_statistics(struct anv_graphics_pipeline *pipeline)
{
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
vfs.StatisticsEnable = true;
}
}
static void
compute_kill_pixel(struct anv_graphics_pipeline *pipeline,
const struct vk_multisample_state *ms,
const struct vk_render_pass_state *rp)
{
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
pipeline->kill_pixel = false;
return;
}
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
/* This computes the KillPixel portion of the computation for whether or
* not we want to enable the PMA fix on gfx8 or gfx9. It's given by this
* chunk of the giant formula:
*
* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
*
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
* 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
* of an alpha test.
*/
pipeline->kill_pixel =
rp->depth_self_dependency ||
rp->stencil_self_dependency ||
wm_prog_data->uses_kill ||
wm_prog_data->uses_omask ||
(ms && ms->alpha_to_coverage_enable);
}
#if GFX_VER == 12
static void
emit_3dstate_primitive_replication(struct anv_graphics_pipeline *pipeline,
const struct vk_render_pass_state *rp)
{
const int replication_count =
anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map.num_pos_slots;
assert(replication_count >= 1);
if (replication_count == 1) {
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr);
return;
}
uint32_t view_mask = rp->view_mask;
assert(replication_count == util_bitcount(view_mask));
assert(replication_count <= MAX_VIEWS_FOR_PRIMITIVE_REPLICATION);
anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) {
pr.ReplicaMask = (1 << replication_count) - 1;
pr.ReplicationCount = replication_count - 1;
int i = 0;
u_foreach_bit(view_index, rp->view_mask) {
pr.RTAIOffset[i] = view_index;
i++;
}
}
}
#endif
void
genX(graphics_pipeline_emit)(struct anv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
enum intel_urb_deref_block_size urb_deref_block_size;
emit_urb_setup(pipeline, &urb_deref_block_size);
assert(state->rs != NULL);
emit_rs_state(pipeline, state->ia, state->rs, state->ms, state->rp,
urb_deref_block_size);
emit_ms_state(pipeline, state->ms);
emit_cb_state(pipeline, state->cb, state->ms);
compute_kill_pixel(pipeline, state->ms, state->rp);
emit_3dstate_clip(pipeline, state->ia, state->vp, state->rs);
#if GFX_VER == 12
emit_3dstate_primitive_replication(pipeline, state->rp);
#endif
#if 0
/* From gfx7_vs_state.c */
/**
* From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
* Geometry > Geometry Shader > State:
*
* "Note: Because of corruption in IVB:GT2, software needs to flush the
* whole fixed function pipeline when the GS enable changes value in
* the 3DSTATE_GS."
*
* The hardware architects have clarified that in this context "flush the
* whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
* Stall" bit set.
*/
if (device->info->platform == INTEL_PLATFORM_IVB)
gfx7_emit_vs_workaround_flush(brw);
#endif
emit_vertex_input(pipeline, state->vi);
emit_3dstate_vs(pipeline);
emit_3dstate_hs_te_ds(pipeline, state->ts);
emit_3dstate_gs(pipeline);
emit_3dstate_vf_statistics(pipeline);
emit_3dstate_streamout(pipeline, state->rs);
emit_3dstate_sbe(pipeline);
emit_3dstate_wm(pipeline, state->ia, state->rs,
state->ms, state->cb, state->rp);
emit_3dstate_ps(pipeline, state->ms, state->cb);
#if GFX_VER >= 8
emit_3dstate_ps_extra(pipeline, state->rs, state->rp);
#endif
}
#if GFX_VERx10 >= 125
void
genX(compute_pipeline_emit)(struct anv_compute_pipeline *pipeline)
{
struct anv_device *device = pipeline->base.device;
const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
anv_pipeline_setup_l3_config(&pipeline->base, cs_prog_data->base.total_shared > 0);
const UNUSED struct anv_shader_bin *cs_bin = pipeline->cs;
const struct intel_device_info *devinfo = device->info;
anv_batch_emit(&pipeline->base.batch, GENX(CFE_STATE), cfe) {
cfe.MaximumNumberofThreads =
devinfo->max_cs_threads * devinfo->subslice_total;
cfe.ScratchSpaceBuffer =
get_scratch_surf(&pipeline->base, MESA_SHADER_COMPUTE, cs_bin);
}
}
#else /* #if GFX_VERx10 >= 125 */
void
genX(compute_pipeline_emit)(struct anv_compute_pipeline *pipeline)
{
struct anv_device *device = pipeline->base.device;
const struct intel_device_info *devinfo = device->info;
const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
anv_pipeline_setup_l3_config(&pipeline->base, cs_prog_data->base.total_shared > 0);
const struct brw_cs_dispatch_info dispatch =
brw_cs_get_dispatch_info(devinfo, cs_prog_data, NULL);
const uint32_t vfe_curbe_allocation =
ALIGN(cs_prog_data->push.per_thread.regs * dispatch.threads +
cs_prog_data->push.cross_thread.regs, 2);
const struct anv_shader_bin *cs_bin = pipeline->cs;
anv_batch_emit(&pipeline->base.batch, GENX(MEDIA_VFE_STATE), vfe) {
#if GFX_VER > 7
vfe.StackSize = 0;
#else
vfe.GPGPUMode = true;
#endif
vfe.MaximumNumberofThreads =
devinfo->max_cs_threads * devinfo->subslice_total - 1;
vfe.NumberofURBEntries = GFX_VER <= 7 ? 0 : 2;
#if GFX_VER < 11
vfe.ResetGatewayTimer = true;
#endif
#if GFX_VER <= 8
vfe.BypassGatewayControl = true;
#endif
vfe.URBEntryAllocationSize = GFX_VER <= 7 ? 0 : 2;
vfe.CURBEAllocationSize = vfe_curbe_allocation;
if (cs_bin->prog_data->total_scratch) {
if (GFX_VER >= 8) {
/* Broadwell's Per Thread Scratch Space is in the range [0, 11]
* where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
*/
vfe.PerThreadScratchSpace =
ffs(cs_bin->prog_data->total_scratch) - 11;
} else if (GFX_VERx10 == 75) {
/* Haswell's Per Thread Scratch Space is in the range [0, 10]
* where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
*/
vfe.PerThreadScratchSpace =
ffs(cs_bin->prog_data->total_scratch) - 12;
} else {
/* IVB and BYT use the range [0, 11] to mean [1kB, 12kB]
* where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
*/
vfe.PerThreadScratchSpace =
cs_bin->prog_data->total_scratch / 1024 - 1;
}
vfe.ScratchSpaceBasePointer =
get_scratch_address(&pipeline->base, MESA_SHADER_COMPUTE, cs_bin);
}
}
struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
.KernelStartPointer =
cs_bin->kernel.offset +
brw_cs_prog_data_prog_offset(cs_prog_data, dispatch.simd_size),
/* Wa_1606682166 */
.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(cs_bin),
/* We add 1 because the CS indirect parameters buffer isn't accounted
* for in bind_map.surface_count.
*/
.BindingTableEntryCount = 1 + MIN2(cs_bin->bind_map.surface_count, 30),
.BarrierEnable = cs_prog_data->uses_barrier,
.SharedLocalMemorySize =
encode_slm_size(GFX_VER, cs_prog_data->base.total_shared),
#if GFX_VERx10 != 75
.ConstantURBEntryReadOffset = 0,
#endif
.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
#if GFX_VERx10 >= 75
.CrossThreadConstantDataReadLength =
cs_prog_data->push.cross_thread.regs,
#endif
#if GFX_VER >= 12
/* TODO: Check if we are missing workarounds and enable mid-thread
* preemption.
*
* We still have issues with mid-thread preemption (it was already
* disabled by the kernel on gfx11, due to missing workarounds). It's
* possible that we are just missing some workarounds, and could enable
* it later, but for now let's disable it to fix a GPU in compute in Car
* Chase (and possibly more).
*/
.ThreadPreemptionDisable = true,
#endif
.NumberofThreadsinGPGPUThreadGroup = dispatch.threads,
};
GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
pipeline->interface_descriptor_data,
&desc);
}
#endif /* #if GFX_VERx10 >= 125 */