blob: 9c6ae66dc092f1d7d3f08c33c46e2071effe3796 [file] [log] [blame]
/*
* Copyright © 2021 Google, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "ir3_nir.h"
/*
* Lowering for 64b intrinsics generated with OpenCL or with
* VK_KHR_buffer_device_address. All our intrinsics from a hw
* standpoint are 32b, so we just need to combine in zero for
* the upper 32bits and let the other nir passes clean up the mess.
*/
static bool
lower_64b_intrinsics_filter(const nir_instr *instr, const void *unused)
{
(void)unused;
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic == nir_intrinsic_load_deref ||
intr->intrinsic == nir_intrinsic_store_deref)
return false;
if (is_intrinsic_store(intr->intrinsic))
return nir_src_bit_size(intr->src[0]) == 64;
if (nir_intrinsic_dest_components(intr) == 0)
return false;
return nir_dest_bit_size(intr->dest) == 64;
}
static nir_ssa_def *
lower_64b_intrinsics(nir_builder *b, nir_instr *instr, void *unused)
{
(void)unused;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
/* We could be *slightly* more clever and, for ex, turn a 64b vec4
* load into two 32b vec4 loads, rather than 4 32b vec2 loads.
*/
if (is_intrinsic_store(intr->intrinsic)) {
unsigned offset_src_idx;
switch (intr->intrinsic) {
case nir_intrinsic_store_ssbo:
case nir_intrinsic_store_global_ir3:
offset_src_idx = 2;
break;
default:
offset_src_idx = 1;
}
unsigned num_comp = nir_intrinsic_src_components(intr, 0);
unsigned wrmask = nir_intrinsic_has_write_mask(intr) ?
nir_intrinsic_write_mask(intr) : BITSET_MASK(num_comp);
nir_ssa_def *val = nir_ssa_for_src(b, intr->src[0], num_comp);
nir_ssa_def *off = nir_ssa_for_src(b, intr->src[offset_src_idx], 1);
for (unsigned i = 0; i < num_comp; i++) {
if (!(wrmask & BITFIELD_BIT(i)))
continue;
nir_ssa_def *c64 = nir_channel(b, val, i);
nir_ssa_def *c32 = nir_unpack_64_2x32(b, c64);
nir_intrinsic_instr *store =
nir_instr_as_intrinsic(nir_instr_clone(b->shader, &intr->instr));
store->num_components = 2;
store->src[0] = nir_src_for_ssa(c32);
store->src[offset_src_idx] = nir_src_for_ssa(off);
if (nir_intrinsic_has_write_mask(intr))
nir_intrinsic_set_write_mask(store, 0x3);
nir_builder_instr_insert(b, &store->instr);
off = nir_iadd(b, off, nir_imm_intN_t(b, 8, off->bit_size));
}
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
}
unsigned num_comp = nir_intrinsic_dest_components(intr);
nir_ssa_def *def = &intr->dest.ssa;
def->bit_size = 32;
/* load_kernel_input is handled specially, lowering to two 32b inputs:
*/
if (intr->intrinsic == nir_intrinsic_load_kernel_input) {
assert(num_comp == 1);
nir_ssa_def *offset = nir_iadd(b,
nir_ssa_for_src(b, intr->src[0], 1),
nir_imm_int(b, 4));
nir_ssa_def *upper = nir_build_load_kernel_input(
b, 1, 32, offset);
return nir_pack_64_2x32_split(b, def, upper);
}
nir_ssa_def *components[num_comp];
if (is_intrinsic_load(intr->intrinsic)) {
unsigned offset_src_idx;
switch(intr->intrinsic) {
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_global_ir3:
offset_src_idx = 1;
break;
default:
offset_src_idx = 0;
}
nir_ssa_def *off = nir_ssa_for_src(b, intr->src[offset_src_idx], 1);
for (unsigned i = 0; i < num_comp; i++) {
nir_intrinsic_instr *load =
nir_instr_as_intrinsic(nir_instr_clone(b->shader, &intr->instr));
load->num_components = 2;
load->src[offset_src_idx] = nir_src_for_ssa(off);
nir_ssa_dest_init(&load->instr, &load->dest, 2, 32, NULL);
nir_builder_instr_insert(b, &load->instr);
components[i] = nir_pack_64_2x32(b, &load->dest.ssa);
off = nir_iadd(b, off, nir_imm_intN_t(b, 8, off->bit_size));
}
} else {
/* The remaining (non load/store) intrinsics just get zero-
* extended from 32b to 64b:
*/
for (unsigned i = 0; i < num_comp; i++) {
nir_ssa_def *c = nir_channel(b, def, i);
components[i] = nir_pack_64_2x32_split(b, c, nir_imm_zero(b, 1, 32));
}
}
return nir_build_alu_src_arr(b, nir_op_vec(num_comp), components);
}
bool
ir3_nir_lower_64b_intrinsics(nir_shader *shader)
{
return nir_shader_lower_instructions(
shader, lower_64b_intrinsics_filter,
lower_64b_intrinsics, NULL);
}
/*
* Lowering for 64b undef instructions, splitting into a two 32b undefs
*/
static nir_ssa_def *
lower_64b_undef(nir_builder *b, nir_instr *instr, void *unused)
{
(void)unused;
nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr);
unsigned num_comp = undef->def.num_components;
nir_ssa_def *components[num_comp];
for (unsigned i = 0; i < num_comp; i++) {
nir_ssa_def *lowered = nir_ssa_undef(b, 2, 32);
components[i] = nir_pack_64_2x32_split(b,
nir_channel(b, lowered, 0),
nir_channel(b, lowered, 1));
}
return nir_build_alu_src_arr(b, nir_op_vec(num_comp), components);
}
static bool
lower_64b_undef_filter(const nir_instr *instr, const void *unused)
{
(void)unused;
return instr->type == nir_instr_type_ssa_undef &&
nir_instr_as_ssa_undef(instr)->def.bit_size == 64;
}
bool
ir3_nir_lower_64b_undef(nir_shader *shader)
{
return nir_shader_lower_instructions(
shader, lower_64b_undef_filter,
lower_64b_undef, NULL);
}
/*
* Lowering for load_global/store_global with 64b addresses to ir3
* variants, which instead take a uvec2_32
*/
static bool
lower_64b_global_filter(const nir_instr *instr, const void *unused)
{
(void)unused;
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_load_global:
case nir_intrinsic_load_global_constant:
case nir_intrinsic_store_global:
case nir_intrinsic_global_atomic_add:
case nir_intrinsic_global_atomic_imin:
case nir_intrinsic_global_atomic_umin:
case nir_intrinsic_global_atomic_imax:
case nir_intrinsic_global_atomic_umax:
case nir_intrinsic_global_atomic_and:
case nir_intrinsic_global_atomic_or:
case nir_intrinsic_global_atomic_xor:
case nir_intrinsic_global_atomic_exchange:
case nir_intrinsic_global_atomic_comp_swap:
return true;
default:
return false;
}
}
static nir_ssa_def *
lower_64b_global(nir_builder *b, nir_instr *instr, void *unused)
{
(void)unused;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
bool load = intr->intrinsic != nir_intrinsic_store_global;
nir_ssa_def *addr64 = nir_ssa_for_src(b, intr->src[load ? 0 : 1], 1);
nir_ssa_def *addr = nir_unpack_64_2x32(b, addr64);
/*
* Note that we can get vec8/vec16 with OpenCL.. we need to split
* those up into max 4 components per load/store.
*/
#define GLOBAL_IR3_2SRC(name) \
case nir_intrinsic_##name: { \
return nir_build_##name##_ir3(b, nir_dest_bit_size(intr->dest), addr, \
nir_ssa_for_src(b, intr->src[1], 1)); \
}
switch (intr->intrinsic) {
GLOBAL_IR3_2SRC(global_atomic_add)
GLOBAL_IR3_2SRC(global_atomic_imin)
GLOBAL_IR3_2SRC(global_atomic_umin)
GLOBAL_IR3_2SRC(global_atomic_imax)
GLOBAL_IR3_2SRC(global_atomic_umax)
GLOBAL_IR3_2SRC(global_atomic_and)
GLOBAL_IR3_2SRC(global_atomic_or)
GLOBAL_IR3_2SRC(global_atomic_xor)
GLOBAL_IR3_2SRC(global_atomic_exchange)
case nir_intrinsic_global_atomic_comp_swap:
return nir_build_global_atomic_comp_swap_ir3(
b, nir_dest_bit_size(intr->dest), addr,
nir_ssa_for_src(b, intr->src[1], 1),
nir_ssa_for_src(b, intr->src[2], 1));
default:
break;
}
#undef GLOBAL_IR3_2SRC
if (load) {
unsigned num_comp = nir_intrinsic_dest_components(intr);
nir_ssa_def *components[num_comp];
for (unsigned off = 0; off < num_comp;) {
unsigned c = MIN2(num_comp - off, 4);
nir_ssa_def *val = nir_build_load_global_ir3(
b, c, nir_dest_bit_size(intr->dest),
addr, nir_imm_int(b, off));
for (unsigned i = 0; i < c; i++) {
components[off++] = nir_channel(b, val, i);
}
}
return nir_build_alu_src_arr(b, nir_op_vec(num_comp), components);
} else {
unsigned num_comp = nir_intrinsic_src_components(intr, 0);
nir_ssa_def *value = nir_ssa_for_src(b, intr->src[0], num_comp);
for (unsigned off = 0; off < num_comp; off += 4) {
unsigned c = MIN2(num_comp - off, 4);
nir_ssa_def *v = nir_channels(b, value, BITFIELD_MASK(c) << off);
nir_build_store_global_ir3(b, v, addr, nir_imm_int(b, off));
}
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
}
}
bool
ir3_nir_lower_64b_global(nir_shader *shader)
{
return nir_shader_lower_instructions(
shader, lower_64b_global_filter,
lower_64b_global, NULL);
}