| /* |
| * Copyright © 2018 Valve Corporation |
| * |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include "aco_builder.h" |
| #include "aco_ir.h" |
| |
| #include "util/half_float.h" |
| #include "util/memstream.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <vector> |
| |
| namespace aco { |
| |
| namespace { |
| /** |
| * The optimizer works in 4 phases: |
| * (1) The first pass collects information for each ssa-def, |
| * propagates reg->reg operands of the same type, inline constants |
| * and neg/abs input modifiers. |
| * (2) The second pass combines instructions like mad, omod, clamp and |
| * propagates sgpr's on VALU instructions. |
| * This pass depends on information collected in the first pass. |
| * (3) The third pass goes backwards, and selects instructions, |
| * i.e. decides if a mad instruction is profitable and eliminates dead code. |
| * (4) The fourth pass cleans up the sequence: literals get applied and dead |
| * instructions are removed from the sequence. |
| */ |
| |
| struct mad_info { |
| aco_ptr<Instruction> add_instr; |
| uint32_t mul_temp_id; |
| uint16_t literal_mask; |
| uint16_t fp16_mask; |
| |
| mad_info(aco_ptr<Instruction> instr, uint32_t id) |
| : add_instr(std::move(instr)), mul_temp_id(id), literal_mask(0), fp16_mask(0) |
| {} |
| }; |
| |
| enum Label { |
| label_constant_32bit = 1 << 1, |
| /* label_{abs,neg,mul,omod2,omod4,omod5,clamp} are used for both 16 and |
| * 32-bit operations but this shouldn't cause any issues because we don't |
| * look through any conversions */ |
| label_abs = 1 << 2, |
| label_neg = 1 << 3, |
| label_temp = 1 << 5, |
| label_literal = 1 << 6, |
| label_mad = 1 << 7, |
| label_omod2 = 1 << 8, |
| label_omod4 = 1 << 9, |
| label_omod5 = 1 << 10, |
| label_clamp = 1 << 12, |
| label_b2f = 1 << 16, |
| /* This label means that it's either 0 or -1, and the ssa_info::temp is an s1 which is 0 or 1. */ |
| label_uniform_bool = 1 << 21, |
| label_constant_64bit = 1 << 22, |
| /* This label is added to the first definition of s_not/s_or/s_xor/s_and when all operands are |
| * uniform_bool or uniform_bitwise. The first definition of ssa_info::instr would be 0 or -1 and |
| * the second is SCC. |
| */ |
| label_uniform_bitwise = 1 << 23, |
| /* This label means that it's either 0 or 1 and ssa_info::temp is the inverse. */ |
| label_scc_invert = 1 << 24, |
| label_scc_needed = 1 << 26, |
| label_b2i = 1 << 27, |
| label_fcanonicalize = 1 << 28, |
| label_constant_16bit = 1 << 29, |
| label_canonicalized = 1ull << 32, /* 1ull to prevent sign extension */ |
| label_extract = 1ull << 33, |
| label_insert = 1ull << 34, |
| label_f2f16 = 1ull << 38, |
| }; |
| |
| static constexpr uint64_t instr_mod_labels = |
| label_omod2 | label_omod4 | label_omod5 | label_clamp | label_insert | label_f2f16; |
| |
| static constexpr uint64_t temp_labels = label_abs | label_neg | label_temp | label_b2f | |
| label_uniform_bool | label_scc_invert | label_b2i | |
| label_fcanonicalize; |
| static constexpr uint32_t val_labels = |
| label_constant_32bit | label_constant_64bit | label_constant_16bit | label_literal | label_mad; |
| |
| static_assert((instr_mod_labels & temp_labels) == 0, "labels cannot intersect"); |
| static_assert((instr_mod_labels & val_labels) == 0, "labels cannot intersect"); |
| static_assert((temp_labels & val_labels) == 0, "labels cannot intersect"); |
| |
| struct ssa_info { |
| uint64_t label; |
| union { |
| uint32_t val; |
| Temp temp; |
| Instruction* mod_instr; |
| }; |
| Instruction* parent_instr; |
| |
| ssa_info() : label(0) {} |
| |
| void add_label(Label new_label) |
| { |
| if (new_label & instr_mod_labels) { |
| label &= ~instr_mod_labels; |
| label &= ~(temp_labels | val_labels); /* instr, temp and val alias */ |
| } |
| |
| if (new_label & temp_labels) { |
| label &= ~temp_labels; |
| label &= ~(instr_mod_labels | val_labels); /* instr, temp and val alias */ |
| } |
| |
| uint32_t const_labels = |
| label_literal | label_constant_32bit | label_constant_64bit | label_constant_16bit; |
| if (new_label & const_labels) { |
| label &= ~val_labels | const_labels; |
| label &= ~(instr_mod_labels | temp_labels); /* instr, temp and val alias */ |
| } else if (new_label & val_labels) { |
| label &= ~val_labels; |
| label &= ~(instr_mod_labels | temp_labels); /* instr, temp and val alias */ |
| } |
| |
| label |= new_label; |
| } |
| |
| void set_constant(amd_gfx_level gfx_level, uint64_t constant) |
| { |
| Operand op16 = Operand::c16(constant); |
| Operand op32 = Operand::get_const(gfx_level, constant, 4); |
| add_label(label_literal); |
| val = constant; |
| |
| /* check that no upper bits are lost in case of packed 16bit constants */ |
| if (gfx_level >= GFX8 && !op16.isLiteral() && |
| op16.constantValue16(true) == ((constant >> 16) & 0xffff)) |
| add_label(label_constant_16bit); |
| |
| if (!op32.isLiteral()) |
| add_label(label_constant_32bit); |
| |
| if (Operand::is_constant_representable(constant, 8)) |
| add_label(label_constant_64bit); |
| |
| if (label & label_constant_64bit) { |
| val = Operand::c64(constant).constantValue(); |
| if (val != constant) |
| label &= ~(label_literal | label_constant_16bit | label_constant_32bit); |
| } |
| } |
| |
| bool is_constant(unsigned bits) |
| { |
| switch (bits) { |
| case 8: return label & label_literal; |
| case 16: return label & label_constant_16bit; |
| case 32: return label & label_constant_32bit; |
| case 64: return label & label_constant_64bit; |
| } |
| return false; |
| } |
| |
| bool is_literal(unsigned bits) |
| { |
| bool is_lit = label & label_literal; |
| switch (bits) { |
| case 8: return false; |
| case 16: return is_lit && ~(label & label_constant_16bit); |
| case 32: return is_lit && ~(label & label_constant_32bit); |
| case 64: return false; |
| } |
| return false; |
| } |
| |
| bool is_constant_or_literal(unsigned bits) |
| { |
| if (bits == 64) |
| return label & label_constant_64bit; |
| else |
| return label & label_literal; |
| } |
| |
| void set_abs(Temp abs_temp) |
| { |
| add_label(label_abs); |
| temp = abs_temp; |
| } |
| |
| bool is_abs() { return label & label_abs; } |
| |
| void set_neg(Temp neg_temp) |
| { |
| add_label(label_neg); |
| temp = neg_temp; |
| } |
| |
| bool is_neg() { return label & label_neg; } |
| |
| void set_neg_abs(Temp neg_abs_temp) |
| { |
| add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg)); |
| temp = neg_abs_temp; |
| } |
| |
| void set_temp(Temp tmp) |
| { |
| add_label(label_temp); |
| temp = tmp; |
| } |
| |
| bool is_temp() { return label & label_temp; } |
| |
| void set_mad(uint32_t mad_info_idx) |
| { |
| add_label(label_mad); |
| val = mad_info_idx; |
| } |
| |
| bool is_mad() { return label & label_mad; } |
| |
| void set_omod2(Instruction* mul) |
| { |
| if (label & temp_labels) |
| return; |
| add_label(label_omod2); |
| mod_instr = mul; |
| } |
| |
| bool is_omod2() { return label & label_omod2; } |
| |
| void set_omod4(Instruction* mul) |
| { |
| if (label & temp_labels) |
| return; |
| add_label(label_omod4); |
| mod_instr = mul; |
| } |
| |
| bool is_omod4() { return label & label_omod4; } |
| |
| void set_omod5(Instruction* mul) |
| { |
| if (label & temp_labels) |
| return; |
| add_label(label_omod5); |
| mod_instr = mul; |
| } |
| |
| bool is_omod5() { return label & label_omod5; } |
| |
| void set_clamp(Instruction* med3) |
| { |
| if (label & temp_labels) |
| return; |
| add_label(label_clamp); |
| mod_instr = med3; |
| } |
| |
| bool is_clamp() { return label & label_clamp; } |
| |
| void set_f2f16(Instruction* conv) |
| { |
| if (label & temp_labels) |
| return; |
| add_label(label_f2f16); |
| mod_instr = conv; |
| } |
| |
| bool is_f2f16() { return label & label_f2f16; } |
| |
| void set_b2f(Temp b2f_val) |
| { |
| add_label(label_b2f); |
| temp = b2f_val; |
| } |
| |
| bool is_b2f() { return label & label_b2f; } |
| |
| void set_uniform_bitwise() { add_label(label_uniform_bitwise); } |
| |
| bool is_uniform_bitwise() { return label & label_uniform_bitwise; } |
| |
| void set_scc_needed() { add_label(label_scc_needed); } |
| |
| bool is_scc_needed() { return label & label_scc_needed; } |
| |
| void set_scc_invert(Temp scc_inv) |
| { |
| add_label(label_scc_invert); |
| temp = scc_inv; |
| } |
| |
| bool is_scc_invert() { return label & label_scc_invert; } |
| |
| void set_uniform_bool(Temp uniform_bool) |
| { |
| add_label(label_uniform_bool); |
| temp = uniform_bool; |
| } |
| |
| bool is_uniform_bool() { return label & label_uniform_bool; } |
| |
| void set_b2i(Temp b2i_val) |
| { |
| add_label(label_b2i); |
| temp = b2i_val; |
| } |
| |
| bool is_b2i() { return label & label_b2i; } |
| |
| void set_fcanonicalize(Temp tmp) |
| { |
| add_label(label_fcanonicalize); |
| temp = tmp; |
| } |
| |
| bool is_fcanonicalize() { return label & label_fcanonicalize; } |
| |
| void set_canonicalized() { add_label(label_canonicalized); } |
| |
| bool is_canonicalized() { return label & label_canonicalized; } |
| |
| void set_extract() { add_label(label_extract); } |
| |
| bool is_extract() { return label & label_extract; } |
| |
| void set_insert(Instruction* insert) |
| { |
| if (label & temp_labels) |
| return; |
| add_label(label_insert); |
| mod_instr = insert; |
| } |
| |
| bool is_insert() { return label & label_insert; } |
| }; |
| |
| struct opt_ctx { |
| Program* program; |
| float_mode fp_mode; |
| std::vector<aco_ptr<Instruction>> instructions; |
| std::vector<ssa_info> info; |
| std::pair<uint32_t, Temp> last_literal; |
| std::vector<mad_info> mad_infos; |
| std::vector<uint16_t> uses; |
| }; |
| |
| bool |
| can_use_VOP3(opt_ctx& ctx, const aco_ptr<Instruction>& instr) |
| { |
| if (instr->isVOP3()) |
| return true; |
| |
| if (instr->isVOP3P() || instr->isVINTERP_INREG()) |
| return false; |
| |
| if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->gfx_level < GFX10) |
| return false; |
| |
| if (instr->isSDWA()) |
| return false; |
| |
| if (instr->isDPP() && ctx.program->gfx_level < GFX11) |
| return false; |
| |
| return instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 && |
| instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 && |
| instr->opcode != aco_opcode::v_fmamk_f32 && instr->opcode != aco_opcode::v_fmaak_f32 && |
| instr->opcode != aco_opcode::v_fmamk_f16 && instr->opcode != aco_opcode::v_fmaak_f16 && |
| instr->opcode != aco_opcode::v_permlane64_b32 && |
| instr->opcode != aco_opcode::v_readlane_b32 && |
| instr->opcode != aco_opcode::v_writelane_b32 && |
| instr->opcode != aco_opcode::v_readfirstlane_b32; |
| } |
| |
| bool |
| pseudo_propagate_temp(opt_ctx& ctx, aco_ptr<Instruction>& instr, Temp temp, unsigned index) |
| { |
| if (instr->definitions.empty()) |
| return false; |
| |
| const bool vgpr = |
| instr->opcode == aco_opcode::p_as_uniform || |
| std::all_of(instr->definitions.begin(), instr->definitions.end(), |
| [](const Definition& def) { return def.regClass().type() == RegType::vgpr; }); |
| |
| /* don't propagate VGPRs into SGPR instructions */ |
| if (temp.type() == RegType::vgpr && !vgpr) |
| return false; |
| |
| bool can_accept_sgpr = |
| ctx.program->gfx_level >= GFX9 || |
| std::none_of(instr->definitions.begin(), instr->definitions.end(), |
| [](const Definition& def) { return def.regClass().is_subdword(); }); |
| |
| switch (instr->opcode) { |
| case aco_opcode::p_phi: |
| case aco_opcode::p_linear_phi: |
| case aco_opcode::p_parallelcopy: |
| case aco_opcode::p_create_vector: |
| case aco_opcode::p_start_linear_vgpr: |
| if (temp.bytes() != instr->operands[index].bytes()) |
| return false; |
| break; |
| case aco_opcode::p_extract_vector: |
| case aco_opcode::p_extract: |
| if (temp.type() == RegType::sgpr && !can_accept_sgpr) |
| return false; |
| break; |
| case aco_opcode::p_split_vector: { |
| if (temp.type() == RegType::sgpr && !can_accept_sgpr) |
| return false; |
| /* don't increase the vector size */ |
| if (temp.bytes() > instr->operands[index].bytes()) |
| return false; |
| /* We can decrease the vector size as smaller temporaries are only |
| * propagated by p_as_uniform instructions. |
| * If this propagation leads to invalid IR or hits the assertion below, |
| * it means that some undefined bytes within a dword are begin accessed |
| * and a bug in instruction_selection is likely. */ |
| int decrease = instr->operands[index].bytes() - temp.bytes(); |
| while (decrease > 0) { |
| decrease -= instr->definitions.back().bytes(); |
| instr->definitions.pop_back(); |
| } |
| assert(decrease == 0); |
| break; |
| } |
| case aco_opcode::p_as_uniform: |
| if (temp.regClass() == instr->definitions[0].regClass()) |
| instr->opcode = aco_opcode::p_parallelcopy; |
| break; |
| default: return false; |
| } |
| |
| instr->operands[index].setTemp(temp); |
| return true; |
| } |
| |
| /* This expects the DPP modifier to be removed. */ |
| bool |
| can_apply_sgprs(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| assert(instr->isVALU()); |
| if (instr->isSDWA() && ctx.program->gfx_level < GFX9) |
| return false; |
| return instr->opcode != aco_opcode::v_readfirstlane_b32 && |
| instr->opcode != aco_opcode::v_readlane_b32 && |
| instr->opcode != aco_opcode::v_readlane_b32_e64 && |
| instr->opcode != aco_opcode::v_writelane_b32 && |
| instr->opcode != aco_opcode::v_writelane_b32_e64 && |
| instr->opcode != aco_opcode::v_permlane16_b32 && |
| instr->opcode != aco_opcode::v_permlanex16_b32 && |
| instr->opcode != aco_opcode::v_permlane64_b32 && |
| instr->opcode != aco_opcode::v_interp_p1_f32 && |
| instr->opcode != aco_opcode::v_interp_p2_f32 && |
| instr->opcode != aco_opcode::v_interp_mov_f32 && |
| instr->opcode != aco_opcode::v_interp_p1ll_f16 && |
| instr->opcode != aco_opcode::v_interp_p1lv_f16 && |
| instr->opcode != aco_opcode::v_interp_p2_legacy_f16 && |
| instr->opcode != aco_opcode::v_interp_p2_f16 && |
| instr->opcode != aco_opcode::v_interp_p2_hi_f16 && |
| instr->opcode != aco_opcode::v_interp_p10_f32_inreg && |
| instr->opcode != aco_opcode::v_interp_p2_f32_inreg && |
| instr->opcode != aco_opcode::v_interp_p10_f16_f32_inreg && |
| instr->opcode != aco_opcode::v_interp_p2_f16_f32_inreg && |
| instr->opcode != aco_opcode::v_interp_p10_rtz_f16_f32_inreg && |
| instr->opcode != aco_opcode::v_interp_p2_rtz_f16_f32_inreg && |
| instr->opcode != aco_opcode::v_wmma_f32_16x16x16_f16 && |
| instr->opcode != aco_opcode::v_wmma_f32_16x16x16_bf16 && |
| instr->opcode != aco_opcode::v_wmma_f16_16x16x16_f16 && |
| instr->opcode != aco_opcode::v_wmma_bf16_16x16x16_bf16 && |
| instr->opcode != aco_opcode::v_wmma_i32_16x16x16_iu8 && |
| instr->opcode != aco_opcode::v_wmma_i32_16x16x16_iu4 && |
| instr->opcode != aco_opcode::v_wmma_f32_16x16x16_fp8_fp8 && |
| instr->opcode != aco_opcode::v_wmma_f32_16x16x16_fp8_bf8 && |
| instr->opcode != aco_opcode::v_wmma_f32_16x16x16_bf8_fp8 && |
| instr->opcode != aco_opcode::v_wmma_f32_16x16x16_bf8_bf8; |
| } |
| |
| /* only covers special cases */ |
| bool |
| alu_can_accept_constant(const aco_ptr<Instruction>& instr, unsigned operand) |
| { |
| /* Fixed operands can't accept constants because we need them |
| * to be in their fixed register. |
| */ |
| assert(instr->operands.size() > operand); |
| if (instr->operands[operand].isFixed()) |
| return false; |
| |
| /* SOPP instructions can't use constants. */ |
| if (instr->isSOPP()) |
| return false; |
| |
| switch (instr->opcode) { |
| case aco_opcode::v_s_exp_f16: |
| case aco_opcode::v_s_log_f16: |
| case aco_opcode::v_s_rcp_f16: |
| case aco_opcode::v_s_rsq_f16: |
| case aco_opcode::v_s_sqrt_f16: |
| /* These can't use inline constants on GFX12 but can use literals. We don't bother since they |
| * should be constant folded anyway. */ |
| return false; |
| case aco_opcode::s_fmac_f16: |
| case aco_opcode::s_fmac_f32: |
| case aco_opcode::v_mac_f32: |
| case aco_opcode::v_writelane_b32: |
| case aco_opcode::v_writelane_b32_e64: |
| case aco_opcode::v_cndmask_b32: return operand != 2; |
| case aco_opcode::s_addk_i32: |
| case aco_opcode::s_mulk_i32: |
| case aco_opcode::p_extract_vector: |
| case aco_opcode::p_split_vector: |
| case aco_opcode::v_readlane_b32: |
| case aco_opcode::v_readlane_b32_e64: |
| case aco_opcode::v_readfirstlane_b32: |
| case aco_opcode::p_extract: |
| case aco_opcode::p_insert: return operand != 0; |
| case aco_opcode::p_bpermute_readlane: |
| case aco_opcode::p_bpermute_shared_vgpr: |
| case aco_opcode::p_bpermute_permlane: |
| case aco_opcode::p_interp_gfx11: |
| case aco_opcode::p_dual_src_export_gfx11: |
| case aco_opcode::v_interp_p1_f32: |
| case aco_opcode::v_interp_p2_f32: |
| case aco_opcode::v_interp_mov_f32: |
| case aco_opcode::v_interp_p1ll_f16: |
| case aco_opcode::v_interp_p1lv_f16: |
| case aco_opcode::v_interp_p2_legacy_f16: |
| case aco_opcode::v_interp_p10_f32_inreg: |
| case aco_opcode::v_interp_p2_f32_inreg: |
| case aco_opcode::v_interp_p10_f16_f32_inreg: |
| case aco_opcode::v_interp_p2_f16_f32_inreg: |
| case aco_opcode::v_interp_p10_rtz_f16_f32_inreg: |
| case aco_opcode::v_interp_p2_rtz_f16_f32_inreg: |
| case aco_opcode::v_dot2_bf16_bf16: /* TODO */ |
| case aco_opcode::v_wmma_f32_16x16x16_f16: |
| case aco_opcode::v_wmma_f32_16x16x16_bf16: |
| case aco_opcode::v_wmma_f32_16x16x16_fp8_fp8: |
| case aco_opcode::v_wmma_f32_16x16x16_fp8_bf8: |
| case aco_opcode::v_wmma_f32_16x16x16_bf8_fp8: |
| case aco_opcode::v_wmma_f32_16x16x16_bf8_bf8: |
| case aco_opcode::v_wmma_f16_16x16x16_f16: |
| case aco_opcode::v_wmma_bf16_16x16x16_bf16: |
| case aco_opcode::v_wmma_i32_16x16x16_iu8: |
| case aco_opcode::v_wmma_i32_16x16x16_iu4: return false; |
| default: return true; |
| } |
| } |
| |
| bool |
| valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand) |
| { |
| if (instr->opcode == aco_opcode::v_writelane_b32 || |
| instr->opcode == aco_opcode::v_writelane_b32_e64) |
| return operand == 2; |
| if (instr->opcode == aco_opcode::v_permlane16_b32 || |
| instr->opcode == aco_opcode::v_permlanex16_b32 || |
| instr->opcode == aco_opcode::v_readlane_b32 || |
| instr->opcode == aco_opcode::v_readlane_b32_e64) |
| return operand == 0; |
| return instr_info.classes[(int)instr->opcode] != instr_class::valu_pseudo_scalar_trans; |
| } |
| |
| /* check constant bus and literal limitations */ |
| bool |
| check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand* operands) |
| { |
| int limit = ctx.program->gfx_level >= GFX10 ? 2 : 1; |
| Operand literal32(s1); |
| Operand literal64(s2); |
| unsigned num_sgprs = 0; |
| unsigned sgpr[] = {0, 0}; |
| |
| for (unsigned i = 0; i < num_operands; i++) { |
| Operand op = operands[i]; |
| |
| if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) { |
| /* two reads of the same SGPR count as 1 to the limit */ |
| if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) { |
| if (num_sgprs < 2) |
| sgpr[num_sgprs++] = op.tempId(); |
| limit--; |
| if (limit < 0) |
| return false; |
| } |
| } else if (op.isLiteral()) { |
| if (ctx.program->gfx_level < GFX10) |
| return false; |
| |
| if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue()) |
| return false; |
| if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue()) |
| return false; |
| |
| /* Any number of 32-bit literals counts as only 1 to the limit. Same |
| * (but separately) for 64-bit literals. */ |
| if (op.size() == 1 && literal32.isUndefined()) { |
| limit--; |
| literal32 = op; |
| } else if (op.size() == 2 && literal64.isUndefined()) { |
| limit--; |
| literal64 = op; |
| } |
| |
| if (limit < 0) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool |
| parse_base_offset(opt_ctx& ctx, Instruction* instr, unsigned op_index, Temp* base, uint32_t* offset, |
| bool prevent_overflow) |
| { |
| Operand op = instr->operands[op_index]; |
| |
| if (!op.isTemp()) |
| return false; |
| Temp tmp = op.getTemp(); |
| |
| Instruction* add_instr = ctx.info[tmp.id()].parent_instr; |
| |
| if (add_instr->definitions[0].getTemp() != tmp) |
| return false; |
| |
| unsigned mask = 0x3; |
| bool is_sub = false; |
| switch (add_instr->opcode) { |
| case aco_opcode::v_add_u32: |
| case aco_opcode::v_add_co_u32: |
| case aco_opcode::v_add_co_u32_e64: |
| case aco_opcode::s_add_i32: |
| case aco_opcode::s_add_u32: break; |
| case aco_opcode::v_sub_u32: |
| case aco_opcode::v_sub_i32: |
| case aco_opcode::v_sub_co_u32: |
| case aco_opcode::v_sub_co_u32_e64: |
| case aco_opcode::s_sub_u32: |
| case aco_opcode::s_sub_i32: |
| mask = 0x2; |
| is_sub = true; |
| break; |
| case aco_opcode::v_subrev_u32: |
| case aco_opcode::v_subrev_co_u32: |
| case aco_opcode::v_subrev_co_u32_e64: |
| mask = 0x1; |
| is_sub = true; |
| break; |
| default: return false; |
| } |
| if (prevent_overflow && !add_instr->definitions[0].isNUW()) |
| return false; |
| |
| if (add_instr->usesModifiers()) |
| return false; |
| |
| u_foreach_bit (i, mask) { |
| if (add_instr->operands[i].isConstant()) { |
| *offset = add_instr->operands[i].constantValue() * (uint32_t)(is_sub ? -1 : 1); |
| } else if (add_instr->operands[i].isTemp() && |
| ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal(32)) { |
| *offset = ctx.info[add_instr->operands[i].tempId()].val * (uint32_t)(is_sub ? -1 : 1); |
| } else { |
| continue; |
| } |
| if (!add_instr->operands[!i].isTemp()) |
| continue; |
| |
| uint32_t offset2 = 0; |
| if (parse_base_offset(ctx, add_instr, !i, base, &offset2, prevent_overflow)) { |
| *offset += offset2; |
| } else { |
| *base = add_instr->operands[!i].getTemp(); |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void |
| skip_smem_offset_align(opt_ctx& ctx, SMEM_instruction* smem, uint32_t align) |
| { |
| bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4); |
| if (soe && !smem->operands[1].isConstant()) |
| return; |
| /* We don't need to check the constant offset because the address seems to be calculated with |
| * (offset&-4 + const_offset&-4), not (offset+const_offset)&-4. |
| */ |
| |
| Operand& op = smem->operands[soe ? smem->operands.size() - 1 : 1]; |
| if (!op.isTemp()) |
| return; |
| |
| Instruction* bitwise_instr = ctx.info[op.tempId()].parent_instr; |
| if (bitwise_instr->opcode != aco_opcode::s_and_b32 || |
| bitwise_instr->definitions[0].getTemp() != op.getTemp()) |
| return; |
| |
| uint32_t mask = ~(align - 1u); |
| if (bitwise_instr->operands[0].constantEquals(mask) && |
| bitwise_instr->operands[1].isOfType(op.regClass().type())) |
| op.setTemp(bitwise_instr->operands[1].getTemp()); |
| else if (bitwise_instr->operands[1].constantEquals(mask) && |
| bitwise_instr->operands[0].isOfType(op.regClass().type())) |
| op.setTemp(bitwise_instr->operands[0].getTemp()); |
| } |
| |
| void |
| smem_combine(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| uint32_t align = 4; |
| switch (instr->opcode) { |
| case aco_opcode::s_load_sbyte: |
| case aco_opcode::s_load_ubyte: |
| case aco_opcode::s_buffer_load_sbyte: |
| case aco_opcode::s_buffer_load_ubyte: align = 1; break; |
| case aco_opcode::s_load_sshort: |
| case aco_opcode::s_load_ushort: |
| case aco_opcode::s_buffer_load_sshort: |
| case aco_opcode::s_buffer_load_ushort: align = 2; break; |
| default: break; |
| } |
| |
| /* skip &-4 before offset additions: load((a + 16) & -4, 0) */ |
| if (!instr->operands.empty() && align > 1) |
| skip_smem_offset_align(ctx, &instr->smem(), align); |
| |
| /* propagate constants and combine additions */ |
| if (!instr->operands.empty() && instr->operands[1].isTemp()) { |
| SMEM_instruction& smem = instr->smem(); |
| ssa_info info = ctx.info[instr->operands[1].tempId()]; |
| |
| Temp base; |
| uint32_t offset; |
| if (info.is_constant_or_literal(32) && info.val <= ctx.program->dev.smem_offset_max) { |
| instr->operands[1] = Operand::c32(info.val); |
| } else if (parse_base_offset(ctx, instr.get(), 1, &base, &offset, true) && |
| base.regClass() == s1 && offset <= ctx.program->dev.smem_offset_max && |
| ctx.program->gfx_level >= GFX9 && offset % align == 0) { |
| bool soe = smem.operands.size() >= (!smem.definitions.empty() ? 3 : 4); |
| if (soe) { |
| if (ctx.info[smem.operands.back().tempId()].is_constant_or_literal(32) && |
| ctx.info[smem.operands.back().tempId()].val == 0) { |
| smem.operands[1] = Operand::c32(offset); |
| smem.operands.back() = Operand(base); |
| } |
| } else { |
| Instruction* new_instr = create_instruction( |
| smem.opcode, Format::SMEM, smem.operands.size() + 1, smem.definitions.size()); |
| new_instr->operands[0] = smem.operands[0]; |
| new_instr->operands[1] = Operand::c32(offset); |
| if (smem.definitions.empty()) |
| new_instr->operands[2] = smem.operands[2]; |
| new_instr->operands.back() = Operand(base); |
| if (!smem.definitions.empty()) |
| new_instr->definitions[0] = smem.definitions[0]; |
| new_instr->smem().sync = smem.sync; |
| new_instr->smem().cache = smem.cache; |
| instr.reset(new_instr); |
| } |
| } |
| } |
| |
| /* skip &-4 after offset additions: load(a & -4, 16) */ |
| if (!instr->operands.empty() && align > 1) |
| skip_smem_offset_align(ctx, &instr->smem(), align); |
| } |
| |
| Operand |
| get_constant_op(opt_ctx& ctx, ssa_info info, uint32_t bits) |
| { |
| if (bits == 64) |
| return Operand::c32_or_c64(info.val, true); |
| return Operand::get_const(ctx.program->gfx_level, info.val, bits / 8u); |
| } |
| |
| void |
| propagate_constants_vop3p(opt_ctx& ctx, aco_ptr<Instruction>& instr, ssa_info& info, unsigned i) |
| { |
| if (!info.is_constant_or_literal(32)) |
| return; |
| |
| assert(instr->operands[i].isTemp()); |
| unsigned bits = get_operand_type(instr, i).constant_bits(); |
| if (info.is_constant(bits)) { |
| instr->operands[i] = get_constant_op(ctx, info, bits); |
| return; |
| } |
| |
| /* The accumulation operand of dot product instructions ignores opsel. */ |
| bool cannot_use_opsel = |
| (instr->opcode == aco_opcode::v_dot4_i32_i8 || instr->opcode == aco_opcode::v_dot2_i32_i16 || |
| instr->opcode == aco_opcode::v_dot4_i32_iu8 || instr->opcode == aco_opcode::v_dot4_u32_u8 || |
| instr->opcode == aco_opcode::v_dot2_u32_u16) && |
| i == 2; |
| if (cannot_use_opsel) |
| return; |
| |
| /* try to fold inline constants */ |
| VALU_instruction* vop3p = &instr->valu(); |
| bool opsel_lo = vop3p->opsel_lo[i]; |
| bool opsel_hi = vop3p->opsel_hi[i]; |
| |
| Operand const_op[2]; |
| bool const_opsel[2] = {false, false}; |
| for (unsigned j = 0; j < 2; j++) { |
| if ((unsigned)opsel_lo != j && (unsigned)opsel_hi != j) |
| continue; /* this half is unused */ |
| |
| uint16_t val = info.val >> (j ? 16 : 0); |
| Operand op = Operand::get_const(ctx.program->gfx_level, val, bits / 8u); |
| if (bits == 32 && op.isLiteral()) /* try sign extension */ |
| op = Operand::get_const(ctx.program->gfx_level, val | 0xffff0000, 4); |
| if (bits == 32 && op.isLiteral()) { /* try shifting left */ |
| op = Operand::get_const(ctx.program->gfx_level, val << 16, 4); |
| const_opsel[j] = true; |
| } |
| if (op.isLiteral()) |
| return; |
| const_op[j] = op; |
| } |
| |
| Operand const_lo = const_op[0]; |
| Operand const_hi = const_op[1]; |
| bool const_lo_opsel = const_opsel[0]; |
| bool const_hi_opsel = const_opsel[1]; |
| |
| if (opsel_lo == opsel_hi) { |
| /* use the single 16bit value */ |
| instr->operands[i] = opsel_lo ? const_hi : const_lo; |
| |
| /* opsel must point the same for both halves */ |
| opsel_lo = opsel_lo ? const_hi_opsel : const_lo_opsel; |
| opsel_hi = opsel_lo; |
| } else if (const_lo == const_hi) { |
| /* both constants are the same */ |
| instr->operands[i] = const_lo; |
| |
| /* opsel must point the same for both halves */ |
| opsel_lo = const_lo_opsel; |
| opsel_hi = const_lo_opsel; |
| } else if (const_lo.constantValue16(const_lo_opsel) == |
| const_hi.constantValue16(!const_hi_opsel)) { |
| instr->operands[i] = const_hi; |
| |
| /* redirect opsel selection */ |
| opsel_lo = opsel_lo ? const_hi_opsel : !const_hi_opsel; |
| opsel_hi = opsel_hi ? const_hi_opsel : !const_hi_opsel; |
| } else if (const_hi.constantValue16(const_hi_opsel) == |
| const_lo.constantValue16(!const_lo_opsel)) { |
| instr->operands[i] = const_lo; |
| |
| /* redirect opsel selection */ |
| opsel_lo = opsel_lo ? !const_lo_opsel : const_lo_opsel; |
| opsel_hi = opsel_hi ? !const_lo_opsel : const_lo_opsel; |
| } else if (bits == 16 && const_lo.constantValue() == (const_hi.constantValue() ^ (1 << 15))) { |
| assert(const_lo_opsel == false && const_hi_opsel == false); |
| |
| /* const_lo == -const_hi */ |
| if (!can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, i)) |
| return; |
| |
| instr->operands[i] = Operand::c16(const_lo.constantValue() & 0x7FFF); |
| bool neg_lo = const_lo.constantValue() & (1 << 15); |
| vop3p->neg_lo[i] ^= opsel_lo ^ neg_lo; |
| vop3p->neg_hi[i] ^= opsel_hi ^ neg_lo; |
| |
| /* opsel must point to lo for both operands */ |
| opsel_lo = false; |
| opsel_hi = false; |
| } |
| |
| vop3p->opsel_lo[i] = opsel_lo; |
| vop3p->opsel_hi[i] = opsel_hi; |
| } |
| |
| bool |
| fixed_to_exec(Operand op) |
| { |
| return op.isFixed() && op.physReg() == exec; |
| } |
| |
| SubdwordSel |
| parse_extract(Instruction* instr) |
| { |
| if (instr->opcode == aco_opcode::p_extract) { |
| unsigned size = instr->operands[2].constantValue() / 8; |
| unsigned offset = instr->operands[1].constantValue() * size; |
| bool sext = instr->operands[3].constantEquals(1); |
| return SubdwordSel(size, offset, sext); |
| } else if (instr->opcode == aco_opcode::p_insert && instr->operands[1].constantEquals(0)) { |
| return instr->operands[2].constantEquals(8) ? SubdwordSel::ubyte : SubdwordSel::uword; |
| } else if (instr->opcode == aco_opcode::p_extract_vector) { |
| unsigned size = instr->definitions[0].bytes(); |
| unsigned offset = instr->operands[1].constantValue() * size; |
| if (size <= 2) |
| return SubdwordSel(size, offset, false); |
| } else if (instr->opcode == aco_opcode::p_split_vector) { |
| assert(instr->operands[0].bytes() == 4 && instr->definitions[1].bytes() == 2); |
| return SubdwordSel(2, 2, false); |
| } |
| |
| return SubdwordSel(); |
| } |
| |
| SubdwordSel |
| parse_insert(Instruction* instr) |
| { |
| if (instr->opcode == aco_opcode::p_extract && instr->operands[3].constantEquals(0) && |
| instr->operands[1].constantEquals(0)) { |
| return instr->operands[2].constantEquals(8) ? SubdwordSel::ubyte : SubdwordSel::uword; |
| } else if (instr->opcode == aco_opcode::p_insert) { |
| unsigned size = instr->operands[2].constantValue() / 8; |
| unsigned offset = instr->operands[1].constantValue() * size; |
| return SubdwordSel(size, offset, false); |
| } else { |
| return SubdwordSel(); |
| } |
| } |
| |
| SubdwordSel |
| apply_extract_twice(SubdwordSel first, Temp first_dst, SubdwordSel second, Temp second_dst) |
| { |
| /* the outer offset must be within extracted range */ |
| if (second.offset() >= first.size()) |
| return SubdwordSel(); |
| |
| /* don't remove the sign-extension when increasing the size further */ |
| if (second.size() > first.size() && first.sign_extend() && |
| !(second.sign_extend() || |
| (second.size() == first_dst.bytes() && second.size() == second_dst.bytes()))) |
| return SubdwordSel(); |
| |
| unsigned size = std::min(first.size(), second.size()); |
| unsigned offset = first.offset() + second.offset(); |
| bool sign_extend = second.size() <= first.size() ? second.sign_extend() : first.sign_extend(); |
| return SubdwordSel(size, offset, sign_extend); |
| } |
| |
| bool |
| can_apply_extract(opt_ctx& ctx, aco_ptr<Instruction>& instr, unsigned idx, ssa_info& info) |
| { |
| Temp tmp = info.parent_instr->operands[0].getTemp(); |
| SubdwordSel sel = parse_extract(info.parent_instr); |
| |
| if (!sel) { |
| return false; |
| } else if (sel.size() == instr->operands[idx].bytes() && sel.size() == tmp.bytes() && |
| tmp.type() == instr->operands[idx].regClass().type()) { |
| assert(tmp.type() != RegType::sgpr); /* No sub-dword SGPR regclasses */ |
| return true; |
| } else if ((instr->opcode == aco_opcode::v_cvt_f32_u32 || |
| instr->opcode == aco_opcode::v_cvt_f32_i32 || |
| instr->opcode == aco_opcode::v_cvt_f32_ubyte0) && |
| sel.size() == 1 && !sel.sign_extend() && !instr->usesModifiers()) { |
| return true; |
| } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && instr->operands[0].isConstant() && |
| sel.offset() == 0 && !instr->usesModifiers() && |
| ((sel.size() == 2 && instr->operands[0].constantValue() >= 16u) || |
| (sel.size() == 1 && instr->operands[0].constantValue() >= 24u))) { |
| return true; |
| } else if (instr->opcode == aco_opcode::v_mul_u32_u24 && ctx.program->gfx_level >= GFX10 && |
| !instr->usesModifiers() && sel.size() == 2 && !sel.sign_extend() && |
| (instr->operands[!idx].is16bit() || |
| (instr->operands[!idx].isConstant() && |
| instr->operands[!idx].constantValue() <= UINT16_MAX))) { |
| return true; |
| } else if (idx < 2 && can_use_SDWA(ctx.program->gfx_level, instr, true) && |
| (tmp.type() == RegType::vgpr || ctx.program->gfx_level >= GFX9)) { |
| if (instr->isSDWA()) { |
| /* TODO: if we knew how many bytes this operand actually uses, we could have smaller |
| * second_dst parameter and apply more sign-extended sels. |
| */ |
| return apply_extract_twice(sel, instr->operands[idx].getTemp(), instr->sdwa().sel[idx], |
| Temp(0, v1)) != SubdwordSel(); |
| } |
| return true; |
| } else if (instr->isVALU() && sel.size() == 2 && !instr->valu().opsel[idx] && |
| can_use_opsel(ctx.program->gfx_level, instr->opcode, idx)) { |
| return true; |
| } else if (instr->opcode == aco_opcode::s_pack_ll_b32_b16 && sel.size() == 2 && |
| (idx == 1 || ctx.program->gfx_level >= GFX11 || !sel.offset())) { |
| return true; |
| } else if (sel.size() == 2 && ((instr->opcode == aco_opcode::s_pack_lh_b32_b16 && idx == 0) || |
| (instr->opcode == aco_opcode::s_pack_hl_b32_b16 && idx == 1))) { |
| return true; |
| } else if (instr->opcode == aco_opcode::p_extract || |
| instr->opcode == aco_opcode::p_extract_vector) { |
| if (ctx.program->gfx_level < GFX9 && |
| !info.parent_instr->operands[0].isOfType(RegType::vgpr) && |
| instr->definitions[0].regClass().is_subdword()) |
| return false; |
| |
| SubdwordSel instrSel = parse_extract(instr.get()); |
| return instrSel && apply_extract_twice(sel, instr->operands[idx].getTemp(), instrSel, |
| instr->definitions[0].getTemp()); |
| } |
| |
| return false; |
| } |
| |
| /* Combine an p_extract (or p_insert, in some cases) instruction with instr. |
| * instr(p_extract(...)) -> instr() |
| */ |
| void |
| apply_extract(opt_ctx& ctx, aco_ptr<Instruction>& instr, unsigned idx, ssa_info& info) |
| { |
| Temp tmp = info.parent_instr->operands[0].getTemp(); |
| SubdwordSel sel = parse_extract(info.parent_instr); |
| assert(sel); |
| |
| instr->operands[idx].set16bit(false); |
| instr->operands[idx].set24bit(false); |
| |
| ctx.info[tmp.id()].label &= ~label_insert; |
| |
| if (sel.size() == instr->operands[idx].bytes() && sel.size() == tmp.bytes() && |
| tmp.type() == instr->operands[idx].regClass().type()) { |
| /* extract is a no-op */ |
| } else if ((instr->opcode == aco_opcode::v_cvt_f32_u32 || |
| instr->opcode == aco_opcode::v_cvt_f32_i32 || |
| instr->opcode == aco_opcode::v_cvt_f32_ubyte0) && |
| sel.size() == 1 && !sel.sign_extend() && !instr->usesModifiers()) { |
| switch (sel.offset()) { |
| case 0: instr->opcode = aco_opcode::v_cvt_f32_ubyte0; break; |
| case 1: instr->opcode = aco_opcode::v_cvt_f32_ubyte1; break; |
| case 2: instr->opcode = aco_opcode::v_cvt_f32_ubyte2; break; |
| case 3: instr->opcode = aco_opcode::v_cvt_f32_ubyte3; break; |
| } |
| } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && instr->operands[0].isConstant() && |
| sel.offset() == 0 && !instr->usesModifiers() && |
| ((sel.size() == 2 && instr->operands[0].constantValue() >= 16u) || |
| (sel.size() == 1 && instr->operands[0].constantValue() >= 24u))) { |
| /* The undesirable upper bits are already shifted out. */ |
| if (!instr->isVOP3() && !info.parent_instr->operands[0].isOfType(RegType::vgpr)) |
| instr->format = asVOP3(instr->format); |
| return; |
| } else if (instr->opcode == aco_opcode::v_mul_u32_u24 && ctx.program->gfx_level >= GFX10 && |
| !instr->usesModifiers() && sel.size() == 2 && !sel.sign_extend() && |
| (instr->operands[!idx].is16bit() || |
| instr->operands[!idx].constantValue() <= UINT16_MAX)) { |
| Instruction* mad = create_instruction(aco_opcode::v_mad_u32_u16, Format::VOP3, 3, 1); |
| mad->definitions[0] = instr->definitions[0]; |
| mad->operands[0] = instr->operands[0]; |
| mad->operands[1] = instr->operands[1]; |
| mad->operands[2] = Operand::zero(); |
| mad->valu().opsel[idx] = sel.offset(); |
| mad->pass_flags = instr->pass_flags; |
| instr.reset(mad); |
| } else if (can_use_SDWA(ctx.program->gfx_level, instr, true) && |
| (tmp.type() == RegType::vgpr || ctx.program->gfx_level >= GFX9)) { |
| if (instr->isSDWA()) { |
| instr->sdwa().sel[idx] = apply_extract_twice(sel, instr->operands[idx].getTemp(), |
| instr->sdwa().sel[idx], Temp(0, v1)); |
| } else { |
| convert_to_SDWA(ctx.program->gfx_level, instr); |
| instr->sdwa().sel[idx] = sel; |
| } |
| } else if (instr->isVALU()) { |
| if (sel.offset()) { |
| instr->valu().opsel[idx] = true; |
| |
| /* VOP12C cannot use opsel with SGPRs. */ |
| if (!instr->isVOP3() && !instr->isVINTERP_INREG() && |
| !info.parent_instr->operands[0].isOfType(RegType::vgpr)) |
| instr->format = asVOP3(instr->format); |
| } |
| } else if (instr->opcode == aco_opcode::s_pack_ll_b32_b16) { |
| if (sel.offset()) |
| instr->opcode = idx ? aco_opcode::s_pack_lh_b32_b16 : aco_opcode::s_pack_hl_b32_b16; |
| } else if (instr->opcode == aco_opcode::s_pack_lh_b32_b16 || |
| instr->opcode == aco_opcode::s_pack_hl_b32_b16) { |
| if (sel.offset()) |
| instr->opcode = aco_opcode::s_pack_hh_b32_b16; |
| } else if (instr->opcode == aco_opcode::p_extract) { |
| SubdwordSel instr_sel = parse_extract(instr.get()); |
| SubdwordSel new_sel = apply_extract_twice(sel, instr->operands[idx].getTemp(), instr_sel, |
| instr->definitions[0].getTemp()); |
| assert(new_sel.size() <= 2); |
| |
| instr->operands[1] = Operand::c32(new_sel.offset() / new_sel.size()); |
| instr->operands[2] = Operand::c32(new_sel.size() * 8u); |
| instr->operands[3] = Operand::c32(new_sel.sign_extend()); |
| return; |
| } else if (instr->opcode == aco_opcode::p_extract_vector) { |
| SubdwordSel instrSel = parse_extract(instr.get()); |
| SubdwordSel new_sel = apply_extract_twice(sel, instr->operands[idx].getTemp(), instrSel, |
| instr->definitions[0].getTemp()); |
| assert(new_sel.size() <= 2); |
| |
| if (new_sel.size() == instr->definitions[0].bytes()) { |
| instr->operands[1] = Operand::c32(new_sel.offset() / instr->definitions[0].bytes()); |
| return; |
| } else { |
| /* parse_extract() only succeeds with p_extract_vector for VGPR definitions because there |
| * are no sub-dword SGPR regclasses. */ |
| assert(instr->definitions[0].regClass().type() != RegType::sgpr); |
| |
| Instruction* ext = create_instruction(aco_opcode::p_extract, Format::PSEUDO, 4, 1); |
| ext->definitions[0] = instr->definitions[0]; |
| ext->operands[0] = instr->operands[0]; |
| ext->operands[1] = Operand::c32(new_sel.offset() / new_sel.size()); |
| ext->operands[2] = Operand::c32(new_sel.size() * 8u); |
| ext->operands[3] = Operand::c32(new_sel.sign_extend()); |
| ext->pass_flags = instr->pass_flags; |
| instr.reset(ext); |
| } |
| } |
| |
| /* These are the only labels worth keeping at the moment. */ |
| for (Definition& def : instr->definitions) { |
| ctx.info[def.tempId()].label &= instr_mod_labels; |
| ctx.info[def.tempId()].parent_instr = instr.get(); |
| } |
| } |
| |
| void |
| check_sdwa_extract(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| Operand op = instr->operands[i]; |
| if (!op.isTemp()) |
| continue; |
| ssa_info& info = ctx.info[op.tempId()]; |
| if (info.is_extract() && (info.parent_instr->operands[0].getTemp().type() == RegType::vgpr || |
| op.getTemp().type() == RegType::sgpr)) { |
| if (!can_apply_extract(ctx, instr, i, info)) |
| info.label &= ~label_extract; |
| } |
| } |
| } |
| |
| bool |
| does_fp_op_flush_denorms(opt_ctx& ctx, aco_opcode op) |
| { |
| switch (op) { |
| case aco_opcode::v_min_f32: |
| case aco_opcode::v_max_f32: |
| case aco_opcode::v_med3_f32: |
| case aco_opcode::v_min3_f32: |
| case aco_opcode::v_max3_f32: |
| case aco_opcode::v_min_f16: |
| case aco_opcode::v_max_f16: return ctx.program->gfx_level > GFX8; |
| case aco_opcode::v_cndmask_b32: |
| case aco_opcode::v_cndmask_b16: |
| case aco_opcode::v_mov_b32: |
| case aco_opcode::v_mov_b16: return false; |
| default: return true; |
| } |
| } |
| |
| bool |
| can_eliminate_fcanonicalize(opt_ctx& ctx, aco_ptr<Instruction>& instr, Temp tmp, unsigned idx) |
| { |
| float_mode* fp = &ctx.fp_mode; |
| if (ctx.info[tmp.id()].is_canonicalized() || |
| (tmp.bytes() == 4 ? fp->denorm32 : fp->denorm16_64) == fp_denorm_keep) |
| return true; |
| |
| aco_opcode op = instr->opcode; |
| return can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, idx) && |
| does_fp_op_flush_denorms(ctx, op); |
| } |
| |
| bool |
| can_eliminate_and_exec(opt_ctx& ctx, Temp tmp, unsigned pass_flags, bool allow_cselect = false) |
| { |
| Instruction* instr = ctx.info[tmp.id()].parent_instr; |
| /* Remove superfluous s_and when the VOPC instruction uses the same exec and thus |
| * already produces the same result */ |
| if (instr->isVOPC()) |
| return instr->pass_flags == pass_flags; |
| |
| if (allow_cselect && instr->pass_flags == pass_flags && |
| (instr->opcode == aco_opcode::s_cselect_b32 || instr->opcode == aco_opcode::s_cselect_b64)) { |
| return (instr->operands[0].constantEquals(0) && instr->operands[1].constantEquals(-1)) || |
| (instr->operands[1].constantEquals(0) && instr->operands[0].constantEquals(-1)); |
| } |
| |
| if (instr->operands.size() != 2 || instr->pass_flags != pass_flags) |
| return false; |
| if (!(instr->operands[0].isTemp() && instr->operands[1].isTemp())) |
| return false; |
| |
| switch (instr->opcode) { |
| case aco_opcode::s_and_b32: |
| case aco_opcode::s_and_b64: |
| return can_eliminate_and_exec(ctx, instr->operands[0].getTemp(), pass_flags) || |
| can_eliminate_and_exec(ctx, instr->operands[1].getTemp(), pass_flags); |
| case aco_opcode::s_or_b32: |
| case aco_opcode::s_or_b64: |
| case aco_opcode::s_xor_b32: |
| case aco_opcode::s_xor_b64: |
| return can_eliminate_and_exec(ctx, instr->operands[0].getTemp(), pass_flags) && |
| can_eliminate_and_exec(ctx, instr->operands[1].getTemp(), pass_flags); |
| default: return false; |
| } |
| } |
| |
| bool |
| is_copy_label(opt_ctx& ctx, aco_ptr<Instruction>& instr, ssa_info& info, unsigned idx) |
| { |
| return info.is_temp() || |
| (info.is_fcanonicalize() && can_eliminate_fcanonicalize(ctx, instr, info.temp, idx)); |
| } |
| |
| bool |
| is_op_canonicalized(opt_ctx& ctx, Operand op) |
| { |
| float_mode* fp = &ctx.fp_mode; |
| if ((op.isTemp() && ctx.info[op.tempId()].is_canonicalized()) || |
| (op.bytes() == 4 ? fp->denorm32 : fp->denorm16_64) == fp_denorm_keep) |
| return true; |
| |
| if (op.isConstant() || (op.isTemp() && ctx.info[op.tempId()].is_constant_or_literal(32))) { |
| uint32_t val = op.isTemp() ? ctx.info[op.tempId()].val : op.constantValue(); |
| if (op.bytes() == 2) |
| return (val & 0x7fff) == 0 || (val & 0x7fff) > 0x3ff; |
| else if (op.bytes() == 4) |
| return (val & 0x7fffffff) == 0 || (val & 0x7fffffff) > 0x7fffff; |
| } |
| return false; |
| } |
| |
| bool |
| is_scratch_offset_valid(opt_ctx& ctx, Instruction* instr, int64_t offset0, int64_t offset1) |
| { |
| bool negative_unaligned_scratch_offset_bug = ctx.program->gfx_level == GFX10; |
| int32_t min = ctx.program->dev.scratch_global_offset_min; |
| int32_t max = ctx.program->dev.scratch_global_offset_max; |
| |
| int64_t offset = offset0 + offset1; |
| |
| bool has_vgpr_offset = instr && !instr->operands[0].isUndefined(); |
| if (negative_unaligned_scratch_offset_bug && has_vgpr_offset && offset < 0 && offset % 4) |
| return false; |
| |
| return offset >= min && offset <= max; |
| } |
| |
| bool |
| detect_clamp(Instruction* instr, unsigned* clamped_idx) |
| { |
| VALU_instruction& valu = instr->valu(); |
| if (valu.omod != 0 || valu.opsel != 0) |
| return false; |
| |
| unsigned idx = 0; |
| bool found_zero = false, found_one = false; |
| bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16; |
| for (unsigned i = 0; i < 3; i++) { |
| if (!valu.neg[i] && instr->operands[i].constantEquals(0)) |
| found_zero = true; |
| else if (!valu.neg[i] && |
| instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */ |
| found_one = true; |
| else |
| idx = i; |
| } |
| if (found_zero && found_one && instr->operands[idx].isTemp()) { |
| *clamped_idx = idx; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| void |
| label_instruction(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (instr->isSMEM()) |
| smem_combine(ctx, instr); |
| |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if (!instr->operands[i].isTemp()) |
| continue; |
| |
| ssa_info info = ctx.info[instr->operands[i].tempId()]; |
| /* propagate reg->reg of same type */ |
| while (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) { |
| instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp); |
| info = ctx.info[info.temp.id()]; |
| } |
| |
| /* PSEUDO: propagate temporaries */ |
| if (instr->isPseudo()) { |
| while (info.is_temp()) { |
| pseudo_propagate_temp(ctx, instr, info.temp, i); |
| info = ctx.info[info.temp.id()]; |
| } |
| } |
| |
| /* PSEUDO: propagate constants */ |
| if (instr->isPseudo()) { |
| unsigned bits = instr->operands[i].bytes() * 8u; |
| if (info.is_constant_or_literal(bits) && alu_can_accept_constant(instr, i)) { |
| instr->operands[i] = get_constant_op(ctx, info, bits); |
| continue; |
| } |
| } |
| |
| /* SALU: propagate inline constants */ |
| else if (instr->isSALU()) { |
| unsigned bits = get_operand_type(instr, i).constant_bits(); |
| if (info.is_constant(bits) && alu_can_accept_constant(instr, i)) { |
| instr->operands[i] = get_constant_op(ctx, info, bits); |
| continue; |
| } |
| } |
| |
| /* VALU: propagate neg, abs & inline constants */ |
| else if (instr->isVALU()) { |
| if (is_copy_label(ctx, instr, info, i) && info.temp.type() == RegType::vgpr && |
| valu_can_accept_vgpr(instr, i)) { |
| instr->operands[i].setTemp(info.temp); |
| info = ctx.info[info.temp.id()]; |
| } |
| /* applying SGPRs to VOP1 doesn't increase code size and DCE is helped by doing it earlier */ |
| if (info.is_temp() && info.temp.type() == RegType::sgpr && can_apply_sgprs(ctx, instr) && |
| instr->operands.size() == 1) { |
| instr->format = withoutDPP(instr->format); |
| instr->operands[i].setTemp(info.temp); |
| info = ctx.info[info.temp.id()]; |
| } |
| |
| /* for instructions other than v_cndmask_b32, the size of the instruction should match the |
| * operand size */ |
| bool can_use_mod = |
| instr->opcode != aco_opcode::v_cndmask_b32 || instr->operands[i].getTemp().bytes() == 4; |
| can_use_mod &= can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, i); |
| |
| bool packed_math = instr->isVOP3P() && instr->opcode != aco_opcode::v_fma_mix_f32 && |
| instr->opcode != aco_opcode::v_fma_mixlo_f16 && |
| instr->opcode != aco_opcode::v_fma_mixhi_f16; |
| |
| if (instr->isSDWA()) |
| can_use_mod &= instr->sdwa().sel[i].size() == 4; |
| else if (instr->isVOP3P()) |
| can_use_mod &= !packed_math || !info.is_abs(); |
| else if (instr->isVINTERP_INREG()) |
| can_use_mod &= !info.is_abs(); |
| else |
| can_use_mod &= instr->isDPP16() || can_use_VOP3(ctx, instr); |
| |
| unsigned bits = get_operand_type(instr, i).constant_bits(); |
| can_use_mod &= instr->operands[i].bytes() * 8 == bits; |
| |
| if (info.is_neg() && can_use_mod && |
| can_eliminate_fcanonicalize(ctx, instr, info.temp, i)) { |
| instr->operands[i].setTemp(info.temp); |
| if (!packed_math && instr->valu().abs[i]) { |
| /* fabs(fneg(a)) -> fabs(a) */ |
| } else if (instr->opcode == aco_opcode::v_add_f32) { |
| instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32; |
| } else if (instr->opcode == aco_opcode::v_add_f16) { |
| instr->opcode = i ? aco_opcode::v_sub_f16 : aco_opcode::v_subrev_f16; |
| } else if (packed_math) { |
| /* Bit size compat should ensure this. */ |
| assert(!instr->valu().opsel_lo[i] && !instr->valu().opsel_hi[i]); |
| instr->valu().neg_lo[i] ^= true; |
| instr->valu().neg_hi[i] ^= true; |
| } else { |
| if (!instr->isDPP16() && can_use_VOP3(ctx, instr)) |
| instr->format = asVOP3(instr->format); |
| instr->valu().neg[i] ^= true; |
| } |
| } |
| if (info.is_abs() && can_use_mod && |
| can_eliminate_fcanonicalize(ctx, instr, info.temp, i)) { |
| if (!instr->isDPP16() && can_use_VOP3(ctx, instr)) |
| instr->format = asVOP3(instr->format); |
| instr->operands[i] = Operand(info.temp); |
| instr->valu().abs[i] = true; |
| continue; |
| } |
| |
| if (instr->isVOP3P()) { |
| propagate_constants_vop3p(ctx, instr, info, i); |
| continue; |
| } |
| |
| if (info.is_constant(bits) && alu_can_accept_constant(instr, i) && |
| (!instr->isSDWA() || ctx.program->gfx_level >= GFX9) && (!instr->isDPP() || i != 1)) { |
| Operand op = get_constant_op(ctx, info, bits); |
| if (i == 0 || instr->isSDWA() || instr->opcode == aco_opcode::v_readlane_b32 || |
| instr->opcode == aco_opcode::v_writelane_b32) { |
| instr->format = withoutDPP(instr->format); |
| instr->operands[i] = op; |
| continue; |
| } else if (!instr->isVOP3() && can_swap_operands(instr, &instr->opcode)) { |
| instr->operands[i] = op; |
| instr->valu().swapOperands(0, i); |
| continue; |
| } else if (can_use_VOP3(ctx, instr)) { |
| instr->format = asVOP3(instr->format); |
| instr->operands[i] = op; |
| continue; |
| } |
| } |
| } |
| |
| /* MUBUF: propagate constants and combine additions */ |
| else if (instr->isMUBUF()) { |
| MUBUF_instruction& mubuf = instr->mubuf(); |
| Temp base; |
| uint32_t offset; |
| while (info.is_temp()) |
| info = ctx.info[info.temp.id()]; |
| |
| bool swizzled = ctx.program->gfx_level >= GFX12 ? mubuf.cache.gfx12.swizzled |
| : (mubuf.cache.value & ac_swizzled); |
| /* According to AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(), vaddr |
| * overflow for scratch accesses works only on GFX9+ and saddr overflow |
| * never works. Since swizzling is the only thing that separates |
| * scratch accesses and other accesses and swizzling changing how |
| * addressing works significantly, this probably applies to swizzled |
| * MUBUF accesses. */ |
| bool vaddr_prevent_overflow = swizzled && ctx.program->gfx_level < GFX9; |
| |
| uint32_t const_max = ctx.program->dev.buf_offset_max; |
| |
| if (mubuf.offen && mubuf.idxen && i == 1 && |
| info.parent_instr->opcode == aco_opcode::p_create_vector && |
| info.parent_instr->operands.size() == 2 && info.parent_instr->operands[0].isTemp() && |
| info.parent_instr->operands[0].regClass() == v1 && |
| info.parent_instr->operands[1].isConstant() && |
| mubuf.offset + info.parent_instr->operands[1].constantValue() <= const_max) { |
| instr->operands[1] = info.parent_instr->operands[0]; |
| mubuf.offset += info.parent_instr->operands[1].constantValue(); |
| mubuf.offen = false; |
| continue; |
| } else if (mubuf.offen && i == 1 && info.is_constant_or_literal(32) && |
| mubuf.offset + info.val <= const_max) { |
| assert(!mubuf.idxen); |
| instr->operands[1] = Operand(v1); |
| mubuf.offset += info.val; |
| mubuf.offen = false; |
| continue; |
| } else if (i == 2 && info.is_constant_or_literal(32) && |
| mubuf.offset + info.val <= const_max) { |
| instr->operands[2] = Operand::c32(0); |
| mubuf.offset += info.val; |
| continue; |
| } else if (mubuf.offen && i == 1 && |
| parse_base_offset(ctx, instr.get(), i, &base, &offset, |
| vaddr_prevent_overflow) && |
| base.regClass() == v1 && mubuf.offset + offset <= const_max) { |
| assert(!mubuf.idxen); |
| instr->operands[1].setTemp(base); |
| mubuf.offset += offset; |
| continue; |
| } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset, true) && |
| base.regClass() == s1 && mubuf.offset + offset <= const_max && !swizzled) { |
| instr->operands[i].setTemp(base); |
| mubuf.offset += offset; |
| continue; |
| } |
| } |
| |
| else if (instr->isMTBUF()) { |
| MTBUF_instruction& mtbuf = instr->mtbuf(); |
| while (info.is_temp()) |
| info = ctx.info[info.temp.id()]; |
| |
| if (mtbuf.offen && mtbuf.idxen && i == 1 && |
| info.parent_instr->opcode == aco_opcode::p_create_vector && |
| info.parent_instr->operands.size() == 2 && info.parent_instr->operands[0].isTemp() && |
| info.parent_instr->operands[0].regClass() == v1 && |
| info.parent_instr->operands[1].isConstant() && |
| mtbuf.offset + info.parent_instr->operands[1].constantValue() <= |
| ctx.program->dev.buf_offset_max) { |
| instr->operands[1] = info.parent_instr->operands[0]; |
| mtbuf.offset += info.parent_instr->operands[1].constantValue(); |
| mtbuf.offen = false; |
| continue; |
| } |
| } |
| |
| /* SCRATCH: propagate constants and combine additions */ |
| else if (instr->isScratch()) { |
| FLAT_instruction& scratch = instr->scratch(); |
| Temp base; |
| uint32_t offset; |
| while (info.is_temp()) |
| info = ctx.info[info.temp.id()]; |
| |
| /* The hardware probably does: 'scratch_base + u2u64(saddr) + i2i64(offset)'. This means |
| * we can't combine the addition if the unsigned addition overflows and offset is |
| * positive. In theory, there is also issues if |
| * 'ilt(offset, 0) && ige(saddr, 0) && ilt(saddr + offset, 0)', but that just |
| * replaces an already out-of-bounds access with a larger one since 'saddr + offset' |
| * would be larger than INT32_MAX. |
| */ |
| if (i <= 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, true) && |
| base.regClass() == instr->operands[i].regClass() && |
| is_scratch_offset_valid(ctx, instr.get(), scratch.offset, (int32_t)offset)) { |
| instr->operands[i].setTemp(base); |
| scratch.offset += (int32_t)offset; |
| continue; |
| } else if (i <= 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, false) && |
| base.regClass() == instr->operands[i].regClass() && (int32_t)offset < 0 && |
| is_scratch_offset_valid(ctx, instr.get(), scratch.offset, (int32_t)offset)) { |
| instr->operands[i].setTemp(base); |
| scratch.offset += (int32_t)offset; |
| continue; |
| } else if (i <= 1 && info.is_constant_or_literal(32) && |
| ctx.program->gfx_level >= GFX10_3 && |
| is_scratch_offset_valid(ctx, NULL, scratch.offset, (int32_t)info.val)) { |
| /* GFX10.3+ can disable both SADDR and ADDR. */ |
| instr->operands[i] = Operand(instr->operands[i].regClass()); |
| scratch.offset += (int32_t)info.val; |
| continue; |
| } |
| } |
| |
| /* DS: combine additions */ |
| else if (instr->isDS()) { |
| |
| DS_instruction& ds = instr->ds(); |
| Temp base; |
| uint32_t offset; |
| bool has_usable_ds_offset = ctx.program->gfx_level >= GFX7; |
| if (has_usable_ds_offset && i == 0 && |
| parse_base_offset(ctx, instr.get(), i, &base, &offset, false) && |
| base.regClass() == instr->operands[i].regClass() && |
| instr->opcode != aco_opcode::ds_swizzle_b32 && |
| instr->opcode != aco_opcode::ds_bvh_stack_push4_pop1_rtn_b32 && |
| instr->opcode != aco_opcode::ds_bvh_stack_push8_pop1_rtn_b32 && |
| instr->opcode != aco_opcode::ds_bvh_stack_push8_pop2_rtn_b64) { |
| if (instr->opcode == aco_opcode::ds_write2_b32 || |
| instr->opcode == aco_opcode::ds_read2_b32 || |
| instr->opcode == aco_opcode::ds_write2_b64 || |
| instr->opcode == aco_opcode::ds_read2_b64 || |
| instr->opcode == aco_opcode::ds_write2st64_b32 || |
| instr->opcode == aco_opcode::ds_read2st64_b32 || |
| instr->opcode == aco_opcode::ds_write2st64_b64 || |
| instr->opcode == aco_opcode::ds_read2st64_b64) { |
| bool is64bit = instr->opcode == aco_opcode::ds_write2_b64 || |
| instr->opcode == aco_opcode::ds_read2_b64 || |
| instr->opcode == aco_opcode::ds_write2st64_b64 || |
| instr->opcode == aco_opcode::ds_read2st64_b64; |
| bool st64 = instr->opcode == aco_opcode::ds_write2st64_b32 || |
| instr->opcode == aco_opcode::ds_read2st64_b32 || |
| instr->opcode == aco_opcode::ds_write2st64_b64 || |
| instr->opcode == aco_opcode::ds_read2st64_b64; |
| unsigned shifts = (is64bit ? 3 : 2) + (st64 ? 6 : 0); |
| unsigned mask = BITFIELD_MASK(shifts); |
| |
| if ((offset & mask) == 0 && ds.offset0 + (offset >> shifts) <= 255 && |
| ds.offset1 + (offset >> shifts) <= 255) { |
| instr->operands[i].setTemp(base); |
| ds.offset0 += offset >> shifts; |
| ds.offset1 += offset >> shifts; |
| } |
| } else { |
| if (ds.offset0 + offset <= 65535) { |
| instr->operands[i].setTemp(base); |
| ds.offset0 += offset; |
| } |
| } |
| } |
| } |
| |
| else if (instr->isBranch()) { |
| if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) { |
| /* Flip the branch instruction to get rid of the scc_invert instruction */ |
| instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz |
| : aco_opcode::p_cbranch_z; |
| instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp); |
| } |
| } |
| } |
| |
| /* if this instruction doesn't define anything, return */ |
| if (instr->definitions.empty()) { |
| check_sdwa_extract(ctx, instr); |
| return; |
| } |
| |
| if (instr->isVALU() || (instr->isVINTRP() && instr->opcode != aco_opcode::v_interp_mov_f32)) { |
| if (instr_info.alu_opcode_infos[(int)instr->opcode].output_modifiers || instr->isVINTRP() || |
| instr->opcode == aco_opcode::v_cndmask_b32) { |
| bool canonicalized = true; |
| if (!does_fp_op_flush_denorms(ctx, instr->opcode)) { |
| unsigned ops = instr->opcode == aco_opcode::v_cndmask_b32 ? 2 : instr->operands.size(); |
| for (unsigned i = 0; canonicalized && (i < ops); i++) |
| canonicalized = is_op_canonicalized(ctx, instr->operands[i]); |
| } |
| if (canonicalized) |
| ctx.info[instr->definitions[0].tempId()].set_canonicalized(); |
| } |
| } |
| |
| switch (instr->opcode) { |
| case aco_opcode::p_create_vector: { |
| bool copy_prop = instr->operands.size() == 1 && instr->operands[0].isTemp() && |
| instr->operands[0].regClass() == instr->definitions[0].regClass(); |
| if (copy_prop) { |
| ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); |
| break; |
| } |
| |
| /* expand vector operands */ |
| std::vector<Operand> ops; |
| unsigned offset = 0; |
| for (const Operand& op : instr->operands) { |
| /* ensure that any expanded operands are properly aligned */ |
| bool aligned = offset % 4 == 0 || op.bytes() < 4; |
| offset += op.bytes(); |
| if (aligned && op.isTemp() && |
| ctx.info[op.tempId()].parent_instr->opcode == aco_opcode::p_create_vector) { |
| Instruction* vec = ctx.info[op.tempId()].parent_instr; |
| for (const Operand& vec_op : vec->operands) |
| ops.emplace_back(vec_op); |
| } else { |
| ops.emplace_back(op); |
| } |
| } |
| |
| offset = 0; |
| for (unsigned i = 0; i < ops.size(); i++) { |
| if (ops[i].isTemp()) { |
| if (ctx.info[ops[i].tempId()].is_temp() && |
| ops[i].regClass() == ctx.info[ops[i].tempId()].temp.regClass()) { |
| ops[i].setTemp(ctx.info[ops[i].tempId()].temp); |
| } |
| |
| /* If this and the following operands make up all definitions of a `p_split_vector`, |
| * replace them with the operand of the `p_split_vector` instruction. |
| */ |
| Instruction* parent = ctx.info[ops[i].tempId()].parent_instr; |
| if (parent->opcode == aco_opcode::p_split_vector && |
| (offset % 4 == 0 || parent->operands[0].bytes() < 4) && |
| parent->definitions.size() <= ops.size() - i) { |
| copy_prop = true; |
| for (unsigned j = 0; copy_prop && j < parent->definitions.size(); j++) { |
| copy_prop &= ops[i + j].isTemp() && |
| ops[i + j].getTemp() == parent->definitions[j].getTemp(); |
| } |
| |
| if (copy_prop) { |
| ops.erase(ops.begin() + i + 1, ops.begin() + i + parent->definitions.size()); |
| ops[i] = parent->operands[0]; |
| } |
| } |
| } |
| |
| offset += ops[i].bytes(); |
| } |
| |
| /* combine expanded operands to new vector */ |
| if (ops.size() <= instr->operands.size()) { |
| while (instr->operands.size() > ops.size()) |
| instr->operands.pop_back(); |
| |
| if (ops.size() == 1) { |
| instr->opcode = aco_opcode::p_parallelcopy; |
| if (ops[0].isTemp()) |
| ctx.info[instr->definitions[0].tempId()].set_temp(ops[0].getTemp()); |
| } |
| } else { |
| Definition def = instr->definitions[0]; |
| instr.reset( |
| create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, ops.size(), 1)); |
| instr->definitions[0] = def; |
| } |
| |
| for (unsigned i = 0; i < ops.size(); i++) |
| instr->operands[i] = ops[i]; |
| break; |
| } |
| case aco_opcode::p_split_vector: { |
| ssa_info& info = ctx.info[instr->operands[0].tempId()]; |
| |
| if (info.is_constant_or_literal(32)) { |
| uint64_t val = info.val; |
| for (Definition def : instr->definitions) { |
| uint32_t mask = u_bit_consecutive(0, def.bytes() * 8u); |
| ctx.info[def.tempId()].set_constant(ctx.program->gfx_level, val & mask); |
| val >>= def.bytes() * 8u; |
| } |
| break; |
| } else if (info.parent_instr->opcode != aco_opcode::p_create_vector) { |
| if (instr->definitions.size() == 2 && instr->operands[0].isTemp() && |
| instr->definitions[0].bytes() == instr->definitions[1].bytes()) { |
| if (instr->operands[0].bytes() == 4) { |
| /* D16 subdword split */ |
| ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); |
| ctx.info[instr->definitions[1].tempId()].set_extract(); |
| } |
| } |
| break; |
| } |
| |
| Instruction* vec = info.parent_instr; |
| unsigned split_offset = 0; |
| unsigned vec_offset = 0; |
| unsigned vec_index = 0; |
| for (unsigned i = 0; i < instr->definitions.size(); |
| split_offset += instr->definitions[i++].bytes()) { |
| while (vec_offset < split_offset && vec_index < vec->operands.size()) |
| vec_offset += vec->operands[vec_index++].bytes(); |
| |
| if (vec_offset != split_offset || |
| vec->operands[vec_index].bytes() != instr->definitions[i].bytes()) |
| continue; |
| |
| Operand vec_op = vec->operands[vec_index]; |
| if (vec_op.isConstant()) { |
| ctx.info[instr->definitions[i].tempId()].set_constant(ctx.program->gfx_level, |
| vec_op.constantValue64()); |
| } else if (vec_op.isTemp()) { |
| ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp()); |
| } |
| } |
| break; |
| } |
| case aco_opcode::p_extract_vector: { /* mov */ |
| const unsigned index = instr->operands[1].constantValue(); |
| |
| if (instr->operands[0].isTemp()) { |
| ssa_info& info = ctx.info[instr->operands[0].tempId()]; |
| const unsigned dst_offset = index * instr->definitions[0].bytes(); |
| |
| if (info.parent_instr->opcode == aco_opcode::p_create_vector) { |
| /* check if we index directly into a vector element */ |
| Instruction* vec = info.parent_instr; |
| unsigned offset = 0; |
| |
| for (const Operand& op : vec->operands) { |
| if (offset < dst_offset) { |
| offset += op.bytes(); |
| continue; |
| } else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) { |
| break; |
| } |
| instr->operands[0] = op; |
| break; |
| } |
| } else if (info.is_constant_or_literal(32)) { |
| /* propagate constants */ |
| uint32_t mask = u_bit_consecutive(0, instr->definitions[0].bytes() * 8u); |
| uint32_t val = (info.val >> (dst_offset * 8u)) & mask; |
| instr->operands[0] = |
| Operand::get_const(ctx.program->gfx_level, val, instr->definitions[0].bytes()); |
| ; |
| } |
| } |
| |
| if (instr->operands[0].bytes() != instr->definitions[0].bytes()) { |
| if (instr->operands[0].size() != 1 || !instr->operands[0].isTemp()) |
| break; |
| |
| if (index == 0) |
| ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); |
| else |
| ctx.info[instr->definitions[0].tempId()].set_extract(); |
| break; |
| } |
| |
| /* convert this extract into a copy instruction */ |
| instr->opcode = aco_opcode::p_parallelcopy; |
| instr->operands.pop_back(); |
| FALLTHROUGH; |
| } |
| case aco_opcode::p_parallelcopy: /* propagate */ |
| if (instr->operands[0].isTemp() && |
| ctx.info[instr->operands[0].tempId()].parent_instr->opcode == |
| aco_opcode::p_create_vector && |
| instr->operands[0].regClass() != instr->definitions[0].regClass()) { |
| /* We might not be able to copy-propagate if it's a SGPR->VGPR copy, so |
| * duplicate the vector instead. |
| */ |
| Instruction* vec = ctx.info[instr->operands[0].tempId()].parent_instr; |
| aco_ptr<Instruction> old_copy = std::move(instr); |
| |
| instr.reset(create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, |
| vec->operands.size(), 1)); |
| instr->definitions[0] = old_copy->definitions[0]; |
| std::copy(vec->operands.begin(), vec->operands.end(), instr->operands.begin()); |
| for (unsigned i = 0; i < vec->operands.size(); i++) { |
| Operand& op = instr->operands[i]; |
| if (op.isTemp() && ctx.info[op.tempId()].is_temp() && |
| ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type()) |
| op.setTemp(ctx.info[op.tempId()].temp); |
| } |
| break; |
| } |
| FALLTHROUGH; |
| case aco_opcode::p_as_uniform: |
| if (instr->definitions[0].isFixed()) { |
| /* don't copy-propagate copies into fixed registers */ |
| } else if (instr->operands[0].isConstant()) { |
| ctx.info[instr->definitions[0].tempId()].set_constant( |
| ctx.program->gfx_level, instr->operands[0].constantValue64()); |
| } else if (instr->operands[0].isTemp()) { |
| ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); |
| if (ctx.info[instr->operands[0].tempId()].is_canonicalized()) |
| ctx.info[instr->definitions[0].tempId()].set_canonicalized(); |
| } else { |
| assert(instr->operands[0].isFixed()); |
| } |
| break; |
| case aco_opcode::p_is_helper: |
| if (!ctx.program->needs_wqm) |
| ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->gfx_level, 0u); |
| break; |
| case aco_opcode::v_mul_f16: |
| case aco_opcode::v_mul_f32: |
| case aco_opcode::v_mul_legacy_f32: { /* omod */ |
| /* TODO: try to move the negate/abs modifier to the consumer instead */ |
| bool uses_mods = instr->usesModifiers(); |
| bool fp16 = instr->opcode == aco_opcode::v_mul_f16; |
| unsigned denorm_mode = fp16 ? ctx.fp_mode.denorm16_64 : ctx.fp_mode.denorm32; |
| |
| for (unsigned i = 0; i < 2; i++) { |
| if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) { |
| if (!instr->isDPP() && !instr->isSDWA() && !instr->valu().opsel && |
| (instr->operands[!i].constantEquals(fp16 ? 0x3c00 : 0x3f800000) || /* 1.0 */ |
| instr->operands[!i].constantEquals(fp16 ? 0xbc00 : 0xbf800000u))) { /* -1.0 */ |
| bool neg1 = instr->operands[!i].constantEquals(fp16 ? 0xbc00 : 0xbf800000u); |
| |
| VALU_instruction* valu = &instr->valu(); |
| if (valu->abs[!i] || valu->neg[!i] || valu->omod) |
| continue; |
| |
| bool abs = valu->abs[i]; |
| bool neg = neg1 ^ valu->neg[i]; |
| Temp other = instr->operands[i].getTemp(); |
| |
| if (valu->clamp) { |
| if (!abs && !neg && other.type() == RegType::vgpr) |
| ctx.info[other.id()].set_clamp(instr.get()); |
| continue; |
| } |
| |
| if (abs && neg && other.type() == RegType::vgpr) |
| ctx.info[instr->definitions[0].tempId()].set_neg_abs(other); |
| else if (abs && !neg && other.type() == RegType::vgpr) |
| ctx.info[instr->definitions[0].tempId()].set_abs(other); |
| else if (!abs && neg && other.type() == RegType::vgpr) |
| ctx.info[instr->definitions[0].tempId()].set_neg(other); |
| else if (!abs && !neg) { |
| if (denorm_mode == fp_denorm_keep || ctx.info[other.id()].is_canonicalized()) |
| ctx.info[instr->definitions[0].tempId()].set_temp(other); |
| else |
| ctx.info[instr->definitions[0].tempId()].set_fcanonicalize(other); |
| } |
| } else if (uses_mods || (instr->definitions[0].isSZPreserve() && |
| instr->opcode != aco_opcode::v_mul_legacy_f32)) { |
| continue; /* omod uses a legacy multiplication. */ |
| } else if (instr->operands[!i].constantValue() == 0u && |
| ((!instr->definitions[0].isNaNPreserve() && |
| !instr->definitions[0].isInfPreserve()) || |
| instr->opcode == aco_opcode::v_mul_legacy_f32)) { /* 0.0 */ |
| ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->gfx_level, 0u); |
| } else if (denorm_mode != fp_denorm_flush) { |
| /* omod has no effect if denormals are enabled. */ |
| continue; |
| } else if (instr->operands[!i].constantValue() == |
| (fp16 ? 0x4000 : 0x40000000)) { /* 2.0 */ |
| ctx.info[instr->operands[i].tempId()].set_omod2(instr.get()); |
| } else if (instr->operands[!i].constantValue() == |
| (fp16 ? 0x4400 : 0x40800000)) { /* 4.0 */ |
| ctx.info[instr->operands[i].tempId()].set_omod4(instr.get()); |
| } else if (instr->operands[!i].constantValue() == |
| (fp16 ? 0x3800 : 0x3f000000)) { /* 0.5 */ |
| ctx.info[instr->operands[i].tempId()].set_omod5(instr.get()); |
| } else { |
| continue; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case aco_opcode::v_med3_f16: |
| case aco_opcode::v_med3_f32: { /* clamp */ |
| unsigned idx; |
| if (detect_clamp(instr.get(), &idx) && !instr->valu().abs && !instr->valu().neg) |
| ctx.info[instr->operands[idx].tempId()].set_clamp(instr.get()); |
| break; |
| } |
| case aco_opcode::v_cndmask_b32: |
| if (instr->operands[0].constantEquals(0) && instr->operands[1].constantEquals(0x3f800000u)) |
| ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp()); |
| else if (instr->operands[0].constantEquals(0) && instr->operands[1].constantEquals(1)) |
| ctx.info[instr->definitions[0].tempId()].set_b2i(instr->operands[2].getTemp()); |
| |
| break; |
| case aco_opcode::s_not_b32: |
| case aco_opcode::s_not_b64: |
| if (!instr->operands[0].isTemp()) { |
| } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) { |
| ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise(); |
| ctx.info[instr->definitions[1].tempId()].set_scc_invert( |
| ctx.info[instr->operands[0].tempId()].temp); |
| } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) { |
| ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise(); |
| ctx.info[instr->definitions[1].tempId()].set_scc_invert( |
| ctx.info[instr->operands[0].tempId()].parent_instr->definitions[1].getTemp()); |
| } |
| break; |
| case aco_opcode::s_and_b32: |
| case aco_opcode::s_and_b64: |
| if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) { |
| if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) { |
| /* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a |
| * uniform bool into divergent */ |
| ctx.info[instr->definitions[1].tempId()].set_temp( |
| ctx.info[instr->operands[0].tempId()].temp); |
| break; |
| } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) { |
| /* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction |
| * already produces the same SCC */ |
| ctx.info[instr->definitions[1].tempId()].set_temp( |
| ctx.info[instr->operands[0].tempId()].parent_instr->definitions[1].getTemp()); |
| break; |
| } else if ((ctx.program->stage.num_sw_stages() > 1 || |
| ctx.program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER) && |
| instr->pass_flags == 1) { |
| /* In case of merged shaders, pass_flags=1 means that all lanes are active (exec=-1), so |
| * s_and is unnecessary. */ |
| ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); |
| break; |
| } |
| } |
| FALLTHROUGH; |
| case aco_opcode::s_or_b32: |
| case aco_opcode::s_or_b64: |
| case aco_opcode::s_xor_b32: |
| case aco_opcode::s_xor_b64: |
| if (std::all_of(instr->operands.begin(), instr->operands.end(), |
| [&ctx](const Operand& op) |
| { |
| return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || |
| ctx.info[op.tempId()].is_uniform_bitwise()); |
| })) { |
| ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise(); |
| } |
| break; |
| case aco_opcode::s_cselect_b64: |
| case aco_opcode::s_cselect_b32: |
| if (instr->operands[0].constantEquals((unsigned)-1) && instr->operands[1].constantEquals(0)) { |
| /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */ |
| ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp()); |
| } else if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) { |
| /* Flip the operands to get rid of the scc_invert instruction */ |
| std::swap(instr->operands[0], instr->operands[1]); |
| instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp); |
| } |
| break; |
| case aco_opcode::s_mul_i32: |
| /* Testing every uint32_t shows that 0x3f800000*n is never a denormal. |
| * This pattern is created from a uniform nir_op_b2f. */ |
| if (instr->operands[0].constantEquals(0x3f800000u)) |
| ctx.info[instr->definitions[0].tempId()].set_canonicalized(); |
| break; |
| case aco_opcode::p_extract: { |
| if (instr->operands[0].isTemp()) { |
| ctx.info[instr->definitions[0].tempId()].set_extract(); |
| if (instr->definitions[0].bytes() == 4 && instr->operands[0].regClass() == v1 && |
| parse_insert(instr.get())) |
| ctx.info[instr->operands[0].tempId()].set_insert(instr.get()); |
| } |
| break; |
| } |
| case aco_opcode::p_insert: { |
| if (instr->operands[0].isTemp()) { |
| if (instr->operands[0].regClass() == v1) |
| ctx.info[instr->operands[0].tempId()].set_insert(instr.get()); |
| if (parse_extract(instr.get())) |
| ctx.info[instr->definitions[0].tempId()].set_extract(); |
| } |
| break; |
| } |
| case aco_opcode::v_cvt_f16_f32: { |
| if (instr->operands[0].isTemp()) |
| ctx.info[instr->operands[0].tempId()].set_f2f16(instr.get()); |
| break; |
| } |
| default: break; |
| } |
| |
| /* Don't remove label_extract if we can't apply the extract to |
| * neg/abs instructions because we'll likely combine it into another valu. */ |
| if (!(ctx.info[instr->definitions[0].tempId()].label & (label_neg | label_abs))) |
| check_sdwa_extract(ctx, instr); |
| |
| /* Set parent_instr for all SSA definitions. */ |
| for (const Definition& def : instr->definitions) |
| ctx.info[def.tempId()].parent_instr = instr.get(); |
| } |
| |
| unsigned |
| original_temp_id(opt_ctx& ctx, Temp tmp) |
| { |
| if (ctx.info[tmp.id()].is_temp()) |
| return ctx.info[tmp.id()].temp.id(); |
| else |
| return tmp.id(); |
| } |
| |
| void |
| decrease_op_uses_if_dead(opt_ctx& ctx, Instruction* instr) |
| { |
| if (is_dead(ctx.uses, instr)) { |
| for (const Operand& op : instr->operands) { |
| if (op.isTemp()) |
| ctx.uses[op.tempId()]--; |
| } |
| } |
| } |
| |
| void |
| decrease_uses(opt_ctx& ctx, Instruction* instr) |
| { |
| ctx.uses[instr->definitions[0].tempId()]--; |
| decrease_op_uses_if_dead(ctx, instr); |
| } |
| |
| Operand |
| copy_operand(opt_ctx& ctx, Operand op) |
| { |
| if (op.isTemp()) |
| ctx.uses[op.tempId()]++; |
| return op; |
| } |
| |
| Instruction* |
| follow_operand(opt_ctx& ctx, Operand op, bool ignore_uses = false) |
| { |
| if (!op.isTemp()) |
| return nullptr; |
| if (!ignore_uses && ctx.uses[op.tempId()] > 1) |
| return nullptr; |
| |
| Instruction* instr = ctx.info[op.tempId()].parent_instr; |
| |
| if (instr->definitions[0].getTemp() != op.getTemp()) |
| return nullptr; |
| |
| if (instr->definitions.size() == 2) { |
| unsigned idx = |
| instr->definitions[1].isTemp() && instr->definitions[1].tempId() == op.tempId(); |
| assert(instr->definitions[idx].isTemp() && instr->definitions[idx].tempId() == op.tempId()); |
| if (instr->definitions[!idx].isTemp() && ctx.uses[instr->definitions[!idx].tempId()]) |
| return nullptr; |
| } |
| |
| for (Operand& operand : instr->operands) { |
| if (fixed_to_exec(operand)) |
| return nullptr; |
| } |
| |
| return instr; |
| } |
| |
| bool |
| is_operand_constant(opt_ctx& ctx, Operand op, unsigned bit_size, uint64_t* value) |
| { |
| if (op.isConstant()) { |
| *value = op.constantValue64(); |
| return true; |
| } else if (op.isTemp()) { |
| unsigned id = original_temp_id(ctx, op.getTemp()); |
| if (!ctx.info[id].is_constant_or_literal(bit_size)) |
| return false; |
| *value = get_constant_op(ctx, ctx.info[id], bit_size).constantValue64(); |
| return true; |
| } |
| return false; |
| } |
| |
| /* s_not(cmp(a, b)) -> get_vcmp_inverse(cmp)(a, b) */ |
| bool |
| combine_inverse_comparison(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (ctx.uses[instr->definitions[1].tempId()]) |
| return false; |
| if (!instr->operands[0].isTemp() || ctx.uses[instr->operands[0].tempId()] != 1) |
| return false; |
| |
| Instruction* cmp = follow_operand(ctx, instr->operands[0]); |
| if (!cmp) |
| return false; |
| |
| aco_opcode new_opcode = get_vcmp_inverse(cmp->opcode); |
| if (new_opcode == aco_opcode::num_opcodes) |
| return false; |
| |
| /* Invert compare instruction and assign this instruction's definition */ |
| cmp->opcode = new_opcode; |
| ctx.info[instr->definitions[0].tempId()] = ctx.info[cmp->definitions[0].tempId()]; |
| std::swap(instr->definitions[0], cmp->definitions[0]); |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| ctx.info[cmp->definitions[0].tempId()].parent_instr = cmp; |
| |
| ctx.uses[instr->operands[0].tempId()]--; |
| return true; |
| } |
| |
| /* op1(op2(1, 2), 0) if swap = false |
| * op1(0, op2(1, 2)) if swap = true */ |
| bool |
| match_op3_for_vop3(opt_ctx& ctx, aco_opcode op1, aco_opcode op2, Instruction* op1_instr, bool swap, |
| const char* shuffle_str, Operand operands[3], bitarray8& neg, bitarray8& abs, |
| bitarray8& opsel, bool* op1_clamp, uint8_t* op1_omod, bool* inbetween_neg, |
| bool* inbetween_abs, bool* inbetween_opsel, bool* precise) |
| { |
| /* checks */ |
| if (op1_instr->opcode != op1) |
| return false; |
| |
| Instruction* op2_instr = follow_operand(ctx, op1_instr->operands[swap]); |
| if (!op2_instr || op2_instr->opcode != op2) |
| return false; |
| |
| VALU_instruction* op1_valu = op1_instr->isVALU() ? &op1_instr->valu() : NULL; |
| VALU_instruction* op2_valu = op2_instr->isVALU() ? &op2_instr->valu() : NULL; |
| |
| if (op1_instr->isSDWA() || op2_instr->isSDWA()) |
| return false; |
| if (op1_instr->isDPP() || op2_instr->isDPP()) |
| return false; |
| |
| /* don't support inbetween clamp/omod */ |
| if (op2_valu && (op2_valu->clamp || op2_valu->omod)) |
| return false; |
| |
| /* get operands and modifiers and check inbetween modifiers */ |
| *op1_clamp = op1_valu ? (bool)op1_valu->clamp : false; |
| *op1_omod = op1_valu ? (unsigned)op1_valu->omod : 0u; |
| |
| if (inbetween_neg) |
| *inbetween_neg = op1_valu ? op1_valu->neg[swap] : false; |
| else if (op1_valu && op1_valu->neg[swap]) |
| return false; |
| |
| if (inbetween_abs) |
| *inbetween_abs = op1_valu ? op1_valu->abs[swap] : false; |
| else if (op1_valu && op1_valu->abs[swap]) |
| return false; |
| |
| if (inbetween_opsel) |
| *inbetween_opsel = op1_valu ? op1_valu->opsel[swap] : false; |
| else if (op1_valu && op1_valu->opsel[swap]) |
| return false; |
| |
| *precise = op1_instr->definitions[0].isPrecise() || op2_instr->definitions[0].isPrecise(); |
| |
| int shuffle[3]; |
| shuffle[shuffle_str[0] - '0'] = 0; |
| shuffle[shuffle_str[1] - '0'] = 1; |
| shuffle[shuffle_str[2] - '0'] = 2; |
| |
| operands[shuffle[0]] = op1_instr->operands[!swap]; |
| neg[shuffle[0]] = op1_valu ? op1_valu->neg[!swap] : false; |
| abs[shuffle[0]] = op1_valu ? op1_valu->abs[!swap] : false; |
| opsel[shuffle[0]] = op1_valu ? op1_valu->opsel[!swap] : false; |
| |
| for (unsigned i = 0; i < 2; i++) { |
| operands[shuffle[i + 1]] = op2_instr->operands[i]; |
| neg[shuffle[i + 1]] = op2_valu ? op2_valu->neg[i] : false; |
| abs[shuffle[i + 1]] = op2_valu ? op2_valu->abs[i] : false; |
| opsel[shuffle[i + 1]] = op2_valu ? op2_valu->opsel[i] : false; |
| } |
| |
| /* check operands */ |
| if (!check_vop3_operands(ctx, 3, operands)) |
| return false; |
| |
| return true; |
| } |
| |
| void |
| create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr, |
| Operand operands[3], uint8_t neg, uint8_t abs, uint8_t opsel, bool clamp, |
| unsigned omod) |
| { |
| Instruction* new_instr = create_instruction(opcode, Format::VOP3, 3, 1); |
| new_instr->valu().neg = neg; |
| new_instr->valu().abs = abs; |
| new_instr->valu().clamp = clamp; |
| new_instr->valu().omod = omod; |
| new_instr->valu().opsel = opsel; |
| new_instr->operands[0] = operands[0]; |
| new_instr->operands[1] = operands[1]; |
| new_instr->operands[2] = operands[2]; |
| new_instr->definitions[0] = instr->definitions[0]; |
| new_instr->pass_flags = instr->pass_flags; |
| ctx.info[instr->definitions[0].tempId()].label = 0; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = new_instr; |
| |
| instr.reset(new_instr); |
| } |
| |
| bool |
| combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, |
| const char* shuffle, uint8_t ops) |
| { |
| for (unsigned swap = 0; swap < 2; swap++) { |
| if (!((1 << swap) & ops)) |
| continue; |
| |
| Operand operands[3]; |
| bool clamp, precise; |
| bitarray8 neg = 0, abs = 0, opsel = 0; |
| uint8_t omod = 0; |
| if (match_op3_for_vop3(ctx, instr->opcode, op2, instr.get(), swap, shuffle, operands, neg, |
| abs, opsel, &clamp, &omod, NULL, NULL, NULL, &precise)) { |
| ctx.uses[instr->operands[swap].tempId()]--; |
| create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* creates v_lshl_add_u32, v_lshl_or_b32 or v_and_or_b32 */ |
| bool |
| combine_add_or_then_and_lshl(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| bool is_or = instr->opcode == aco_opcode::v_or_b32; |
| aco_opcode new_op_lshl = is_or ? aco_opcode::v_lshl_or_b32 : aco_opcode::v_lshl_add_u32; |
| |
| if (is_or && combine_three_valu_op(ctx, instr, aco_opcode::s_and_b32, aco_opcode::v_and_or_b32, |
| "120", 1 | 2)) |
| return true; |
| if (is_or && combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, |
| "120", 1 | 2)) |
| return true; |
| if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, new_op_lshl, "120", 1 | 2)) |
| return true; |
| if (combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, new_op_lshl, "210", 1 | 2)) |
| return true; |
| |
| if (instr->isSDWA() || instr->isDPP()) |
| return false; |
| |
| /* v_or_b32(p_extract(a, 0, 8/16, 0), b) -> v_and_or_b32(a, 0xff/0xffff, b) |
| * v_or_b32(p_insert(a, 0, 8/16), b) -> v_and_or_b32(a, 0xff/0xffff, b) |
| * v_or_b32(p_insert(a, 24/16, 8/16), b) -> v_lshl_or_b32(a, 24/16, b) |
| * v_add_u32(p_insert(a, 24/16, 8/16), b) -> v_lshl_add_b32(a, 24/16, b) |
| */ |
| for (unsigned i = 0; i < 2; i++) { |
| Instruction* extins = follow_operand(ctx, instr->operands[i]); |
| if (!extins) |
| continue; |
| |
| aco_opcode op; |
| Operand operands[3]; |
| |
| if (extins->opcode == aco_opcode::p_insert && |
| (extins->operands[1].constantValue() + 1) * extins->operands[2].constantValue() == 32) { |
| op = new_op_lshl; |
| operands[1] = |
| Operand::c32(extins->operands[1].constantValue() * extins->operands[2].constantValue()); |
| } else if (is_or && |
| (extins->opcode == aco_opcode::p_insert || |
| (extins->opcode == aco_opcode::p_extract && |
| extins->operands[3].constantEquals(0))) && |
| extins->operands[1].constantEquals(0)) { |
| op = aco_opcode::v_and_or_b32; |
| operands[1] = Operand::c32(extins->operands[2].constantEquals(8) ? 0xffu : 0xffffu); |
| } else { |
| continue; |
| } |
| |
| operands[0] = extins->operands[0]; |
| operands[2] = instr->operands[!i]; |
| |
| if (!check_vop3_operands(ctx, 3, operands)) |
| continue; |
| |
| uint8_t neg = 0, abs = 0, opsel = 0, omod = 0; |
| bool clamp = false; |
| if (instr->isVOP3()) |
| clamp = instr->valu().clamp; |
| |
| ctx.uses[instr->operands[i].tempId()]--; |
| create_vop3_for_op3(ctx, op, instr, operands, neg, abs, opsel, clamp, omod); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* v_xor(a, s_not(b)) -> v_xnor(a, b) |
| * v_xor(a, v_not(b)) -> v_xnor(a, b) |
| */ |
| bool |
| combine_xor_not(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (instr->usesModifiers()) |
| return false; |
| |
| for (unsigned i = 0; i < 2; i++) { |
| Instruction* op_instr = follow_operand(ctx, instr->operands[i], true); |
| if (!op_instr || |
| (op_instr->opcode != aco_opcode::v_not_b32 && |
| op_instr->opcode != aco_opcode::s_not_b32) || |
| op_instr->usesModifiers() || op_instr->operands[0].isLiteral()) |
| continue; |
| |
| instr->opcode = aco_opcode::v_xnor_b32; |
| instr->operands[i] = copy_operand(ctx, op_instr->operands[0]); |
| decrease_uses(ctx, op_instr); |
| if (instr->operands[0].isOfType(RegType::vgpr)) |
| std::swap(instr->operands[0], instr->operands[1]); |
| if (!instr->operands[1].isOfType(RegType::vgpr)) |
| instr->format = asVOP3(instr->format); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* v_not(v_xor(a, b)) -> v_xnor(a, b) */ |
| bool |
| combine_not_xor(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (instr->usesModifiers()) |
| return false; |
| |
| Instruction* op_instr = follow_operand(ctx, instr->operands[0]); |
| if (!op_instr || op_instr->opcode != aco_opcode::v_xor_b32 || op_instr->isSDWA()) |
| return false; |
| |
| ctx.uses[instr->operands[0].tempId()]--; |
| std::swap(instr->definitions[0], op_instr->definitions[0]); |
| op_instr->opcode = aco_opcode::v_xnor_b32; |
| ctx.info[op_instr->definitions[0].tempId()].label = 0; |
| ctx.info[op_instr->definitions[0].tempId()].parent_instr = op_instr; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| |
| return true; |
| } |
| |
| bool |
| combine_minmax(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode opposite, aco_opcode op3src, |
| aco_opcode minmax) |
| { |
| /* TODO: this can handle SDWA min/max instructions by using opsel */ |
| |
| /* min(min(a, b), c) -> min3(a, b, c) |
| * max(max(a, b), c) -> max3(a, b, c) |
| * gfx11: min(-min(a, b), c) -> maxmin(-a, -b, c) |
| * gfx11: max(-max(a, b), c) -> minmax(-a, -b, c) |
| */ |
| for (unsigned swap = 0; swap < 2; swap++) { |
| Operand operands[3]; |
| bool clamp, precise; |
| bitarray8 opsel = 0, neg = 0, abs = 0; |
| uint8_t omod = 0; |
| bool inbetween_neg; |
| if (match_op3_for_vop3(ctx, instr->opcode, instr->opcode, instr.get(), swap, "120", operands, |
| neg, abs, opsel, &clamp, &omod, &inbetween_neg, NULL, NULL, |
| &precise) && |
| (!inbetween_neg || |
| (minmax != aco_opcode::num_opcodes && ctx.program->gfx_level >= GFX11))) { |
| ctx.uses[instr->operands[swap].tempId()]--; |
| if (inbetween_neg) { |
| neg[0] = !neg[0]; |
| neg[1] = !neg[1]; |
| create_vop3_for_op3(ctx, minmax, instr, operands, neg, abs, opsel, clamp, omod); |
| } else { |
| create_vop3_for_op3(ctx, op3src, instr, operands, neg, abs, opsel, clamp, omod); |
| } |
| return true; |
| } |
| } |
| |
| /* min(-max(a, b), c) -> min3(-a, -b, c) |
| * max(-min(a, b), c) -> max3(-a, -b, c) |
| * gfx11: min(max(a, b), c) -> maxmin(a, b, c) |
| * gfx11: max(min(a, b), c) -> minmax(a, b, c) |
| */ |
| for (unsigned swap = 0; swap < 2; swap++) { |
| Operand operands[3]; |
| bool clamp, precise; |
| bitarray8 opsel = 0, neg = 0, abs = 0; |
| uint8_t omod = 0; |
| bool inbetween_neg; |
| if (match_op3_for_vop3(ctx, instr->opcode, opposite, instr.get(), swap, "120", operands, neg, |
| abs, opsel, &clamp, &omod, &inbetween_neg, NULL, NULL, &precise) && |
| (inbetween_neg || |
| (minmax != aco_opcode::num_opcodes && ctx.program->gfx_level >= GFX11))) { |
| ctx.uses[instr->operands[swap].tempId()]--; |
| if (inbetween_neg) { |
| neg[0] = !neg[0]; |
| neg[1] = !neg[1]; |
| create_vop3_for_op3(ctx, op3src, instr, operands, neg, abs, opsel, clamp, omod); |
| } else { |
| create_vop3_for_op3(ctx, minmax, instr, operands, neg, abs, opsel, clamp, omod); |
| } |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b) |
| * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b) |
| * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b) |
| * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b) |
| * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b) |
| * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */ |
| bool |
| combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| /* checks */ |
| if (!instr->operands[0].isTemp()) |
| return false; |
| if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) |
| return false; |
| |
| Instruction* op2_instr = follow_operand(ctx, instr->operands[0]); |
| if (!op2_instr) |
| return false; |
| switch (op2_instr->opcode) { |
| case aco_opcode::s_and_b32: |
| case aco_opcode::s_or_b32: |
| case aco_opcode::s_xor_b32: |
| case aco_opcode::s_and_b64: |
| case aco_opcode::s_or_b64: |
| case aco_opcode::s_xor_b64: break; |
| default: return false; |
| } |
| |
| /* create instruction */ |
| std::swap(instr->definitions[0], op2_instr->definitions[0]); |
| std::swap(instr->definitions[1], op2_instr->definitions[1]); |
| ctx.uses[instr->operands[0].tempId()]--; |
| ctx.info[op2_instr->definitions[0].tempId()].label = 0; |
| ctx.info[op2_instr->definitions[0].tempId()].parent_instr = op2_instr; |
| ctx.info[op2_instr->definitions[1].tempId()].parent_instr = op2_instr; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| ctx.info[instr->definitions[1].tempId()].parent_instr = instr.get(); |
| |
| switch (op2_instr->opcode) { |
| case aco_opcode::s_and_b32: op2_instr->opcode = aco_opcode::s_nand_b32; break; |
| case aco_opcode::s_or_b32: op2_instr->opcode = aco_opcode::s_nor_b32; break; |
| case aco_opcode::s_xor_b32: op2_instr->opcode = aco_opcode::s_xnor_b32; break; |
| case aco_opcode::s_and_b64: op2_instr->opcode = aco_opcode::s_nand_b64; break; |
| case aco_opcode::s_or_b64: op2_instr->opcode = aco_opcode::s_nor_b64; break; |
| case aco_opcode::s_xor_b64: op2_instr->opcode = aco_opcode::s_xnor_b64; break; |
| default: break; |
| } |
| |
| return true; |
| } |
| |
| /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b) |
| * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b) |
| * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b) |
| * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */ |
| bool |
| combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool()) |
| return false; |
| |
| for (unsigned i = 0; i < 2; i++) { |
| Instruction* op2_instr = follow_operand(ctx, instr->operands[i]); |
| if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && |
| op2_instr->opcode != aco_opcode::s_not_b64)) |
| continue; |
| if (ctx.uses[op2_instr->definitions[1].tempId()]) |
| continue; |
| |
| if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() && |
| instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue()) |
| continue; |
| |
| ctx.uses[instr->operands[i].tempId()]--; |
| instr->operands[0] = instr->operands[!i]; |
| instr->operands[1] = op2_instr->operands[0]; |
| ctx.info[instr->definitions[0].tempId()].label = 0; |
| |
| switch (instr->opcode) { |
| case aco_opcode::s_and_b32: instr->opcode = aco_opcode::s_andn2_b32; break; |
| case aco_opcode::s_or_b32: instr->opcode = aco_opcode::s_orn2_b32; break; |
| case aco_opcode::s_and_b64: instr->opcode = aco_opcode::s_andn2_b64; break; |
| case aco_opcode::s_or_b64: instr->opcode = aco_opcode::s_orn2_b64; break; |
| default: break; |
| } |
| |
| return true; |
| } |
| return false; |
| } |
| |
| /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */ |
| bool |
| combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()]) |
| return false; |
| |
| for (unsigned i = 0; i < 2; i++) { |
| Instruction* op2_instr = follow_operand(ctx, instr->operands[i], true); |
| if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || |
| ctx.uses[op2_instr->definitions[1].tempId()]) |
| continue; |
| if (!op2_instr->operands[1].isConstant()) |
| continue; |
| |
| uint32_t shift = op2_instr->operands[1].constantValue(); |
| if (shift < 1 || shift > 4) |
| continue; |
| |
| if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() && |
| instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue()) |
| continue; |
| |
| instr->operands[1] = instr->operands[!i]; |
| instr->operands[0] = copy_operand(ctx, op2_instr->operands[0]); |
| decrease_uses(ctx, op2_instr); |
| ctx.info[instr->definitions[0].tempId()].label = 0; |
| |
| instr->opcode = std::array<aco_opcode, 4>{ |
| aco_opcode::s_lshl1_add_u32, aco_opcode::s_lshl2_add_u32, aco_opcode::s_lshl3_add_u32, |
| aco_opcode::s_lshl4_add_u32}[shift - 1]; |
| |
| return true; |
| } |
| return false; |
| } |
| |
| /* s_abs_i32(s_sub_[iu]32(a, b)) -> s_absdiff_i32(a, b) |
| * s_abs_i32(s_add_[iu]32(a, #b)) -> s_absdiff_i32(a, -b) |
| */ |
| bool |
| combine_sabsdiff(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| Instruction* op_instr = follow_operand(ctx, instr->operands[0], false); |
| if (!op_instr) |
| return false; |
| |
| if (op_instr->opcode == aco_opcode::s_add_i32 || op_instr->opcode == aco_opcode::s_add_u32) { |
| for (unsigned i = 0; i < 2; i++) { |
| uint64_t constant; |
| if (op_instr->operands[!i].isLiteral() || |
| !is_operand_constant(ctx, op_instr->operands[i], 32, &constant)) |
| continue; |
| |
| if (op_instr->operands[i].isTemp()) |
| ctx.uses[op_instr->operands[i].tempId()]--; |
| op_instr->operands[0] = op_instr->operands[!i]; |
| op_instr->operands[1] = Operand::c32(-int32_t(constant)); |
| goto use_absdiff; |
| } |
| return false; |
| } else if (op_instr->opcode != aco_opcode::s_sub_i32 && |
| op_instr->opcode != aco_opcode::s_sub_u32) { |
| return false; |
| } |
| |
| use_absdiff: |
| op_instr->opcode = aco_opcode::s_absdiff_i32; |
| std::swap(instr->definitions[0], op_instr->definitions[0]); |
| std::swap(instr->definitions[1], op_instr->definitions[1]); |
| ctx.uses[instr->operands[0].tempId()]--; |
| ctx.info[op_instr->definitions[0].tempId()].label = 0; |
| ctx.info[op_instr->definitions[0].tempId()].parent_instr = op_instr; |
| ctx.info[op_instr->definitions[1].tempId()].parent_instr = op_instr; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| ctx.info[instr->definitions[1].tempId()].parent_instr = instr.get(); |
| |
| return true; |
| } |
| |
| bool |
| combine_add_sub_b2i(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode new_op, uint8_t ops) |
| { |
| if (instr->usesModifiers()) |
| return false; |
| |
| for (unsigned i = 0; i < 2; i++) { |
| if (!((1 << i) & ops)) |
| continue; |
| if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2i() && |
| ctx.uses[instr->operands[i].tempId()] == 1) { |
| |
| aco_ptr<Instruction> new_instr; |
| if (instr->operands[!i].isTemp() && |
| instr->operands[!i].getTemp().type() == RegType::vgpr) { |
| new_instr.reset(create_instruction(new_op, Format::VOP2, 3, 2)); |
| } else if (ctx.program->gfx_level >= GFX10 || |
| (instr->operands[!i].isConstant() && !instr->operands[!i].isLiteral())) { |
| new_instr.reset(create_instruction(new_op, asVOP3(Format::VOP2), 3, 2)); |
| } else { |
| return false; |
| } |
| ctx.uses[instr->operands[i].tempId()]--; |
| new_instr->definitions[0] = instr->definitions[0]; |
| if (instr->definitions.size() == 2) { |
| new_instr->definitions[1] = instr->definitions[1]; |
| } else { |
| new_instr->definitions[1] = |
| Definition(ctx.program->allocateTmp(ctx.program->lane_mask)); |
| /* Make sure the uses vector is large enough and the number of |
| * uses properly initialized to 0. |
| */ |
| ctx.uses.push_back(0); |
| ctx.info.push_back(ssa_info{}); |
| } |
| new_instr->operands[0] = Operand::zero(); |
| new_instr->operands[1] = instr->operands[!i]; |
| new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp); |
| new_instr->pass_flags = instr->pass_flags; |
| instr = std::move(new_instr); |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| ctx.info[instr->definitions[1].tempId()].parent_instr = instr.get(); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool |
| combine_add_bcnt(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (instr->usesModifiers()) |
| return false; |
| |
| for (unsigned i = 0; i < 2; i++) { |
| Instruction* op_instr = follow_operand(ctx, instr->operands[i]); |
| if (op_instr && op_instr->opcode == aco_opcode::v_bcnt_u32_b32 && |
| !op_instr->usesModifiers() && op_instr->operands[0].isTemp() && |
| op_instr->operands[0].getTemp().type() == RegType::vgpr && |
| op_instr->operands[1].constantEquals(0)) { |
| aco_ptr<Instruction> new_instr{ |
| create_instruction(aco_opcode::v_bcnt_u32_b32, Format::VOP3, 2, 1)}; |
| ctx.uses[instr->operands[i].tempId()]--; |
| new_instr->operands[0] = op_instr->operands[0]; |
| new_instr->operands[1] = instr->operands[!i]; |
| new_instr->definitions[0] = instr->definitions[0]; |
| new_instr->pass_flags = instr->pass_flags; |
| instr = std::move(new_instr); |
| ctx.info[instr->definitions[0].tempId()].label = 0; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool |
| get_minmax_info(aco_opcode op, aco_opcode* min, aco_opcode* max, aco_opcode* min3, aco_opcode* max3, |
| aco_opcode* med3, aco_opcode* minmax, bool* some_gfx9_only) |
| { |
| switch (op) { |
| #define MINMAX(type, gfx9) \ |
| case aco_opcode::v_min_##type: \ |
| case aco_opcode::v_max_##type: \ |
| *min = aco_opcode::v_min_##type; \ |
| *max = aco_opcode::v_max_##type; \ |
| *med3 = aco_opcode::v_med3_##type; \ |
| *min3 = aco_opcode::v_min3_##type; \ |
| *max3 = aco_opcode::v_max3_##type; \ |
| *minmax = op == *min ? aco_opcode::v_maxmin_##type : aco_opcode::v_minmax_##type; \ |
| *some_gfx9_only = gfx9; \ |
| return true; |
| #define MINMAX_INT16(type, gfx9) \ |
| case aco_opcode::v_min_##type: \ |
| case aco_opcode::v_max_##type: \ |
| *min = aco_opcode::v_min_##type; \ |
| *max = aco_opcode::v_max_##type; \ |
| *med3 = aco_opcode::v_med3_##type; \ |
| *min3 = aco_opcode::v_min3_##type; \ |
| *max3 = aco_opcode::v_max3_##type; \ |
| *minmax = aco_opcode::num_opcodes; \ |
| *some_gfx9_only = gfx9; \ |
| return true; |
| #define MINMAX_INT16_E64(type, gfx9) \ |
| case aco_opcode::v_min_##type##_e64: \ |
| case aco_opcode::v_max_##type##_e64: \ |
| *min = aco_opcode::v_min_##type##_e64; \ |
| *max = aco_opcode::v_max_##type##_e64; \ |
| *med3 = aco_opcode::v_med3_##type; \ |
| *min3 = aco_opcode::v_min3_##type; \ |
| *max3 = aco_opcode::v_max3_##type; \ |
| *minmax = aco_opcode::num_opcodes; \ |
| *some_gfx9_only = gfx9; \ |
| return true; |
| MINMAX(f32, false) |
| MINMAX(u32, false) |
| MINMAX(i32, false) |
| MINMAX(f16, true) |
| MINMAX_INT16(u16, true) |
| MINMAX_INT16(i16, true) |
| MINMAX_INT16_E64(u16, true) |
| MINMAX_INT16_E64(i16, true) |
| #undef MINMAX_INT16_E64 |
| #undef MINMAX_INT16 |
| #undef MINMAX |
| default: return false; |
| } |
| } |
| |
| /* when ub > lb: |
| * v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) |
| * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) |
| */ |
| bool |
| combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode min, aco_opcode max, |
| aco_opcode med) |
| { |
| /* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's |
| * FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if |
| * minVal > maxVal, which means we can always select it to a v_med3_f32 */ |
| aco_opcode other_op; |
| if (instr->opcode == min) |
| other_op = max; |
| else if (instr->opcode == max) |
| other_op = min; |
| else |
| return false; |
| |
| for (unsigned swap = 0; swap < 2; swap++) { |
| Operand operands[3]; |
| bool clamp, precise; |
| bitarray8 opsel = 0, neg = 0, abs = 0; |
| uint8_t omod = 0; |
| if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap, "012", operands, neg, |
| abs, opsel, &clamp, &omod, NULL, NULL, NULL, &precise)) { |
| /* max(min(src, upper), lower) returns upper if src is NaN, but |
| * med3(src, lower, upper) returns lower. |
| */ |
| if (precise && instr->opcode != min && |
| (min == aco_opcode::v_min_f16 || min == aco_opcode::v_min_f32)) |
| continue; |
| |
| int const0_idx = -1, const1_idx = -1; |
| uint32_t const0 = 0, const1 = 0; |
| for (int i = 0; i < 3; i++) { |
| uint32_t val; |
| bool hi16 = opsel & (1 << i); |
| if (operands[i].isConstant()) { |
| val = hi16 ? operands[i].constantValue16(true) : operands[i].constantValue(); |
| } else if (operands[i].isTemp() && |
| ctx.info[operands[i].tempId()].is_constant_or_literal(32)) { |
| val = ctx.info[operands[i].tempId()].val >> (hi16 ? 16 : 0); |
| } else { |
| continue; |
| } |
| if (const0_idx >= 0) { |
| const1_idx = i; |
| const1 = val; |
| } else { |
| const0_idx = i; |
| const0 = val; |
| } |
| } |
| if (const0_idx < 0 || const1_idx < 0) |
| continue; |
| |
| int lower_idx = const0_idx; |
| switch (min) { |
| case aco_opcode::v_min_f32: |
| case aco_opcode::v_min_f16: { |
| float const0_f, const1_f; |
| if (min == aco_opcode::v_min_f32) { |
| memcpy(&const0_f, &const0, 4); |
| memcpy(&const1_f, &const1, 4); |
| } else { |
| const0_f = _mesa_half_to_float(const0); |
| const1_f = _mesa_half_to_float(const1); |
| } |
| if (abs[const0_idx]) |
| const0_f = fabsf(const0_f); |
| if (abs[const1_idx]) |
| const1_f = fabsf(const1_f); |
| if (neg[const0_idx]) |
| const0_f = -const0_f; |
| if (neg[const1_idx]) |
| const1_f = -const1_f; |
| lower_idx = const0_f < const1_f ? const0_idx : const1_idx; |
| break; |
| } |
| case aco_opcode::v_min_u32: { |
| lower_idx = const0 < const1 ? const0_idx : const1_idx; |
| break; |
| } |
| case aco_opcode::v_min_u16: |
| case aco_opcode::v_min_u16_e64: { |
| lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx; |
| break; |
| } |
| case aco_opcode::v_min_i32: { |
| int32_t const0_i = |
| const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0; |
| int32_t const1_i = |
| const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1; |
| lower_idx = const0_i < const1_i ? const0_idx : const1_idx; |
| break; |
| } |
| case aco_opcode::v_min_i16: |
| case aco_opcode::v_min_i16_e64: { |
| int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0; |
| int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1; |
| lower_idx = const0_i < const1_i ? const0_idx : const1_idx; |
| break; |
| } |
| default: break; |
| } |
| int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx; |
| |
| if (instr->opcode == min) { |
| if (upper_idx != 0 || lower_idx == 0) |
| return false; |
| } else { |
| if (upper_idx == 0 || lower_idx != 0) |
| return false; |
| } |
| |
| ctx.uses[instr->operands[swap].tempId()]--; |
| create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod); |
| |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| void |
| apply_sgprs(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64_e64 || |
| instr->opcode == aco_opcode::v_lshlrev_b64 || |
| instr->opcode == aco_opcode::v_lshrrev_b64 || |
| instr->opcode == aco_opcode::v_ashrrev_i64; |
| |
| /* find candidates and create the set of sgprs already read */ |
| unsigned sgpr_ids[2] = {0, 0}; |
| uint32_t operand_mask = 0; |
| bool has_literal = false; |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if (instr->operands[i].isLiteral()) |
| has_literal = true; |
| if (!instr->operands[i].isTemp()) |
| continue; |
| if (instr->operands[i].getTemp().type() == RegType::sgpr) { |
| if (instr->operands[i].tempId() != sgpr_ids[0]) |
| sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId(); |
| } |
| ssa_info& info = ctx.info[instr->operands[i].tempId()]; |
| if (is_copy_label(ctx, instr, info, i) && info.temp.type() == RegType::sgpr) |
| operand_mask |= 1u << i; |
| if (info.is_extract() && info.parent_instr->operands[0].getTemp().type() == RegType::sgpr) |
| operand_mask |= 1u << i; |
| } |
| unsigned max_sgprs = 1; |
| if (ctx.program->gfx_level >= GFX10 && !is_shift64) |
| max_sgprs = 2; |
| if (has_literal) |
| max_sgprs--; |
| |
| unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1]; |
| |
| /* keep on applying sgprs until there is nothing left to be done */ |
| while (operand_mask) { |
| uint32_t sgpr_idx = 0; |
| uint32_t sgpr_info_id = 0; |
| uint32_t mask = operand_mask; |
| /* choose a sgpr */ |
| while (mask) { |
| unsigned i = u_bit_scan(&mask); |
| uint16_t uses = ctx.uses[instr->operands[i].tempId()]; |
| if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) { |
| sgpr_idx = i; |
| sgpr_info_id = instr->operands[i].tempId(); |
| } |
| } |
| operand_mask &= ~(1u << sgpr_idx); |
| |
| ssa_info& info = ctx.info[sgpr_info_id]; |
| |
| Temp sgpr = info.is_extract() ? info.parent_instr->operands[0].getTemp() : info.temp; |
| bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1]; |
| if (new_sgpr && num_sgprs >= max_sgprs) |
| continue; |
| |
| if (sgpr_idx == 0) |
| instr->format = withoutDPP(instr->format); |
| |
| if (sgpr_idx == 1 && instr->isDPP()) |
| continue; |
| |
| if (sgpr_idx == 0 || instr->isVOP3() || instr->isSDWA() || instr->isVOP3P() || |
| info.is_extract()) { |
| /* can_apply_extract() checks SGPR encoding restrictions */ |
| if (info.is_extract() && can_apply_extract(ctx, instr, sgpr_idx, info)) |
| apply_extract(ctx, instr, sgpr_idx, info); |
| else if (info.is_extract()) |
| continue; |
| instr->operands[sgpr_idx] = Operand(sgpr); |
| } else if (can_swap_operands(instr, &instr->opcode) && !instr->valu().opsel[sgpr_idx]) { |
| instr->operands[sgpr_idx] = instr->operands[0]; |
| instr->operands[0] = Operand(sgpr); |
| instr->valu().opsel[0].swap(instr->valu().opsel[sgpr_idx]); |
| /* swap bits using a 4-entry LUT */ |
| uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf; |
| operand_mask = (operand_mask & ~0x3) | swapped; |
| } else if (can_use_VOP3(ctx, instr) && !info.is_extract()) { |
| instr->format = asVOP3(instr->format); |
| instr->operands[sgpr_idx] = Operand(sgpr); |
| } else { |
| continue; |
| } |
| |
| if (new_sgpr) |
| sgpr_ids[num_sgprs++] = sgpr.id(); |
| ctx.uses[sgpr_info_id]--; |
| ctx.uses[sgpr.id()]++; |
| |
| /* TODO: handle when it's a VGPR */ |
| if ((ctx.info[sgpr.id()].label & (label_extract | label_temp)) && |
| ctx.info[sgpr.id()].temp.type() == RegType::sgpr) |
| operand_mask |= 1u << sgpr_idx; |
| } |
| } |
| |
| bool |
| interp_can_become_fma(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (instr->opcode != aco_opcode::v_interp_p2_f32_inreg) |
| return false; |
| |
| instr->opcode = aco_opcode::v_fma_f32; |
| instr->format = Format::VOP3; |
| bool dpp_allowed = can_use_DPP(ctx.program->gfx_level, instr, false); |
| instr->opcode = aco_opcode::v_interp_p2_f32_inreg; |
| instr->format = Format::VINTERP_INREG; |
| |
| return dpp_allowed; |
| } |
| |
| void |
| interp_p2_f32_inreg_to_fma_dpp(aco_ptr<Instruction>& instr) |
| { |
| static_assert(sizeof(DPP16_instruction) == sizeof(VINTERP_inreg_instruction), |
| "Invalid instr cast."); |
| instr->format = asVOP3(Format::DPP16); |
| instr->opcode = aco_opcode::v_fma_f32; |
| instr->dpp16().dpp_ctrl = dpp_quad_perm(2, 2, 2, 2); |
| instr->dpp16().row_mask = 0xf; |
| instr->dpp16().bank_mask = 0xf; |
| instr->dpp16().bound_ctrl = 0; |
| instr->dpp16().fetch_inactive = 1; |
| } |
| |
| /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */ |
| bool |
| apply_omod_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (instr->definitions.empty() || ctx.uses[instr->definitions[0].tempId()] != 1 || |
| !instr_info.alu_opcode_infos[(int)instr->opcode].output_modifiers) |
| return false; |
| |
| bool can_vop3 = can_use_VOP3(ctx, instr); |
| bool is_mad_mix = |
| instr->opcode == aco_opcode::v_fma_mix_f32 || instr->opcode == aco_opcode::v_fma_mixlo_f16; |
| bool needs_vop3 = !instr->isSDWA() && !instr->isVINTERP_INREG() && !is_mad_mix; |
| if (needs_vop3 && !can_vop3) |
| return false; |
| |
| if (instr_info.classes[(int)instr->opcode] == instr_class::valu_pseudo_scalar_trans) |
| return false; |
| |
| /* SDWA omod is GFX9+. */ |
| bool can_use_omod = (can_vop3 || ctx.program->gfx_level >= GFX9) && !instr->isVOP3P() && |
| (!instr->isVINTERP_INREG() || interp_can_become_fma(ctx, instr)); |
| |
| ssa_info& def_info = ctx.info[instr->definitions[0].tempId()]; |
| |
| uint64_t omod_labels = label_omod2 | label_omod4 | label_omod5; |
| if (!def_info.is_clamp() && !(can_use_omod && (def_info.label & omod_labels))) |
| return false; |
| /* if the omod/clamp instruction is dead, then the single user of this |
| * instruction is a different instruction */ |
| if (!ctx.uses[def_info.mod_instr->definitions[0].tempId()]) |
| return false; |
| |
| if (def_info.mod_instr->definitions[0].bytes() != instr->definitions[0].bytes()) |
| return false; |
| |
| /* MADs/FMAs are created later, so we don't have to update the original add */ |
| assert(!ctx.info[instr->definitions[0].tempId()].is_mad()); |
| |
| if (!def_info.is_clamp() && (instr->valu().clamp || instr->valu().omod)) |
| return false; |
| |
| if (needs_vop3) |
| instr->format = asVOP3(instr->format); |
| |
| if (!def_info.is_clamp() && instr->opcode == aco_opcode::v_interp_p2_f32_inreg) |
| interp_p2_f32_inreg_to_fma_dpp(instr); |
| |
| if (def_info.is_omod2()) |
| instr->valu().omod = 1; |
| else if (def_info.is_omod4()) |
| instr->valu().omod = 2; |
| else if (def_info.is_omod5()) |
| instr->valu().omod = 3; |
| else if (def_info.is_clamp()) |
| instr->valu().clamp = true; |
| |
| instr->definitions[0].swapTemp(def_info.mod_instr->definitions[0]); |
| ctx.info[instr->definitions[0].tempId()].label &= label_clamp | label_insert | label_f2f16; |
| ctx.uses[def_info.mod_instr->definitions[0].tempId()]--; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| ctx.info[def_info.mod_instr->definitions[0].tempId()].parent_instr = def_info.mod_instr; |
| |
| return true; |
| } |
| |
| /* Combine an p_insert (or p_extract, in some cases) instruction with instr. |
| * p_insert(instr(...)) -> instr_insert(). |
| */ |
| bool |
| apply_insert(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (instr->definitions.empty() || ctx.uses[instr->definitions[0].tempId()] != 1) |
| return false; |
| |
| ssa_info& def_info = ctx.info[instr->definitions[0].tempId()]; |
| if (!def_info.is_insert()) |
| return false; |
| /* if the insert instruction is dead, then the single user of this |
| * instruction is a different instruction */ |
| if (!ctx.uses[def_info.mod_instr->definitions[0].tempId()]) |
| return false; |
| |
| /* MADs/FMAs are created later, so we don't have to update the original add */ |
| assert(!ctx.info[instr->definitions[0].tempId()].is_mad()); |
| |
| SubdwordSel sel = parse_insert(def_info.mod_instr); |
| assert(sel); |
| |
| if (!can_use_SDWA(ctx.program->gfx_level, instr, true)) |
| return false; |
| |
| convert_to_SDWA(ctx.program->gfx_level, instr); |
| if (instr->sdwa().dst_sel.size() != 4) |
| return false; |
| instr->sdwa().dst_sel = sel; |
| |
| instr->definitions[0].swapTemp(def_info.mod_instr->definitions[0]); |
| ctx.info[instr->definitions[0].tempId()].label = 0; |
| ctx.uses[def_info.mod_instr->definitions[0].tempId()]--; |
| ctx.info[instr->definitions[0].tempId()].label = 0; |
| ctx.info[def_info.mod_instr->definitions[0].tempId()].parent_instr = def_info.mod_instr; |
| for (const Definition& def : instr->definitions) |
| ctx.info[def.tempId()].parent_instr = instr.get(); |
| |
| return true; |
| } |
| |
| /* Remove superfluous extract after ds_read like so: |
| * p_extract(ds_read_uN(), 0, N, 0) -> ds_read_uN() |
| */ |
| bool |
| apply_load_extract(opt_ctx& ctx, aco_ptr<Instruction>& extract) |
| { |
| /* Check if p_extract has a usedef operand and is the only user. */ |
| if (ctx.uses[extract->operands[0].tempId()] > 1) |
| return false; |
| |
| /* Check if the usedef is the right format. */ |
| Instruction* load = ctx.info[extract->operands[0].tempId()].parent_instr; |
| if (!load->isDS() && !load->isSMEM() && !load->isMUBUF() && !load->isFlatLike()) |
| return false; |
| |
| unsigned extract_idx = extract->operands[1].constantValue(); |
| unsigned bits_extracted = extract->operands[2].constantValue(); |
| bool sign_ext = extract->operands[3].constantValue(); |
| unsigned dst_bitsize = extract->definitions[0].bytes() * 8u; |
| |
| unsigned bits_loaded = 0; |
| bool can_shrink = false; |
| switch (load->opcode) { |
| case aco_opcode::ds_read_u8: |
| case aco_opcode::ds_read_u8_d16: |
| case aco_opcode::flat_load_ubyte: |
| case aco_opcode::flat_load_ubyte_d16: |
| case aco_opcode::global_load_ubyte: |
| case aco_opcode::global_load_ubyte_d16: |
| case aco_opcode::scratch_load_ubyte: |
| case aco_opcode::scratch_load_ubyte_d16: can_shrink = true; FALLTHROUGH; |
| case aco_opcode::s_load_ubyte: |
| case aco_opcode::s_buffer_load_ubyte: |
| case aco_opcode::buffer_load_ubyte: |
| case aco_opcode::buffer_load_ubyte_d16: bits_loaded = 8; break; |
| case aco_opcode::ds_read_u16: |
| case aco_opcode::ds_read_u16_d16: |
| case aco_opcode::flat_load_ushort: |
| case aco_opcode::flat_load_short_d16: |
| case aco_opcode::global_load_ushort: |
| case aco_opcode::global_load_short_d16: |
| case aco_opcode::scratch_load_ushort: |
| case aco_opcode::scratch_load_short_d16: can_shrink = true; FALLTHROUGH; |
| case aco_opcode::s_load_ushort: |
| case aco_opcode::s_buffer_load_ushort: |
| case aco_opcode::buffer_load_ushort: |
| case aco_opcode::buffer_load_short_d16: bits_loaded = 16; break; |
| default: return false; |
| } |
| |
| /* TODO: These are doable, but probably don't occur too often. */ |
| if (extract_idx || bits_extracted > bits_loaded || dst_bitsize > 32 || |
| (load->definitions[0].regClass().type() != extract->definitions[0].regClass().type())) |
| return false; |
| |
| /* We can't shrink some loads because that would remove zeroing of the offset/address LSBs. */ |
| if (!can_shrink && bits_extracted < bits_loaded) |
| return false; |
| |
| /* Shrink the load if the extracted bit size is smaller. */ |
| bits_loaded = MIN2(bits_loaded, bits_extracted); |
| |
| /* Change the opcode so it writes the full register. */ |
| bool is_s_buffer = load->opcode == aco_opcode::s_buffer_load_ubyte || |
| load->opcode == aco_opcode::s_buffer_load_ushort; |
| if (bits_loaded == 8 && load->isDS()) |
| load->opcode = sign_ext ? aco_opcode::ds_read_i8 : aco_opcode::ds_read_u8; |
| else if (bits_loaded == 16 && load->isDS()) |
| load->opcode = sign_ext ? aco_opcode::ds_read_i16 : aco_opcode::ds_read_u16; |
| else if (bits_loaded == 8 && load->isMUBUF()) |
| load->opcode = sign_ext ? aco_opcode::buffer_load_sbyte : aco_opcode::buffer_load_ubyte; |
| else if (bits_loaded == 16 && load->isMUBUF()) |
| load->opcode = sign_ext ? aco_opcode::buffer_load_sshort : aco_opcode::buffer_load_ushort; |
| else if (bits_loaded == 8 && load->isFlat()) |
| load->opcode = sign_ext ? aco_opcode::flat_load_sbyte : aco_opcode::flat_load_ubyte; |
| else if (bits_loaded == 16 && load->isFlat()) |
| load->opcode = sign_ext ? aco_opcode::flat_load_sshort : aco_opcode::flat_load_ushort; |
| else if (bits_loaded == 8 && load->isGlobal()) |
| load->opcode = sign_ext ? aco_opcode::global_load_sbyte : aco_opcode::global_load_ubyte; |
| else if (bits_loaded == 16 && load->isGlobal()) |
| load->opcode = sign_ext ? aco_opcode::global_load_sshort : aco_opcode::global_load_ushort; |
| else if (bits_loaded == 8 && load->isScratch()) |
| load->opcode = sign_ext ? aco_opcode::scratch_load_sbyte : aco_opcode::scratch_load_ubyte; |
| else if (bits_loaded == 16 && load->isScratch()) |
| load->opcode = sign_ext ? aco_opcode::scratch_load_sshort : aco_opcode::scratch_load_ushort; |
| else if (bits_loaded == 8 && load->isSMEM() && is_s_buffer) |
| load->opcode = sign_ext ? aco_opcode::s_buffer_load_sbyte : aco_opcode::s_buffer_load_ubyte; |
| else if (bits_loaded == 8 && load->isSMEM() && !is_s_buffer) |
| load->opcode = sign_ext ? aco_opcode::s_load_sbyte : aco_opcode::s_load_ubyte; |
| else if (bits_loaded == 16 && load->isSMEM() && is_s_buffer) |
| load->opcode = sign_ext ? aco_opcode::s_buffer_load_sshort : aco_opcode::s_buffer_load_ushort; |
| else if (bits_loaded == 16 && load->isSMEM() && !is_s_buffer) |
| load->opcode = sign_ext ? aco_opcode::s_load_sshort : aco_opcode::s_load_ushort; |
| else |
| unreachable("Forgot to add opcode above."); |
| |
| if (dst_bitsize <= 16 && ctx.program->gfx_level >= GFX9) { |
| switch (load->opcode) { |
| case aco_opcode::ds_read_i8: load->opcode = aco_opcode::ds_read_i8_d16; break; |
| case aco_opcode::ds_read_u8: load->opcode = aco_opcode::ds_read_u8_d16; break; |
| case aco_opcode::ds_read_i16: load->opcode = aco_opcode::ds_read_u16_d16; break; |
| case aco_opcode::ds_read_u16: load->opcode = aco_opcode::ds_read_u16_d16; break; |
| case aco_opcode::buffer_load_sbyte: load->opcode = aco_opcode::buffer_load_sbyte_d16; break; |
| case aco_opcode::buffer_load_ubyte: load->opcode = aco_opcode::buffer_load_ubyte_d16; break; |
| case aco_opcode::buffer_load_sshort: load->opcode = aco_opcode::buffer_load_short_d16; break; |
| case aco_opcode::buffer_load_ushort: load->opcode = aco_opcode::buffer_load_short_d16; break; |
| case aco_opcode::flat_load_sbyte: load->opcode = aco_opcode::flat_load_sbyte_d16; break; |
| case aco_opcode::flat_load_ubyte: load->opcode = aco_opcode::flat_load_ubyte_d16; break; |
| case aco_opcode::flat_load_sshort: load->opcode = aco_opcode::flat_load_short_d16; break; |
| case aco_opcode::flat_load_ushort: load->opcode = aco_opcode::flat_load_short_d16; break; |
| case aco_opcode::global_load_sbyte: load->opcode = aco_opcode::global_load_sbyte_d16; break; |
| case aco_opcode::global_load_ubyte: load->opcode = aco_opcode::global_load_ubyte_d16; break; |
| case aco_opcode::global_load_sshort: load->opcode = aco_opcode::global_load_short_d16; break; |
| case aco_opcode::global_load_ushort: load->opcode = aco_opcode::global_load_short_d16; break; |
| case aco_opcode::scratch_load_sbyte: load->opcode = aco_opcode::scratch_load_sbyte_d16; break; |
| case aco_opcode::scratch_load_ubyte: load->opcode = aco_opcode::scratch_load_ubyte_d16; break; |
| case aco_opcode::scratch_load_sshort: load->opcode = aco_opcode::scratch_load_short_d16; break; |
| case aco_opcode::scratch_load_ushort: load->opcode = aco_opcode::scratch_load_short_d16; break; |
| default: break; |
| } |
| } |
| |
| /* The load now produces the exact same thing as the extract, remove the extract. */ |
| std::swap(load->definitions[0], extract->definitions[0]); |
| ctx.uses[extract->definitions[0].tempId()] = 0; |
| ctx.info[load->definitions[0].tempId()].label = 0; |
| ctx.info[extract->definitions[0].tempId()].parent_instr = extract.get(); |
| ctx.info[load->definitions[0].tempId()].parent_instr = load; |
| return true; |
| } |
| |
| /* v_and(a, not(b)) -> v_bfi_b32(b, 0, a) |
| * v_or(a, not(b)) -> v_bfi_b32(b, a, -1) |
| */ |
| bool |
| combine_v_andor_not(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (instr->usesModifiers()) |
| return false; |
| |
| for (unsigned i = 0; i < 2; i++) { |
| Instruction* op_instr = follow_operand(ctx, instr->operands[i], true); |
| if (op_instr && !op_instr->usesModifiers() && |
| (op_instr->opcode == aco_opcode::v_not_b32 || |
| op_instr->opcode == aco_opcode::s_not_b32)) { |
| |
| Operand ops[3] = { |
| op_instr->operands[0], |
| Operand::zero(), |
| instr->operands[!i], |
| }; |
| if (instr->opcode == aco_opcode::v_or_b32) { |
| ops[1] = instr->operands[!i]; |
| ops[2] = Operand::c32(-1); |
| } |
| if (!check_vop3_operands(ctx, 3, ops)) |
| continue; |
| |
| Instruction* new_instr = create_instruction(aco_opcode::v_bfi_b32, Format::VOP3, 3, 1); |
| |
| if (op_instr->operands[0].isTemp()) |
| ctx.uses[op_instr->operands[0].tempId()]++; |
| for (unsigned j = 0; j < 3; j++) |
| new_instr->operands[j] = ops[j]; |
| new_instr->definitions[0] = instr->definitions[0]; |
| new_instr->pass_flags = instr->pass_flags; |
| instr.reset(new_instr); |
| decrease_uses(ctx, op_instr); |
| ctx.info[instr->definitions[0].tempId()].label = 0; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* v_add_co(c, s_lshl(a, b)) -> v_mad_u32_u24(a, 1<<b, c) |
| * v_add_co(c, v_lshlrev(a, b)) -> v_mad_u32_u24(b, 1<<a, c) |
| * v_sub(c, s_lshl(a, b)) -> v_mad_i32_i24(a, -(1<<b), c) |
| * v_sub(c, v_lshlrev(a, b)) -> v_mad_i32_i24(b, -(1<<a), c) |
| */ |
| bool |
| combine_add_lshl(opt_ctx& ctx, aco_ptr<Instruction>& instr, bool is_sub) |
| { |
| if (instr->usesModifiers()) |
| return false; |
| |
| /* Substractions: start at operand 1 to avoid mixup such as |
| * turning v_sub(v_lshlrev(a, b), c) into v_mad_i32_i24(b, -(1<<a), c) |
| */ |
| unsigned start_op_idx = is_sub ? 1 : 0; |
| |
| /* Don't allow 24-bit operands on subtraction because |
| * v_mad_i32_i24 applies a sign extension. |
| */ |
| bool allow_24bit = !is_sub; |
| |
| for (unsigned i = start_op_idx; i < 2; i++) { |
| Instruction* op_instr = follow_operand(ctx, instr->operands[i]); |
| if (!op_instr) |
| continue; |
| |
| if (op_instr->opcode != aco_opcode::s_lshl_b32 && |
| op_instr->opcode != aco_opcode::v_lshlrev_b32) |
| continue; |
| |
| int shift_op_idx = op_instr->opcode == aco_opcode::s_lshl_b32 ? 1 : 0; |
| |
| if (op_instr->operands[shift_op_idx].isConstant() && |
| ((allow_24bit && op_instr->operands[!shift_op_idx].is24bit()) || |
| op_instr->operands[!shift_op_idx].is16bit())) { |
| uint32_t multiplier = 1 << (op_instr->operands[shift_op_idx].constantValue() % 32u); |
| if (is_sub) |
| multiplier = -multiplier; |
| if (is_sub ? (multiplier < 0xff800000) : (multiplier > 0xffffff)) |
| continue; |
| |
| Operand ops[3] = { |
| op_instr->operands[!shift_op_idx], |
| Operand::c32(multiplier), |
| instr->operands[!i], |
| }; |
| if (!check_vop3_operands(ctx, 3, ops)) |
| return false; |
| |
| ctx.uses[instr->operands[i].tempId()]--; |
| |
| aco_opcode mad_op = is_sub ? aco_opcode::v_mad_i32_i24 : aco_opcode::v_mad_u32_u24; |
| aco_ptr<Instruction> new_instr{create_instruction(mad_op, Format::VOP3, 3, 1)}; |
| for (unsigned op_idx = 0; op_idx < 3; ++op_idx) |
| new_instr->operands[op_idx] = ops[op_idx]; |
| new_instr->definitions[0] = instr->definitions[0]; |
| new_instr->pass_flags = instr->pass_flags; |
| instr = std::move(new_instr); |
| ctx.info[instr->definitions[0].tempId()].label = 0; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| void |
| propagate_swizzles(VALU_instruction* instr, bool opsel_lo, bool opsel_hi) |
| { |
| /* propagate swizzles which apply to a result down to the instruction's operands: |
| * result = a.xy + b.xx -> result.yx = a.yx + b.xx */ |
| uint8_t tmp_lo = instr->opsel_lo; |
| uint8_t tmp_hi = instr->opsel_hi; |
| uint8_t neg_lo = instr->neg_lo; |
| uint8_t neg_hi = instr->neg_hi; |
| if (opsel_lo == 1) { |
| instr->opsel_lo = tmp_hi; |
| instr->neg_lo = neg_hi; |
| } |
| if (opsel_hi == 0) { |
| instr->opsel_hi = tmp_lo; |
| instr->neg_hi = neg_lo; |
| } |
| } |
| |
| void |
| combine_vop3p(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| VALU_instruction* vop3p = &instr->valu(); |
| |
| /* apply clamp */ |
| if (instr->opcode == aco_opcode::v_pk_mul_f16 && instr->operands[1].constantEquals(0x3C00) && |
| vop3p->clamp && instr->operands[0].isTemp() && ctx.uses[instr->operands[0].tempId()] == 1 && |
| !vop3p->opsel_lo[1] && !vop3p->opsel_hi[1]) { |
| |
| Instruction* op_instr = ctx.info[instr->operands[0].tempId()].parent_instr; |
| if (op_instr->isVOP3P() && |
| instr_info.alu_opcode_infos[(int)op_instr->opcode].output_modifiers) { |
| op_instr->valu().clamp = true; |
| propagate_swizzles(&op_instr->valu(), vop3p->opsel_lo[0], vop3p->opsel_hi[0]); |
| instr->definitions[0].swapTemp(op_instr->definitions[0]); |
| ctx.info[op_instr->definitions[0].tempId()].parent_instr = op_instr; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| ctx.uses[instr->definitions[0].tempId()]--; |
| return; |
| } |
| } |
| |
| /* check for fneg modifiers */ |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if (!can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, i)) |
| continue; |
| Operand& op = instr->operands[i]; |
| if (!op.isTemp()) |
| continue; |
| |
| ssa_info& info = ctx.info[op.tempId()]; |
| if (info.parent_instr->opcode == aco_opcode::v_pk_mul_f16 && |
| (info.parent_instr->operands[0].constantEquals(0x3C00) || |
| info.parent_instr->operands[1].constantEquals(0x3C00) || |
| info.parent_instr->operands[0].constantEquals(0xBC00) || |
| info.parent_instr->operands[1].constantEquals(0xBC00))) { |
| |
| VALU_instruction* fneg = &info.parent_instr->valu(); |
| |
| unsigned fneg_src = |
| fneg->operands[0].constantEquals(0x3C00) || fneg->operands[0].constantEquals(0xBC00); |
| |
| if (fneg->opsel_lo[1 - fneg_src] || fneg->opsel_hi[1 - fneg_src]) |
| continue; |
| |
| Operand ops[3]; |
| for (unsigned j = 0; j < instr->operands.size(); j++) |
| ops[j] = instr->operands[j]; |
| ops[i] = fneg->operands[fneg_src]; |
| if (!check_vop3_operands(ctx, instr->operands.size(), ops)) |
| continue; |
| |
| if (fneg->clamp) |
| continue; |
| instr->operands[i] = fneg->operands[fneg_src]; |
| |
| /* opsel_lo/hi is either 0 or 1: |
| * if 0 - pick selection from fneg->lo |
| * if 1 - pick selection from fneg->hi |
| */ |
| bool opsel_lo = vop3p->opsel_lo[i]; |
| bool opsel_hi = vop3p->opsel_hi[i]; |
| bool neg_lo = fneg->neg_lo[0] ^ fneg->neg_lo[1]; |
| bool neg_hi = fneg->neg_hi[0] ^ fneg->neg_hi[1]; |
| bool neg_const = fneg->operands[1 - fneg_src].constantEquals(0xBC00); |
| /* Avoid ternary xor as it causes CI fails that can't be reproduced on other systems. */ |
| neg_lo ^= neg_const; |
| neg_hi ^= neg_const; |
| vop3p->neg_lo[i] ^= opsel_lo ? neg_hi : neg_lo; |
| vop3p->neg_hi[i] ^= opsel_hi ? neg_hi : neg_lo; |
| vop3p->opsel_lo[i] ^= opsel_lo ? !fneg->opsel_hi[fneg_src] : fneg->opsel_lo[fneg_src]; |
| vop3p->opsel_hi[i] ^= opsel_hi ? !fneg->opsel_hi[fneg_src] : fneg->opsel_lo[fneg_src]; |
| |
| if (--ctx.uses[fneg->definitions[0].tempId()]) |
| ctx.uses[fneg->operands[fneg_src].tempId()]++; |
| } |
| } |
| |
| if (instr->opcode == aco_opcode::v_pk_add_f16 || instr->opcode == aco_opcode::v_pk_add_u16) { |
| bool fadd = instr->opcode == aco_opcode::v_pk_add_f16; |
| if (fadd && instr->definitions[0].isPrecise()) |
| return; |
| if (!fadd && instr->valu().clamp) |
| return; |
| |
| Instruction* mul_instr = nullptr; |
| unsigned add_op_idx = 0; |
| bitarray8 mul_neg_lo = 0, mul_neg_hi = 0, mul_opsel_lo = 0, mul_opsel_hi = 0; |
| uint32_t uses = UINT32_MAX; |
| |
| /* find the 'best' mul instruction to combine with the add */ |
| for (unsigned i = 0; i < 2; i++) { |
| Instruction* op_instr = follow_operand(ctx, instr->operands[i], true); |
| if (!op_instr) |
| continue; |
| |
| if (op_instr->isVOP3P()) { |
| if (fadd) { |
| if (op_instr->opcode != aco_opcode::v_pk_mul_f16 || |
| op_instr->definitions[0].isPrecise()) |
| continue; |
| } else { |
| if (op_instr->opcode != aco_opcode::v_pk_mul_lo_u16) |
| continue; |
| } |
| |
| Operand op[3] = {op_instr->operands[0], op_instr->operands[1], instr->operands[1 - i]}; |
| if (ctx.uses[instr->operands[i].tempId()] >= uses || !check_vop3_operands(ctx, 3, op)) |
| continue; |
| |
| /* no clamp allowed between mul and add */ |
| if (op_instr->valu().clamp) |
| continue; |
| |
| mul_instr = op_instr; |
| add_op_idx = 1 - i; |
| uses = ctx.uses[instr->operands[i].tempId()]; |
| mul_neg_lo = mul_instr->valu().neg_lo; |
| mul_neg_hi = mul_instr->valu().neg_hi; |
| mul_opsel_lo = mul_instr->valu().opsel_lo; |
| mul_opsel_hi = mul_instr->valu().opsel_hi; |
| } else if (instr->operands[i].bytes() == 2) { |
| if ((fadd && (op_instr->opcode != aco_opcode::v_mul_f16 || |
| op_instr->definitions[0].isPrecise())) || |
| (!fadd && op_instr->opcode != aco_opcode::v_mul_lo_u16 && |
| op_instr->opcode != aco_opcode::v_mul_lo_u16_e64)) |
| continue; |
| |
| if (op_instr->valu().clamp || op_instr->valu().omod || op_instr->valu().abs) |
| continue; |
| |
| if (op_instr->isDPP() || (op_instr->isSDWA() && (op_instr->sdwa().sel[0].size() < 2 || |
| op_instr->sdwa().sel[1].size() < 2))) |
| continue; |
| |
| Operand op[3] = {op_instr->operands[0], op_instr->operands[1], instr->operands[1 - i]}; |
| if (ctx.uses[instr->operands[i].tempId()] >= uses || !check_vop3_operands(ctx, 3, op)) |
| continue; |
| |
| mul_instr = op_instr; |
| add_op_idx = 1 - i; |
| uses = ctx.uses[instr->operands[i].tempId()]; |
| mul_neg_lo = mul_instr->valu().neg; |
| mul_neg_hi = mul_instr->valu().neg; |
| if (mul_instr->isSDWA()) { |
| for (unsigned j = 0; j < 2; j++) |
| mul_opsel_lo[j] = mul_instr->sdwa().sel[j].offset(); |
| } else { |
| mul_opsel_lo = mul_instr->valu().opsel; |
| } |
| mul_opsel_hi = mul_opsel_lo; |
| } |
| } |
| |
| if (!mul_instr) |
| return; |
| |
| /* turn mul + packed add into v_pk_fma_f16 */ |
| aco_opcode mad = fadd ? aco_opcode::v_pk_fma_f16 : aco_opcode::v_pk_mad_u16; |
| aco_ptr<Instruction> fma{create_instruction(mad, Format::VOP3P, 3, 1)}; |
| fma->operands[0] = copy_operand(ctx, mul_instr->operands[0]); |
| fma->operands[1] = copy_operand(ctx, mul_instr->operands[1]); |
| fma->operands[2] = instr->operands[add_op_idx]; |
| fma->valu().clamp = vop3p->clamp; |
| fma->valu().neg_lo = mul_neg_lo; |
| fma->valu().neg_hi = mul_neg_hi; |
| fma->valu().opsel_lo = mul_opsel_lo; |
| fma->valu().opsel_hi = mul_opsel_hi; |
| propagate_swizzles(&fma->valu(), vop3p->opsel_lo[1 - add_op_idx], |
| vop3p->opsel_hi[1 - add_op_idx]); |
| fma->valu().opsel_lo[2] = vop3p->opsel_lo[add_op_idx]; |
| fma->valu().opsel_hi[2] = vop3p->opsel_hi[add_op_idx]; |
| fma->valu().neg_lo[2] = vop3p->neg_lo[add_op_idx]; |
| fma->valu().neg_hi[2] = vop3p->neg_hi[add_op_idx]; |
| fma->valu().neg_lo[1] = fma->valu().neg_lo[1] ^ vop3p->neg_lo[1 - add_op_idx]; |
| fma->valu().neg_hi[1] = fma->valu().neg_hi[1] ^ vop3p->neg_hi[1 - add_op_idx]; |
| fma->definitions[0] = instr->definitions[0]; |
| fma->pass_flags = instr->pass_flags; |
| instr = std::move(fma); |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| decrease_uses(ctx, mul_instr); |
| return; |
| } |
| } |
| |
| bool |
| can_use_mad_mix(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (ctx.program->gfx_level < GFX9) |
| return false; |
| |
| /* v_mad_mix* on GFX9 always flushes denormals for 16-bit inputs/outputs */ |
| if (ctx.program->gfx_level == GFX9 && ctx.fp_mode.denorm16_64) |
| return false; |
| |
| if (instr->valu().omod) |
| return false; |
| |
| switch (instr->opcode) { |
| case aco_opcode::v_add_f32: |
| case aco_opcode::v_sub_f32: |
| case aco_opcode::v_subrev_f32: |
| case aco_opcode::v_mul_f32: return !instr->isSDWA() && !instr->isDPP(); |
| case aco_opcode::v_fma_f32: |
| return ctx.program->dev.fused_mad_mix || !instr->definitions[0].isPrecise(); |
| case aco_opcode::v_fma_mix_f32: |
| case aco_opcode::v_fma_mixlo_f16: return true; |
| default: return false; |
| } |
| } |
| |
| void |
| to_mad_mix(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| ctx.info[instr->definitions[0].tempId()].label &= label_f2f16 | label_clamp; |
| |
| if (instr->opcode == aco_opcode::v_fma_f32) { |
| instr->format = (Format)((uint32_t)withoutVOP3(instr->format) | (uint32_t)(Format::VOP3P)); |
| instr->opcode = aco_opcode::v_fma_mix_f32; |
| return; |
| } |
| |
| bool is_add = instr->opcode != aco_opcode::v_mul_f32; |
| |
| aco_ptr<Instruction> vop3p{create_instruction(aco_opcode::v_fma_mix_f32, Format::VOP3P, 3, 1)}; |
| |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| vop3p->operands[is_add + i] = instr->operands[i]; |
| vop3p->valu().neg_lo[is_add + i] = instr->valu().neg[i]; |
| vop3p->valu().neg_hi[is_add + i] = instr->valu().abs[i]; |
| } |
| if (instr->opcode == aco_opcode::v_mul_f32) { |
| vop3p->operands[2] = Operand::zero(); |
| vop3p->valu().neg_lo[2] = true; |
| } else if (is_add) { |
| vop3p->operands[0] = Operand::c32(0x3f800000); |
| if (instr->opcode == aco_opcode::v_sub_f32) |
| vop3p->valu().neg_lo[2] ^= true; |
| else if (instr->opcode == aco_opcode::v_subrev_f32) |
| vop3p->valu().neg_lo[1] ^= true; |
| } |
| vop3p->definitions[0] = instr->definitions[0]; |
| vop3p->valu().clamp = instr->valu().clamp; |
| vop3p->pass_flags = instr->pass_flags; |
| instr = std::move(vop3p); |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| } |
| |
| bool |
| combine_output_conversion(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| ssa_info& def_info = ctx.info[instr->definitions[0].tempId()]; |
| if (!def_info.is_f2f16()) |
| return false; |
| Instruction* conv = def_info.mod_instr; |
| |
| if (!ctx.uses[conv->definitions[0].tempId()] || ctx.uses[instr->definitions[0].tempId()] != 1) |
| return false; |
| |
| if (conv->usesModifiers()) |
| return false; |
| |
| if (interp_can_become_fma(ctx, instr)) |
| interp_p2_f32_inreg_to_fma_dpp(instr); |
| |
| if (!can_use_mad_mix(ctx, instr)) |
| return false; |
| |
| if (!instr->isVOP3P()) |
| to_mad_mix(ctx, instr); |
| |
| instr->opcode = aco_opcode::v_fma_mixlo_f16; |
| instr->definitions[0].swapTemp(conv->definitions[0]); |
| if (conv->definitions[0].isPrecise()) |
| instr->definitions[0].setPrecise(true); |
| ctx.info[instr->definitions[0].tempId()].label &= label_clamp; |
| ctx.uses[conv->definitions[0].tempId()]--; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| ctx.info[conv->definitions[0].tempId()].parent_instr = conv; |
| |
| return true; |
| } |
| |
| void |
| combine_mad_mix(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (!can_use_mad_mix(ctx, instr)) |
| return; |
| |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if (!instr->operands[i].isTemp()) |
| continue; |
| Temp tmp = instr->operands[i].getTemp(); |
| |
| Instruction* conv = ctx.info[tmp.id()].parent_instr; |
| if (conv->opcode != aco_opcode::v_cvt_f32_f16 || !conv->operands[0].isTemp() || |
| conv->valu().clamp || conv->valu().omod) { |
| continue; |
| } else if (conv->isSDWA() && |
| (conv->sdwa().dst_sel.size() != 4 || conv->sdwa().sel[0].size() != 2)) { |
| continue; |
| } else if (conv->isDPP()) { |
| continue; |
| } |
| |
| if (get_operand_type(instr, i).bit_size != 32) |
| continue; |
| |
| /* Conversion to VOP3P will add inline constant operands, but that shouldn't affect |
| * check_vop3_operands(). */ |
| Operand op[3]; |
| for (unsigned j = 0; j < instr->operands.size(); j++) |
| op[j] = instr->operands[j]; |
| op[i] = conv->operands[0]; |
| if (!check_vop3_operands(ctx, instr->operands.size(), op)) |
| continue; |
| if (!conv->operands[0].isOfType(RegType::vgpr) && instr->isDPP()) |
| continue; |
| |
| if (!instr->isVOP3P()) { |
| bool is_add = |
| instr->opcode != aco_opcode::v_mul_f32 && instr->opcode != aco_opcode::v_fma_f32; |
| to_mad_mix(ctx, instr); |
| i += is_add; |
| } |
| |
| if (--ctx.uses[tmp.id()]) |
| ctx.uses[conv->operands[0].tempId()]++; |
| instr->operands[i].setTemp(conv->operands[0].getTemp()); |
| if (conv->definitions[0].isPrecise()) |
| instr->definitions[0].setPrecise(true); |
| instr->valu().opsel_hi[i] = true; |
| if (conv->isSDWA() && conv->sdwa().sel[0].offset() == 2) |
| instr->valu().opsel_lo[i] = true; |
| else |
| instr->valu().opsel_lo[i] = conv->valu().opsel[0]; |
| bool neg = conv->valu().neg[0]; |
| bool abs = conv->valu().abs[0]; |
| if (!instr->valu().abs[i]) { |
| instr->valu().neg[i] ^= neg; |
| instr->valu().abs[i] = abs; |
| } |
| } |
| } |
| |
| // TODO: we could possibly move the whole label_instruction pass to combine_instruction: |
| // this would mean that we'd have to fix the instruction uses while value propagation |
| |
| /* also returns true for inf */ |
| bool |
| is_pow_of_two(opt_ctx& ctx, Operand op) |
| { |
| if (op.isTemp() && ctx.info[op.tempId()].is_constant_or_literal(op.bytes() * 8)) |
| return is_pow_of_two(ctx, get_constant_op(ctx, ctx.info[op.tempId()], op.bytes() * 8)); |
| else if (!op.isConstant()) |
| return false; |
| |
| uint64_t val = op.constantValue64(); |
| |
| if (op.bytes() == 4) { |
| uint32_t exponent = (val & 0x7f800000) >> 23; |
| uint32_t fraction = val & 0x007fffff; |
| return (exponent >= 127) && (fraction == 0); |
| } else if (op.bytes() == 2) { |
| uint32_t exponent = (val & 0x7c00) >> 10; |
| uint32_t fraction = val & 0x03ff; |
| return (exponent >= 15) && (fraction == 0); |
| } else { |
| assert(op.bytes() == 8); |
| uint64_t exponent = (val & UINT64_C(0x7ff0000000000000)) >> 52; |
| uint64_t fraction = val & UINT64_C(0x000fffffffffffff); |
| return (exponent >= 1023) && (fraction == 0); |
| } |
| } |
| |
| bool |
| is_mul(Instruction* instr) |
| { |
| switch (instr->opcode) { |
| case aco_opcode::v_mul_f64_e64: |
| case aco_opcode::v_mul_f64: |
| case aco_opcode::v_mul_f32: |
| case aco_opcode::v_mul_legacy_f32: |
| case aco_opcode::v_mul_f16: return true; |
| case aco_opcode::v_fma_mix_f32: |
| return instr->operands[2].constantEquals(0) && instr->valu().neg[2]; |
| default: return false; |
| } |
| } |
| |
| void |
| combine_instruction(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| if (instr->definitions.empty() || is_dead(ctx.uses, instr.get())) |
| return; |
| |
| if (instr->isVALU() || instr->isSALU()) { |
| /* Apply SDWA. Do this after label_instruction() so it can remove |
| * label_extract if not all instructions can take SDWA. */ |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| Operand& op = instr->operands[i]; |
| if (!op.isTemp()) |
| continue; |
| ssa_info& info = ctx.info[op.tempId()]; |
| if (!info.is_extract()) |
| continue; |
| /* if there are that many uses, there are likely better combinations */ |
| // TODO: delay applying extract to a point where we know better |
| if (ctx.uses[op.tempId()] > 4) { |
| info.label &= ~label_extract; |
| continue; |
| } |
| if (info.is_extract() && |
| (info.parent_instr->operands[0].getTemp().type() == RegType::vgpr || |
| instr->operands[i].getTemp().type() == RegType::sgpr) && |
| can_apply_extract(ctx, instr, i, info)) { |
| /* Increase use count of the extract's operand if the extract still has uses. */ |
| apply_extract(ctx, instr, i, info); |
| if (--ctx.uses[instr->operands[i].tempId()]) |
| ctx.uses[info.parent_instr->operands[0].tempId()]++; |
| instr->operands[i].setTemp(info.parent_instr->operands[0].getTemp()); |
| } |
| } |
| } |
| |
| if (instr->isVALU()) { |
| if (can_apply_sgprs(ctx, instr)) |
| apply_sgprs(ctx, instr); |
| combine_mad_mix(ctx, instr); |
| while (apply_omod_clamp(ctx, instr) || combine_output_conversion(ctx, instr)) |
| ; |
| apply_insert(ctx, instr); |
| } |
| |
| if (instr->isVOP3P() && instr->opcode != aco_opcode::v_fma_mix_f32 && |
| instr->opcode != aco_opcode::v_fma_mixlo_f16) |
| return combine_vop3p(ctx, instr); |
| |
| if (instr->isSDWA() || instr->isDPP()) |
| return; |
| |
| if (instr->opcode == aco_opcode::p_extract || instr->opcode == aco_opcode::p_extract_vector) { |
| ssa_info& info = ctx.info[instr->operands[0].tempId()]; |
| if (info.is_extract() && can_apply_extract(ctx, instr, 0, info)) { |
| apply_extract(ctx, instr, 0, info); |
| if (--ctx.uses[instr->operands[0].tempId()]) |
| ctx.uses[info.parent_instr->operands[0].tempId()]++; |
| instr->operands[0].setTemp(info.parent_instr->operands[0].getTemp()); |
| } |
| |
| if (instr->opcode == aco_opcode::p_extract) |
| apply_load_extract(ctx, instr); |
| } |
| |
| /* TODO: There are still some peephole optimizations that could be done: |
| * - abs(a - b) -> s_absdiff_i32 |
| * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32 |
| * - patterns for v_alignbit_b32 and v_alignbyte_b32 |
| * These aren't probably too interesting though. |
| * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but |
| * probably more useful than the previously mentioned optimizations. |
| * The various comparison optimizations also currently only work with 32-bit |
| * floats. */ |
| |
| /* neg(mul(a, b)) -> mul(neg(a), b), abs(mul(a, b)) -> mul(abs(a), abs(b)) */ |
| if ((ctx.info[instr->definitions[0].tempId()].label & (label_neg | label_abs)) && |
| ctx.uses[instr->operands[1].tempId()] == 1) { |
| Temp val = ctx.info[instr->definitions[0].tempId()].temp; |
| Instruction* mul_instr = ctx.info[val.id()].parent_instr; |
| |
| if (!is_mul(mul_instr)) |
| return; |
| |
| if (mul_instr->operands[0].isLiteral()) |
| return; |
| if (mul_instr->valu().clamp) |
| return; |
| if (mul_instr->isSDWA() || mul_instr->isDPP()) |
| return; |
| if (mul_instr->opcode == aco_opcode::v_mul_legacy_f32 && |
| mul_instr->definitions[0].isSZPreserve()) |
| return; |
| if (mul_instr->definitions[0].bytes() != instr->definitions[0].bytes()) |
| return; |
| |
| /* convert to mul(neg(a), b), mul(abs(a), abs(b)) or mul(neg(abs(a)), abs(b)) */ |
| ctx.uses[mul_instr->definitions[0].tempId()]--; |
| Definition def = instr->definitions[0]; |
| bool is_neg = ctx.info[instr->definitions[0].tempId()].is_neg(); |
| bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs(); |
| uint32_t pass_flags = instr->pass_flags; |
| Format format = mul_instr->format == Format::VOP2 ? asVOP3(Format::VOP2) : mul_instr->format; |
| instr.reset(create_instruction(mul_instr->opcode, format, mul_instr->operands.size(), 1)); |
| std::copy(mul_instr->operands.cbegin(), mul_instr->operands.cend(), instr->operands.begin()); |
| instr->pass_flags = pass_flags; |
| instr->definitions[0] = def; |
| VALU_instruction& new_mul = instr->valu(); |
| VALU_instruction& mul = mul_instr->valu(); |
| new_mul.neg = mul.neg; |
| new_mul.abs = mul.abs; |
| new_mul.omod = mul.omod; |
| new_mul.opsel = mul.opsel; |
| new_mul.opsel_lo = mul.opsel_lo; |
| new_mul.opsel_hi = mul.opsel_hi; |
| if (is_abs) { |
| new_mul.neg[0] = new_mul.neg[1] = false; |
| new_mul.abs[0] = new_mul.abs[1] = true; |
| } |
| new_mul.neg[0] ^= is_neg; |
| new_mul.clamp = false; |
| |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| return; |
| } |
| |
| /* combine mul+add -> mad */ |
| bool is_add_mix = |
| (instr->opcode == aco_opcode::v_fma_mix_f32 || |
| instr->opcode == aco_opcode::v_fma_mixlo_f16) && |
| !instr->valu().neg_lo[0] && |
| ((instr->operands[0].constantEquals(0x3f800000) && !instr->valu().opsel_hi[0]) || |
| (instr->operands[0].constantEquals(0x3C00) && instr->valu().opsel_hi[0] && |
| !instr->valu().opsel_lo[0])); |
| bool mad32 = instr->opcode == aco_opcode::v_add_f32 || instr->opcode == aco_opcode::v_sub_f32 || |
| instr->opcode == aco_opcode::v_subrev_f32; |
| bool mad16 = instr->opcode == aco_opcode::v_add_f16 || instr->opcode == aco_opcode::v_sub_f16 || |
| instr->opcode == aco_opcode::v_subrev_f16; |
| bool mad64 = |
| instr->opcode == aco_opcode::v_add_f64_e64 || instr->opcode == aco_opcode::v_add_f64; |
| if (is_add_mix || mad16 || mad32 || mad64) { |
| Instruction* mul_instr = nullptr; |
| unsigned add_op_idx = 0; |
| uint32_t uses = UINT32_MAX; |
| bool emit_fma = false; |
| /* find the 'best' mul instruction to combine with the add */ |
| for (unsigned i = is_add_mix ? 1 : 0; i < instr->operands.size(); i++) { |
| if (!instr->operands[i].isTemp()) |
| continue; |
| ssa_info& info = ctx.info[instr->operands[i].tempId()]; |
| if (!is_mul(info.parent_instr)) |
| continue; |
| |
| /* no clamp/omod allowed between mul and add */ |
| if (info.parent_instr->isVOP3() && |
| (info.parent_instr->valu().clamp || info.parent_instr->valu().omod)) |
| continue; |
| if (info.parent_instr->isVOP3P() && info.parent_instr->valu().clamp) |
| continue; |
| /* v_fma_mix_f32/etc can't do omod */ |
| if (info.parent_instr->isVOP3P() && instr->isVOP3() && instr->valu().omod) |
| continue; |
| /* don't promote fp16 to fp32 or remove fp32->fp16->fp32 conversions */ |
| if (is_add_mix && info.parent_instr->definitions[0].bytes() == 2) |
| continue; |
| |
| if (get_operand_type(instr, i).bytes() != info.parent_instr->definitions[0].bytes()) |
| continue; |
| |
| bool legacy = info.parent_instr->opcode == aco_opcode::v_mul_legacy_f32; |
| bool mad_mix = is_add_mix || info.parent_instr->isVOP3P(); |
| |
| /* Multiplication by power-of-two should never need rounding. 1/power-of-two also works, |
| * but using fma removes denormal flushing (0xfffffe * 0.5 + 0x810001a2). |
| */ |
| bool is_fma_precise = is_pow_of_two(ctx, info.parent_instr->operands[0]) || |
| is_pow_of_two(ctx, info.parent_instr->operands[1]); |
| |
| bool has_fma = mad16 || mad64 || (legacy && ctx.program->gfx_level >= GFX10_3) || |
| (mad32 && !legacy && !mad_mix && ctx.program->dev.has_fast_fma32) || |
| (mad_mix && ctx.program->dev.fused_mad_mix); |
| bool has_mad = mad_mix ? !ctx.program->dev.fused_mad_mix |
| : ((mad32 && ctx.program->gfx_level < GFX10_3) || |
| (mad16 && ctx.program->gfx_level <= GFX9)); |
| bool can_use_fma = has_fma && (!(info.parent_instr->definitions[0].isPrecise() || |
| instr->definitions[0].isPrecise()) || |
| is_fma_precise); |
| bool can_use_mad = |
| has_mad && (mad_mix || mad32 ? ctx.fp_mode.denorm32 : ctx.fp_mode.denorm16_64) == 0; |
| if (mad_mix && legacy) |
| continue; |
| if (!can_use_fma && !can_use_mad) |
| continue; |
| |
| unsigned candidate_add_op_idx = is_add_mix ? (3 - i) : (1 - i); |
| Operand op[3] = {info.parent_instr->operands[0], info.parent_instr->operands[1], |
| instr->operands[candidate_add_op_idx]}; |
| if (info.parent_instr->isSDWA() || info.parent_instr->isDPP() || |
| !check_vop3_operands(ctx, 3, op) || ctx.uses[instr->operands[i].tempId()] > uses) |
| continue; |
| |
| if (ctx.uses[instr->operands[i].tempId()] == uses) { |
| unsigned cur_idx = mul_instr->definitions[0].tempId(); |
| unsigned new_idx = info.parent_instr->definitions[0].tempId(); |
| if (cur_idx > new_idx) |
| continue; |
| } |
| |
| mul_instr = info.parent_instr; |
| add_op_idx = candidate_add_op_idx; |
| uses = ctx.uses[instr->operands[i].tempId()]; |
| emit_fma = !can_use_mad; |
| } |
| |
| if (mul_instr) { |
| /* turn mul+add into v_mad/v_fma */ |
| Operand op[3] = {mul_instr->operands[0], mul_instr->operands[1], |
| instr->operands[add_op_idx]}; |
| ctx.uses[mul_instr->definitions[0].tempId()]--; |
| if (ctx.uses[mul_instr->definitions[0].tempId()]) { |
| if (op[0].isTemp()) |
| ctx.uses[op[0].tempId()]++; |
| if (op[1].isTemp()) |
| ctx.uses[op[1].tempId()]++; |
| } |
| |
| bool neg[3] = {false, false, false}; |
| bool abs[3] = {false, false, false}; |
| unsigned omod = 0; |
| bool clamp = false; |
| bitarray8 opsel_lo = 0; |
| bitarray8 opsel_hi = 0; |
| bitarray8 opsel = 0; |
| unsigned mul_op_idx = (instr->isVOP3P() ? 3 : 1) - add_op_idx; |
| |
| VALU_instruction& valu_mul = mul_instr->valu(); |
| neg[0] = valu_mul.neg[0]; |
| neg[1] = valu_mul.neg[1]; |
| abs[0] = valu_mul.abs[0]; |
| abs[1] = valu_mul.abs[1]; |
| opsel_lo = valu_mul.opsel_lo & 0x3; |
| opsel_hi = valu_mul.opsel_hi & 0x3; |
| opsel = valu_mul.opsel & 0x3; |
| |
| VALU_instruction& valu = instr->valu(); |
| neg[2] = valu.neg[add_op_idx]; |
| abs[2] = valu.abs[add_op_idx]; |
| opsel_lo[2] = valu.opsel_lo[add_op_idx]; |
| opsel_hi[2] = valu.opsel_hi[add_op_idx]; |
| opsel[2] = valu.opsel[add_op_idx]; |
| opsel[3] = valu.opsel[3]; |
| omod = valu.omod; |
| clamp = valu.clamp; |
| /* abs of the multiplication result */ |
| if (valu.abs[mul_op_idx]) { |
| neg[0] = false; |
| neg[1] = false; |
| abs[0] = true; |
| abs[1] = true; |
| } |
| /* neg of the multiplication result */ |
| neg[1] ^= valu.neg[mul_op_idx]; |
| |
| if (instr->opcode == aco_opcode::v_sub_f32 || instr->opcode == aco_opcode::v_sub_f16) |
| neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true; |
| else if (instr->opcode == aco_opcode::v_subrev_f32 || |
| instr->opcode == aco_opcode::v_subrev_f16) |
| neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true; |
| |
| aco_ptr<Instruction> add_instr = std::move(instr); |
| aco_ptr<Instruction> mad; |
| if (add_instr->isVOP3P() || mul_instr->isVOP3P()) { |
| assert(!omod); |
| assert(!opsel); |
| |
| aco_opcode mad_op = add_instr->definitions[0].bytes() == 2 ? aco_opcode::v_fma_mixlo_f16 |
| : aco_opcode::v_fma_mix_f32; |
| mad.reset(create_instruction(mad_op, Format::VOP3P, 3, 1)); |
| } else { |
| assert(!opsel_lo); |
| assert(!opsel_hi); |
| |
| aco_opcode mad_op = emit_fma ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32; |
| if (mul_instr->opcode == aco_opcode::v_mul_legacy_f32) { |
| assert(emit_fma == (ctx.program->gfx_level >= GFX10_3)); |
| mad_op = emit_fma ? aco_opcode::v_fma_legacy_f32 : aco_opcode::v_mad_legacy_f32; |
| } else if (mad16) { |
| mad_op = emit_fma ? (ctx.program->gfx_level == GFX8 ? aco_opcode::v_fma_legacy_f16 |
| : aco_opcode::v_fma_f16) |
| : (ctx.program->gfx_level == GFX8 ? aco_opcode::v_mad_legacy_f16 |
| : aco_opcode::v_mad_f16); |
| } else if (mad64) { |
| mad_op = aco_opcode::v_fma_f64; |
| } |
| |
| mad.reset(create_instruction(mad_op, Format::VOP3, 3, 1)); |
| } |
| |
| for (unsigned i = 0; i < 3; i++) { |
| mad->operands[i] = op[i]; |
| mad->valu().neg[i] = neg[i]; |
| mad->valu().abs[i] = abs[i]; |
| } |
| mad->valu().omod = omod; |
| mad->valu().clamp = clamp; |
| mad->valu().opsel_lo = opsel_lo; |
| mad->valu().opsel_hi = opsel_hi; |
| mad->valu().opsel = opsel; |
| mad->definitions[0] = add_instr->definitions[0]; |
| mad->definitions[0].setPrecise(add_instr->definitions[0].isPrecise() || |
| mul_instr->definitions[0].isPrecise()); |
| mad->pass_flags = add_instr->pass_flags; |
| |
| instr = std::move(mad); |
| |
| /* mark this ssa_def to be re-checked for profitability and literals */ |
| ctx.mad_infos.emplace_back(std::move(add_instr), mul_instr->definitions[0].tempId()); |
| ctx.info[instr->definitions[0].tempId()].set_mad(ctx.mad_infos.size() - 1); |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| return; |
| } |
| } |
| /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */ |
| else if (((instr->opcode == aco_opcode::v_mul_f32 && !instr->definitions[0].isNaNPreserve() && |
| !instr->definitions[0].isInfPreserve()) || |
| (instr->opcode == aco_opcode::v_mul_legacy_f32 && |
| !instr->definitions[0].isSZPreserve())) && |
| !instr->usesModifiers() && !ctx.fp_mode.must_flush_denorms32) { |
| for (unsigned i = 0; i < 2; i++) { |
| if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() && |
| ctx.uses[instr->operands[i].tempId()] == 1 && instr->operands[!i].isTemp() && |
| instr->operands[!i].getTemp().type() == RegType::vgpr) { |
| ctx.uses[instr->operands[i].tempId()]--; |
| ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++; |
| |
| aco_ptr<Instruction> new_instr{ |
| create_instruction(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)}; |
| new_instr->operands[0] = Operand::zero(); |
| new_instr->operands[1] = instr->operands[!i]; |
| new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp); |
| new_instr->definitions[0] = instr->definitions[0]; |
| new_instr->pass_flags = instr->pass_flags; |
| instr = std::move(new_instr); |
| ctx.info[instr->definitions[0].tempId()].label = 0; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| return; |
| } |
| } |
| } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->gfx_level >= GFX9) { |
| if (combine_three_valu_op(ctx, instr, aco_opcode::s_or_b32, aco_opcode::v_or3_b32, "012", |
| 1 | 2)) { |
| } else if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, |
| "012", 1 | 2)) { |
| } else if (combine_add_or_then_and_lshl(ctx, instr)) { |
| } else if (combine_v_andor_not(ctx, instr)) { |
| } |
| } else if (instr->opcode == aco_opcode::v_xor_b32 && ctx.program->gfx_level >= GFX10) { |
| if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xor3_b32, "012", |
| 1 | 2)) { |
| } else if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xor3_b32, |
| "012", 1 | 2)) { |
| } else if (combine_xor_not(ctx, instr)) { |
| } |
| } else if (instr->opcode == aco_opcode::v_not_b32 && ctx.program->gfx_level >= GFX10) { |
| combine_not_xor(ctx, instr); |
| } else if (instr->opcode == aco_opcode::v_add_u16 && !instr->valu().clamp) { |
| combine_three_valu_op( |
| ctx, instr, aco_opcode::v_mul_lo_u16, |
| ctx.program->gfx_level == GFX8 ? aco_opcode::v_mad_legacy_u16 : aco_opcode::v_mad_u16, |
| "120", 1 | 2); |
| } else if (instr->opcode == aco_opcode::v_add_u16_e64 && !instr->valu().clamp) { |
| combine_three_valu_op(ctx, instr, aco_opcode::v_mul_lo_u16_e64, aco_opcode::v_mad_u16, "120", |
| 1 | 2); |
| } else if (instr->opcode == aco_opcode::v_add_u32 && !instr->usesModifiers()) { |
| if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2)) { |
| } else if (combine_add_bcnt(ctx, instr)) { |
| } else if (combine_three_valu_op(ctx, instr, aco_opcode::v_mul_u32_u24, |
| aco_opcode::v_mad_u32_u24, "120", 1 | 2)) { |
| } else if (combine_three_valu_op(ctx, instr, aco_opcode::v_mul_i32_i24, |
| aco_opcode::v_mad_i32_i24, "120", 1 | 2)) { |
| } else if (ctx.program->gfx_level >= GFX9) { |
| if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xad_u32, "120", |
| 1 | 2)) { |
| } else if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, |
| "120", 1 | 2)) { |
| } else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_i32, aco_opcode::v_add3_u32, |
| "012", 1 | 2)) { |
| } else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_u32, aco_opcode::v_add3_u32, |
| "012", 1 | 2)) { |
| } else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, |
| "012", 1 | 2)) { |
| } else if (combine_add_or_then_and_lshl(ctx, instr)) { |
| } |
| } |
| } else if ((instr->opcode == aco_opcode::v_add_co_u32 || |
| instr->opcode == aco_opcode::v_add_co_u32_e64) && |
| !instr->usesModifiers()) { |
| bool carry_out = ctx.uses[instr->definitions[1].tempId()] > 0; |
| if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2)) { |
| } else if (!carry_out && combine_add_bcnt(ctx, instr)) { |
| } else if (!carry_out && combine_three_valu_op(ctx, instr, aco_opcode::v_mul_u32_u24, |
| aco_opcode::v_mad_u32_u24, "120", 1 | 2)) { |
| } else if (!carry_out && combine_three_valu_op(ctx, instr, aco_opcode::v_mul_i32_i24, |
| aco_opcode::v_mad_i32_i24, "120", 1 | 2)) { |
| } else if (!carry_out && combine_add_lshl(ctx, instr, false)) { |
| } |
| } else if (instr->opcode == aco_opcode::v_sub_u32 || instr->opcode == aco_opcode::v_sub_co_u32 || |
| instr->opcode == aco_opcode::v_sub_co_u32_e64) { |
| bool carry_out = |
| instr->opcode != aco_opcode::v_sub_u32 && ctx.uses[instr->definitions[1].tempId()] > 0; |
| if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 2)) { |
| } else if (!carry_out && combine_add_lshl(ctx, instr, true)) { |
| } |
| } else if (instr->opcode == aco_opcode::v_subrev_u32 || |
| instr->opcode == aco_opcode::v_subrev_co_u32 || |
| instr->opcode == aco_opcode::v_subrev_co_u32_e64) { |
| combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 1); |
| } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->gfx_level >= GFX9) { |
| combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", |
| 2); |
| } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && |
| ctx.program->gfx_level >= GFX9) { |
| combine_salu_lshl_add(ctx, instr); |
| } else if (instr->opcode == aco_opcode::s_not_b32 || instr->opcode == aco_opcode::s_not_b64) { |
| if (!combine_salu_not_bitwise(ctx, instr)) |
| combine_inverse_comparison(ctx, instr); |
| } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 || |
| instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) { |
| combine_salu_n2(ctx, instr); |
| } else if (instr->opcode == aco_opcode::s_abs_i32) { |
| combine_sabsdiff(ctx, instr); |
| } else if (instr->opcode == aco_opcode::v_and_b32) { |
| combine_v_andor_not(ctx, instr); |
| } else if (instr->opcode == aco_opcode::v_fma_f32 || instr->opcode == aco_opcode::v_fma_f16) { |
| /* set existing v_fma_f32 with label_mad so we can create v_fmamk_f32/v_fmaak_f32. |
| * since ctx.uses[mad_info::mul_temp_id] is always 0, we don't have to worry about |
| * select_instruction() using mad_info::add_instr. |
| */ |
| ctx.mad_infos.emplace_back(nullptr, 0); |
| ctx.info[instr->definitions[0].tempId()].set_mad(ctx.mad_infos.size() - 1); |
| } else if (instr->opcode == aco_opcode::v_med3_f32 || instr->opcode == aco_opcode::v_med3_f16) { |
| /* Optimize v_med3 to v_add so that it can be dual issued on GFX11. We start with v_med3 in |
| * case omod can be applied. |
| */ |
| unsigned idx; |
| if (detect_clamp(instr.get(), &idx)) { |
| instr->format = asVOP3(Format::VOP2); |
| instr->operands[0] = instr->operands[idx]; |
| instr->operands[1] = Operand::zero(); |
| instr->opcode = |
| instr->opcode == aco_opcode::v_med3_f32 ? aco_opcode::v_add_f32 : aco_opcode::v_add_f16; |
| instr->valu().clamp = true; |
| instr->valu().abs = (uint8_t)instr->valu().abs[idx]; |
| instr->valu().neg = (uint8_t)instr->valu().neg[idx]; |
| instr->operands.pop_back(); |
| } |
| } else { |
| aco_opcode min, max, min3, max3, med3, minmax; |
| bool some_gfx9_only; |
| if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &minmax, |
| &some_gfx9_only) && |
| (!some_gfx9_only || ctx.program->gfx_level >= GFX9)) { |
| if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, |
| instr->opcode == min ? min3 : max3, minmax)) { |
| } else { |
| combine_clamp(ctx, instr, min, max, med3); |
| } |
| } |
| } |
| } |
| |
| struct remat_entry { |
| Instruction* instr; |
| uint32_t block; |
| }; |
| |
| inline bool |
| is_constant(Instruction* instr) |
| { |
| if (instr->opcode != aco_opcode::p_parallelcopy || instr->operands.size() != 1) |
| return false; |
| |
| return instr->operands[0].isConstant() && instr->definitions[0].isTemp(); |
| } |
| |
| void |
| remat_constants_instr(opt_ctx& ctx, aco::map<Temp, remat_entry>& constants, Instruction* instr, |
| uint32_t block_idx) |
| { |
| for (Operand& op : instr->operands) { |
| if (!op.isTemp()) |
| continue; |
| |
| auto it = constants.find(op.getTemp()); |
| if (it == constants.end()) |
| continue; |
| |
| /* Check if we already emitted the same constant in this block. */ |
| if (it->second.block != block_idx) { |
| /* Rematerialize the constant. */ |
| Builder bld(ctx.program, &ctx.instructions); |
| Operand const_op = it->second.instr->operands[0]; |
| it->second.instr = bld.copy(bld.def(op.regClass()), const_op); |
| it->second.block = block_idx; |
| ctx.uses.push_back(0); |
| ctx.info.push_back(ctx.info[op.tempId()]); |
| ctx.info[it->second.instr->definitions[0].tempId()].parent_instr = it->second.instr; |
| } |
| |
| /* Use the rematerialized constant and update information about latest use. */ |
| if (op.getTemp() != it->second.instr->definitions[0].getTemp()) { |
| ctx.uses[op.tempId()]--; |
| op.setTemp(it->second.instr->definitions[0].getTemp()); |
| ctx.uses[op.tempId()]++; |
| } |
| } |
| } |
| |
| /** |
| * This pass implements a simple constant rematerialization. |
| * As common subexpression elimination (CSE) might increase the live-ranges |
| * of loaded constants over large distances, this pass splits the live-ranges |
| * again by re-emitting constants in every basic block. |
| */ |
| void |
| rematerialize_constants(opt_ctx& ctx) |
| { |
| aco::monotonic_buffer_resource memory(1024); |
| aco::map<Temp, remat_entry> constants(memory); |
| |
| for (Block& block : ctx.program->blocks) { |
| if (block.logical_idom == -1) |
| continue; |
| |
| if (block.logical_idom == (int)block.index) |
| constants.clear(); |
| |
| ctx.instructions.reserve(block.instructions.size()); |
| |
| for (aco_ptr<Instruction>& instr : block.instructions) { |
| if (is_dead(ctx.uses, instr.get())) |
| continue; |
| |
| if (is_constant(instr.get())) { |
| Temp tmp = instr->definitions[0].getTemp(); |
| constants[tmp] = {instr.get(), block.index}; |
| } else if (!is_phi(instr)) { |
| remat_constants_instr(ctx, constants, instr.get(), block.index); |
| } |
| |
| ctx.instructions.emplace_back(instr.release()); |
| } |
| |
| block.instructions = std::move(ctx.instructions); |
| } |
| } |
| |
| bool |
| to_uniform_bool_instr(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| /* Check every operand to make sure they are suitable. */ |
| for (Operand& op : instr->operands) { |
| if (!op.isTemp()) |
| return false; |
| if (!ctx.info[op.tempId()].is_uniform_bool() && !ctx.info[op.tempId()].is_uniform_bitwise()) |
| return false; |
| } |
| |
| switch (instr->opcode) { |
| case aco_opcode::s_and_b32: |
| case aco_opcode::s_and_b64: instr->opcode = aco_opcode::s_and_b32; break; |
| case aco_opcode::s_or_b32: |
| case aco_opcode::s_or_b64: instr->opcode = aco_opcode::s_or_b32; break; |
| case aco_opcode::s_xor_b32: |
| case aco_opcode::s_xor_b64: instr->opcode = aco_opcode::s_absdiff_i32; break; |
| case aco_opcode::s_not_b32: |
| case aco_opcode::s_not_b64: { |
| aco_ptr<Instruction> new_instr{ |
| create_instruction(aco_opcode::s_absdiff_i32, Format::SOP2, 2, 2)}; |
| new_instr->operands[0] = instr->operands[0]; |
| new_instr->operands[1] = Operand::c32(1); |
| new_instr->definitions[0] = instr->definitions[0]; |
| new_instr->definitions[1] = instr->definitions[1]; |
| new_instr->pass_flags = instr->pass_flags; |
| instr = std::move(new_instr); |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| ctx.info[instr->definitions[1].tempId()].parent_instr = instr.get(); |
| break; |
| } |
| default: |
| /* Don't transform other instructions. They are very unlikely to appear here. */ |
| return false; |
| } |
| |
| for (Operand& op : instr->operands) { |
| if (!op.isTemp()) |
| continue; |
| |
| ctx.uses[op.tempId()]--; |
| |
| if (ctx.info[op.tempId()].is_uniform_bool()) { |
| /* Just use the uniform boolean temp. */ |
| op.setTemp(ctx.info[op.tempId()].temp); |
| } else if (ctx.info[op.tempId()].is_uniform_bitwise()) { |
| /* Use the SCC definition of the predecessor instruction. |
| * This allows the predecessor to get picked up by the same optimization (if it has no |
| * divergent users), and it also makes sure that the current instruction will keep working |
| * even if the predecessor won't be transformed. |
| */ |
| Instruction* pred_instr = ctx.info[op.tempId()].parent_instr; |
| assert(pred_instr->definitions.size() >= 2); |
| assert(pred_instr->definitions[1].isFixed() && |
| pred_instr->definitions[1].physReg() == scc); |
| op.setTemp(pred_instr->definitions[1].getTemp()); |
| } else { |
| unreachable("Invalid operand on uniform bitwise instruction."); |
| } |
| |
| ctx.uses[op.tempId()]++; |
| } |
| |
| instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1)); |
| ctx.program->temp_rc[instr->definitions[0].tempId()] = s1; |
| assert(!instr->operands[0].isTemp() || instr->operands[0].regClass() == s1); |
| assert(!instr->operands[1].isTemp() || instr->operands[1].regClass() == s1); |
| return true; |
| } |
| |
| void |
| select_instruction(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| const uint32_t threshold = 4; |
| |
| if (is_dead(ctx.uses, instr.get())) { |
| instr.reset(); |
| return; |
| } |
| |
| /* convert split_vector into a copy or extract_vector if only one definition is ever used */ |
| if (instr->opcode == aco_opcode::p_split_vector) { |
| unsigned num_used = 0; |
| unsigned idx = 0; |
| unsigned split_offset = 0; |
| for (unsigned i = 0, offset = 0; i < instr->definitions.size(); |
| offset += instr->definitions[i++].bytes()) { |
| if (ctx.uses[instr->definitions[i].tempId()]) { |
| num_used++; |
| idx = i; |
| split_offset = offset; |
| } |
| } |
| bool done = false; |
| Instruction* vec = ctx.info[instr->operands[0].tempId()].parent_instr; |
| if (num_used == 1 && vec->opcode == aco_opcode::p_create_vector && |
| ctx.uses[instr->operands[0].tempId()] == 1) { |
| |
| unsigned off = 0; |
| Operand op; |
| for (Operand& vec_op : vec->operands) { |
| if (off == split_offset) { |
| op = vec_op; |
| break; |
| } |
| off += vec_op.bytes(); |
| } |
| if (off != instr->operands[0].bytes() && op.bytes() == instr->definitions[idx].bytes()) { |
| ctx.uses[instr->operands[0].tempId()]--; |
| for (Operand& vec_op : vec->operands) { |
| if (vec_op.isTemp()) |
| ctx.uses[vec_op.tempId()]--; |
| } |
| if (op.isTemp()) |
| ctx.uses[op.tempId()]++; |
| |
| aco_ptr<Instruction> copy{ |
| create_instruction(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1)}; |
| copy->operands[0] = op; |
| copy->definitions[0] = instr->definitions[idx]; |
| instr = std::move(copy); |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| |
| done = true; |
| } |
| } |
| |
| if (!done && num_used == 1 && |
| instr->operands[0].bytes() % instr->definitions[idx].bytes() == 0 && |
| split_offset % instr->definitions[idx].bytes() == 0) { |
| aco_ptr<Instruction> extract{ |
| create_instruction(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)}; |
| extract->operands[0] = instr->operands[0]; |
| extract->operands[1] = |
| Operand::c32((uint32_t)split_offset / instr->definitions[idx].bytes()); |
| extract->definitions[0] = instr->definitions[idx]; |
| instr = std::move(extract); |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| } |
| } |
| |
| mad_info* mad_info = NULL; |
| if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) { |
| mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val]; |
| /* re-check mad instructions */ |
| if (ctx.uses[mad_info->mul_temp_id] && mad_info->add_instr) { |
| ctx.uses[mad_info->mul_temp_id]++; |
| if (instr->operands[0].isTemp()) |
| ctx.uses[instr->operands[0].tempId()]--; |
| if (instr->operands[1].isTemp()) |
| ctx.uses[instr->operands[1].tempId()]--; |
| instr.swap(mad_info->add_instr); |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| mad_info = NULL; |
| } |
| /* check literals */ |
| else if (!instr->isDPP() && !instr->isVOP3P() && instr->opcode != aco_opcode::v_fma_f64 && |
| instr->opcode != aco_opcode::v_mad_legacy_f32 && |
| instr->opcode != aco_opcode::v_fma_legacy_f32) { |
| /* FMA can only take literals on GFX10+ */ |
| if ((instr->opcode == aco_opcode::v_fma_f32 || instr->opcode == aco_opcode::v_fma_f16) && |
| ctx.program->gfx_level < GFX10) |
| return; |
| /* There are no v_fmaak_legacy_f16/v_fmamk_legacy_f16 and on chips where VOP3 can take |
| * literals (GFX10+), these instructions don't exist. |
| */ |
| if (instr->opcode == aco_opcode::v_fma_legacy_f16) |
| return; |
| |
| uint32_t literal_mask = 0; |
| uint32_t fp16_mask = 0; |
| uint32_t sgpr_mask = 0; |
| uint32_t vgpr_mask = 0; |
| uint32_t literal_uses = UINT32_MAX; |
| uint32_t literal_value = 0; |
| |
| /* Iterate in reverse to prefer v_madak/v_fmaak. */ |
| for (int i = 2; i >= 0; i--) { |
| Operand& op = instr->operands[i]; |
| if (!op.isTemp()) |
| continue; |
| if (ctx.info[op.tempId()].is_literal(get_operand_type(instr, i).constant_bits())) { |
| uint32_t new_literal = ctx.info[op.tempId()].val; |
| float value = uif(new_literal); |
| uint16_t fp16_val = _mesa_float_to_half(value); |
| bool is_denorm = (fp16_val & 0x7fff) != 0 && (fp16_val & 0x7fff) <= 0x3ff; |
| if (_mesa_half_to_float(fp16_val) == value && |
| (!is_denorm || (ctx.fp_mode.denorm16_64 & fp_denorm_keep_in))) |
| fp16_mask |= 1 << i; |
| |
| if (!literal_mask || literal_value == new_literal) { |
| literal_value = new_literal; |
| literal_uses = MIN2(literal_uses, ctx.uses[op.tempId()]); |
| literal_mask |= 1 << i; |
| continue; |
| } |
| } |
| sgpr_mask |= op.isOfType(RegType::sgpr) << i; |
| vgpr_mask |= op.isOfType(RegType::vgpr) << i; |
| } |
| |
| /* The constant bus limitations before GFX10 disallows SGPRs. */ |
| if (sgpr_mask && ctx.program->gfx_level < GFX10) |
| literal_mask = 0; |
| |
| /* Encoding needs a vgpr. */ |
| if (!vgpr_mask) |
| literal_mask = 0; |
| |
| /* v_madmk/v_fmamk needs a vgpr in the third source. */ |
| if (!(literal_mask & 0b100) && !(vgpr_mask & 0b100)) |
| literal_mask = 0; |
| |
| /* opsel with GFX11+ is the only modifier supported by fmamk/fmaak*/ |
| if (instr->valu().abs || instr->valu().neg || instr->valu().omod || instr->valu().clamp || |
| (instr->valu().opsel && ctx.program->gfx_level < GFX11)) |
| literal_mask = 0; |
| |
| if (instr->valu().opsel & ~vgpr_mask) |
| literal_mask = 0; |
| |
| /* We can't use three unique fp16 literals */ |
| if (fp16_mask == 0b111) |
| fp16_mask = 0b11; |
| |
| if ((instr->opcode == aco_opcode::v_fma_f32 || |
| (instr->opcode == aco_opcode::v_mad_f32 && !instr->definitions[0].isPrecise())) && |
| !instr->valu().omod && ctx.program->gfx_level >= GFX10 && |
| util_bitcount(fp16_mask) > std::max<uint32_t>(util_bitcount(literal_mask), 1)) { |
| assert(ctx.program->dev.fused_mad_mix); |
| u_foreach_bit (i, fp16_mask) |
| ctx.uses[instr->operands[i].tempId()]--; |
| mad_info->fp16_mask = fp16_mask; |
| return; |
| } |
| |
| /* Limit the number of literals to apply to not increase the code |
| * size too much, but always apply literals for v_mad->v_madak |
| * because both instructions are 64-bit and this doesn't increase |
| * code size. |
| * TODO: try to apply the literals earlier to lower the number of |
| * uses below threshold |
| */ |
| if (literal_mask && (literal_uses < threshold || (literal_mask & 0b100))) { |
| u_foreach_bit (i, literal_mask) |
| ctx.uses[instr->operands[i].tempId()]--; |
| mad_info->literal_mask = literal_mask; |
| return; |
| } |
| } |
| } |
| |
| /* Mark SCC needed, so the uniform boolean transformation won't swap the definitions |
| * when it isn't beneficial */ |
| if (instr->isBranch() && instr->operands.size() && instr->operands[0].isTemp() && |
| instr->operands[0].isFixed() && instr->operands[0].physReg() == scc) { |
| ctx.info[instr->operands[0].tempId()].set_scc_needed(); |
| return; |
| } else if ((instr->opcode == aco_opcode::s_cselect_b64 || |
| instr->opcode == aco_opcode::s_cselect_b32) && |
| instr->operands[2].isTemp()) { |
| ctx.info[instr->operands[2].tempId()].set_scc_needed(); |
| } |
| |
| /* check for literals */ |
| if (!instr->isSALU() && !instr->isVALU()) |
| return; |
| |
| /* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */ |
| if (instr->definitions.size() && ctx.uses[instr->definitions[0].tempId()] == 0 && |
| ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) { |
| bool transform_done = to_uniform_bool_instr(ctx, instr); |
| |
| if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) { |
| /* Swap the two definition IDs in order to avoid overusing the SCC. |
| * This reduces extra moves generated by RA. */ |
| uint32_t def0_id = instr->definitions[0].getTemp().id(); |
| uint32_t def1_id = instr->definitions[1].getTemp().id(); |
| instr->definitions[0].setTemp(Temp(def1_id, s1)); |
| instr->definitions[1].setTemp(Temp(def0_id, s1)); |
| } |
| |
| return; |
| } |
| |
| /* This optimization is done late in order to be able to apply otherwise |
| * unsafe optimizations such as the inverse comparison optimization. |
| */ |
| if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_and_b64) { |
| if (instr->operands[0].isTemp() && fixed_to_exec(instr->operands[1]) && |
| ctx.uses[instr->operands[0].tempId()] == 1 && |
| ctx.uses[instr->definitions[1].tempId()] == 0 && |
| can_eliminate_and_exec(ctx, instr->operands[0].getTemp(), instr->pass_flags, true)) { |
| ctx.uses[instr->operands[0].tempId()]--; |
| Instruction* op_instr = ctx.info[instr->operands[0].tempId()].parent_instr; |
| |
| if (op_instr->opcode == aco_opcode::s_cselect_b32 || |
| op_instr->opcode == aco_opcode::s_cselect_b64) { |
| for (unsigned i = 0; i < 2; i++) { |
| if (op_instr->operands[i].constantEquals(-1)) |
| op_instr->operands[i] = instr->operands[1]; |
| } |
| ctx.info[op_instr->definitions[0].tempId()].label &= label_uniform_bool; |
| } |
| |
| op_instr->definitions[0].setTemp(instr->definitions[0].getTemp()); |
| ctx.info[op_instr->definitions[0].tempId()].parent_instr = op_instr; |
| instr.reset(); |
| return; |
| } |
| } |
| |
| /* Combine DPP copies into VALU. This should be done after creating MAD/FMA. */ |
| if (instr->isVALU() && !instr->isDPP()) { |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if (!instr->operands[i].isTemp()) |
| continue; |
| ssa_info info = ctx.info[instr->operands[i].tempId()]; |
| |
| if (!info.parent_instr->isDPP() || info.parent_instr->opcode != aco_opcode::v_mov_b32 || |
| info.parent_instr->pass_flags != instr->pass_flags) |
| continue; |
| |
| /* We won't eliminate the DPP mov if the operand is used twice */ |
| bool op_used_twice = false; |
| for (unsigned j = 0; j < instr->operands.size(); j++) |
| op_used_twice |= i != j && instr->operands[i] == instr->operands[j]; |
| if (op_used_twice) |
| continue; |
| |
| if (i != 0) { |
| if (!can_swap_operands(instr, &instr->opcode, 0, i)) |
| continue; |
| instr->valu().swapOperands(0, i); |
| } |
| |
| bool dpp8 = info.parent_instr->isDPP8(); |
| if (!can_use_DPP(ctx.program->gfx_level, instr, dpp8)) |
| continue; |
| |
| bool input_mods = can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, 0) && |
| get_operand_type(instr, 0).bit_size == 32; |
| bool mov_uses_mods = info.parent_instr->valu().neg[0] || info.parent_instr->valu().abs[0]; |
| if (((dpp8 && ctx.program->gfx_level < GFX11) || !input_mods) && mov_uses_mods) |
| continue; |
| |
| convert_to_DPP(ctx.program->gfx_level, instr, dpp8); |
| |
| if (dpp8) { |
| DPP8_instruction* dpp = &instr->dpp8(); |
| dpp->lane_sel = info.parent_instr->dpp8().lane_sel; |
| dpp->fetch_inactive = info.parent_instr->dpp8().fetch_inactive; |
| if (mov_uses_mods) |
| instr->format = asVOP3(instr->format); |
| } else { |
| DPP16_instruction* dpp = &instr->dpp16(); |
| /* anything else doesn't make sense in SSA */ |
| assert(info.parent_instr->dpp16().row_mask == 0xf && |
| info.parent_instr->dpp16().bank_mask == 0xf); |
| dpp->dpp_ctrl = info.parent_instr->dpp16().dpp_ctrl; |
| dpp->bound_ctrl = info.parent_instr->dpp16().bound_ctrl; |
| dpp->fetch_inactive = info.parent_instr->dpp16().fetch_inactive; |
| } |
| |
| instr->valu().neg[0] ^= info.parent_instr->valu().neg[0] && !instr->valu().abs[0]; |
| instr->valu().abs[0] |= info.parent_instr->valu().abs[0]; |
| |
| if (--ctx.uses[info.parent_instr->definitions[0].tempId()]) |
| ctx.uses[info.parent_instr->operands[0].tempId()]++; |
| instr->operands[0].setTemp(info.parent_instr->operands[0].getTemp()); |
| for (const Definition& def : instr->definitions) |
| ctx.info[def.tempId()].parent_instr = instr.get(); |
| break; |
| } |
| } |
| |
| /* Use v_fma_mix for f2f32/f2f16 if it has higher throughput. |
| * Do this late to not disturb other optimizations. |
| */ |
| if ((instr->opcode == aco_opcode::v_cvt_f32_f16 || instr->opcode == aco_opcode::v_cvt_f16_f32) && |
| ctx.program->gfx_level >= GFX11 && ctx.program->wave_size == 64 && !instr->valu().omod && |
| !instr->isDPP()) { |
| bool is_f2f16 = instr->opcode == aco_opcode::v_cvt_f16_f32; |
| Instruction* fma = create_instruction( |
| is_f2f16 ? aco_opcode::v_fma_mixlo_f16 : aco_opcode::v_fma_mix_f32, Format::VOP3P, 3, 1); |
| fma->definitions[0] = instr->definitions[0]; |
| fma->operands[0] = instr->operands[0]; |
| fma->valu().opsel_hi[0] = !is_f2f16; |
| fma->valu().opsel_lo[0] = instr->valu().opsel[0]; |
| fma->valu().clamp = instr->valu().clamp; |
| fma->valu().abs[0] = instr->valu().abs[0]; |
| fma->valu().neg[0] = instr->valu().neg[0]; |
| fma->operands[1] = Operand::c32(fui(1.0f)); |
| fma->operands[2] = Operand::zero(); |
| fma->valu().neg[2] = true; |
| instr.reset(fma); |
| ctx.info[instr->definitions[0].tempId()].label = 0; |
| ctx.info[instr->definitions[0].tempId()].parent_instr = instr.get(); |
| } |
| |
| if (instr->isSDWA() || (instr->isVOP3() && ctx.program->gfx_level < GFX10) || |
| (instr->isVOP3P() && ctx.program->gfx_level < GFX10)) |
| return; /* some encodings can't ever take literals */ |
| |
| /* we do not apply the literals yet as we don't know if it is profitable */ |
| Operand current_literal(s1); |
| |
| unsigned literal_id = 0; |
| unsigned literal_uses = UINT32_MAX; |
| Operand literal(s1); |
| unsigned num_operands = 1; |
| if (instr->isSALU() || (ctx.program->gfx_level >= GFX10 && |
| (can_use_VOP3(ctx, instr) || instr->isVOP3P()) && !instr->isDPP())) |
| num_operands = instr->operands.size(); |
| /* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */ |
| else if (instr->isVALU() && instr->operands.size() >= 3) |
| return; |
| |
| unsigned sgpr_ids[2] = {0, 0}; |
| bool is_literal_sgpr = false; |
| uint32_t mask = 0; |
| |
| /* choose a literal to apply */ |
| for (unsigned i = 0; i < num_operands; i++) { |
| Operand op = instr->operands[i]; |
| unsigned bits = get_operand_type(instr, i).constant_bits(); |
| |
| if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr && |
| op.tempId() != sgpr_ids[0]) |
| sgpr_ids[!!sgpr_ids[0]] = op.tempId(); |
| |
| if (op.isLiteral()) { |
| current_literal = op; |
| continue; |
| } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal(bits)) { |
| continue; |
| } |
| |
| if (!alu_can_accept_constant(instr, i)) |
| continue; |
| |
| if (ctx.uses[op.tempId()] < literal_uses) { |
| is_literal_sgpr = op.getTemp().type() == RegType::sgpr; |
| mask = 0; |
| literal = Operand::c32(ctx.info[op.tempId()].val); |
| literal_uses = ctx.uses[op.tempId()]; |
| literal_id = op.tempId(); |
| } |
| |
| mask |= (op.tempId() == literal_id) << i; |
| } |
| |
| /* don't go over the constant bus limit */ |
| bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64_e64 || |
| instr->opcode == aco_opcode::v_lshlrev_b64 || |
| instr->opcode == aco_opcode::v_lshrrev_b64 || |
| instr->opcode == aco_opcode::v_ashrrev_i64; |
| unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX; |
| if (ctx.program->gfx_level >= GFX10 && !is_shift64) |
| const_bus_limit = 2; |
| |
| unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1]; |
| if (num_sgprs == const_bus_limit && !is_literal_sgpr) |
| return; |
| |
| if (literal_id && literal_uses < threshold && |
| (current_literal.isUndefined() || |
| (current_literal.size() == literal.size() && |
| current_literal.constantValue() == literal.constantValue()))) { |
| /* mark the literal to be applied */ |
| while (mask) { |
| unsigned i = u_bit_scan(&mask); |
| if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id) |
| ctx.uses[instr->operands[i].tempId()]--; |
| } |
| } |
| } |
| |
| static aco_opcode |
| sopk_opcode_for_sopc(aco_opcode opcode) |
| { |
| #define CTOK(op) \ |
| case aco_opcode::s_cmp_##op##_i32: return aco_opcode::s_cmpk_##op##_i32; \ |
| case aco_opcode::s_cmp_##op##_u32: return aco_opcode::s_cmpk_##op##_u32; |
| switch (opcode) { |
| CTOK(eq) |
| CTOK(lg) |
| CTOK(gt) |
| CTOK(ge) |
| CTOK(lt) |
| CTOK(le) |
| default: return aco_opcode::num_opcodes; |
| } |
| #undef CTOK |
| } |
| |
| static bool |
| sopc_is_signed(aco_opcode opcode) |
| { |
| #define SOPC(op) \ |
| case aco_opcode::s_cmp_##op##_i32: return true; \ |
| case aco_opcode::s_cmp_##op##_u32: return false; |
| switch (opcode) { |
| SOPC(eq) |
| SOPC(lg) |
| SOPC(gt) |
| SOPC(ge) |
| SOPC(lt) |
| SOPC(le) |
| default: unreachable("Not a valid SOPC instruction."); |
| } |
| #undef SOPC |
| } |
| |
| static aco_opcode |
| sopc_32_swapped(aco_opcode opcode) |
| { |
| #define SOPC(op1, op2) \ |
| case aco_opcode::s_cmp_##op1##_i32: return aco_opcode::s_cmp_##op2##_i32; \ |
| case aco_opcode::s_cmp_##op1##_u32: return aco_opcode::s_cmp_##op2##_u32; |
| switch (opcode) { |
| SOPC(eq, eq) |
| SOPC(lg, lg) |
| SOPC(gt, lt) |
| SOPC(ge, le) |
| SOPC(lt, gt) |
| SOPC(le, ge) |
| default: return aco_opcode::num_opcodes; |
| } |
| #undef SOPC |
| } |
| |
| static void |
| try_convert_sopc_to_sopk(aco_ptr<Instruction>& instr) |
| { |
| if (sopk_opcode_for_sopc(instr->opcode) == aco_opcode::num_opcodes) |
| return; |
| |
| if (instr->operands[0].isLiteral()) { |
| std::swap(instr->operands[0], instr->operands[1]); |
| instr->opcode = sopc_32_swapped(instr->opcode); |
| } |
| |
| if (!instr->operands[1].isLiteral()) |
| return; |
| |
| if (instr->operands[0].isFixed() && instr->operands[0].physReg() >= 128) |
| return; |
| |
| uint32_t value = instr->operands[1].constantValue(); |
| |
| const uint32_t i16_mask = 0xffff8000u; |
| |
| bool value_is_i16 = (value & i16_mask) == 0 || (value & i16_mask) == i16_mask; |
| bool value_is_u16 = !(value & 0xffff0000u); |
| |
| if (!value_is_i16 && !value_is_u16) |
| return; |
| |
| if (!value_is_i16 && sopc_is_signed(instr->opcode)) { |
| if (instr->opcode == aco_opcode::s_cmp_lg_i32) |
| instr->opcode = aco_opcode::s_cmp_lg_u32; |
| else if (instr->opcode == aco_opcode::s_cmp_eq_i32) |
| instr->opcode = aco_opcode::s_cmp_eq_u32; |
| else |
| return; |
| } else if (!value_is_u16 && !sopc_is_signed(instr->opcode)) { |
| if (instr->opcode == aco_opcode::s_cmp_lg_u32) |
| instr->opcode = aco_opcode::s_cmp_lg_i32; |
| else if (instr->opcode == aco_opcode::s_cmp_eq_u32) |
| instr->opcode = aco_opcode::s_cmp_eq_i32; |
| else |
| return; |
| } |
| |
| instr->format = Format::SOPK; |
| SALU_instruction* instr_sopk = &instr->salu(); |
| |
| instr_sopk->imm = instr_sopk->operands[1].constantValue() & 0xffff; |
| instr_sopk->opcode = sopk_opcode_for_sopc(instr_sopk->opcode); |
| instr_sopk->operands.pop_back(); |
| } |
| |
| static void |
| opt_fma_mix_acc(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| /* fma_mix is only dual issued on gfx11 if dst and acc type match */ |
| bool f2f16 = instr->opcode == aco_opcode::v_fma_mixlo_f16; |
| |
| if (instr->valu().opsel_hi[2] == f2f16 || instr->isDPP()) |
| return; |
| |
| bool is_add = false; |
| for (unsigned i = 0; i < 2; i++) { |
| uint32_t one = instr->valu().opsel_hi[i] ? 0x3800 : 0x3f800000; |
| is_add = instr->operands[i].constantEquals(one) && !instr->valu().neg[i] && |
| !instr->valu().opsel_lo[i]; |
| if (is_add) { |
| instr->valu().swapOperands(0, i); |
| break; |
| } |
| } |
| |
| if (is_add && instr->valu().opsel_hi[1] == f2f16) { |
| instr->valu().swapOperands(1, 2); |
| return; |
| } |
| |
| unsigned literal_count = instr->operands[0].isLiteral() + instr->operands[1].isLiteral() + |
| instr->operands[2].isLiteral(); |
| |
| if (!f2f16 || literal_count > 1) |
| return; |
| |
| /* try to convert constant operand to fp16 */ |
| for (unsigned i = 2 - is_add; i < 3; i++) { |
| if (!instr->operands[i].isConstant()) |
| continue; |
| |
| float value = uif(instr->operands[i].constantValue()); |
| uint16_t fp16_val = _mesa_float_to_half(value); |
| bool is_denorm = (fp16_val & 0x7fff) != 0 && (fp16_val & 0x7fff) <= 0x3ff; |
| |
| if (_mesa_half_to_float(fp16_val) != value || |
| (is_denorm && !(ctx.fp_mode.denorm16_64 & fp_denorm_keep_in))) |
| continue; |
| |
| instr->valu().swapOperands(i, 2); |
| |
| Operand op16 = Operand::c16(fp16_val); |
| assert(!op16.isLiteral() || instr->operands[2].isLiteral()); |
| |
| instr->operands[2] = op16; |
| instr->valu().opsel_lo[2] = false; |
| instr->valu().opsel_hi[2] = true; |
| return; |
| } |
| } |
| |
| void |
| apply_literals(opt_ctx& ctx, aco_ptr<Instruction>& instr) |
| { |
| /* Cleanup Dead Instructions */ |
| if (!instr) |
| return; |
| |
| /* apply literals on MAD */ |
| if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) { |
| mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val]; |
| const bool madak = (info->literal_mask & 0b100); |
| bool has_dead_literal = false; |
| u_foreach_bit (i, info->literal_mask | info->fp16_mask) |
| has_dead_literal |= ctx.uses[instr->operands[i].tempId()] == 0; |
| |
| if (has_dead_literal && info->fp16_mask) { |
| instr->format = Format::VOP3P; |
| instr->opcode = aco_opcode::v_fma_mix_f32; |
| |
| uint32_t literal = 0; |
| bool second = false; |
| u_foreach_bit (i, info->fp16_mask) { |
| float value = uif(ctx.info[instr->operands[i].tempId()].val); |
| literal |= _mesa_float_to_half(value) << (second * 16); |
| instr->valu().opsel_lo[i] = second; |
| instr->valu().opsel_hi[i] = true; |
| second = true; |
| } |
| |
| for (unsigned i = 0; i < 3; i++) { |
| if (info->fp16_mask & (1 << i)) |
| instr->operands[i] = Operand::literal32(literal); |
| } |
| |
| ctx.instructions.emplace_back(std::move(instr)); |
| return; |
| } |
| |
| if (has_dead_literal || madak) { |
| aco_opcode new_op = madak ? aco_opcode::v_madak_f32 : aco_opcode::v_madmk_f32; |
| if (instr->opcode == aco_opcode::v_fma_f32) |
| new_op = madak ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32; |
| else if (instr->opcode == aco_opcode::v_mad_f16 || |
| instr->opcode == aco_opcode::v_mad_legacy_f16) |
| new_op = madak ? aco_opcode::v_madak_f16 : aco_opcode::v_madmk_f16; |
| else if (instr->opcode == aco_opcode::v_fma_f16) |
| new_op = madak ? aco_opcode::v_fmaak_f16 : aco_opcode::v_fmamk_f16; |
| |
| uint32_t literal = ctx.info[instr->operands[ffs(info->literal_mask) - 1].tempId()].val; |
| instr->format = Format::VOP2; |
| instr->opcode = new_op; |
| for (unsigned i = 0; i < 3; i++) { |
| if (info->literal_mask & (1 << i)) |
| instr->operands[i] = Operand::literal32(literal); |
| } |
| if (madak) { /* add literal -> madak */ |
| if (!instr->operands[1].isOfType(RegType::vgpr)) |
| instr->valu().swapOperands(0, 1); |
| } else { /* mul literal -> madmk */ |
| if (!(info->literal_mask & 0b10)) |
| instr->valu().swapOperands(0, 1); |
| instr->valu().swapOperands(1, 2); |
| } |
| ctx.instructions.emplace_back(std::move(instr)); |
| return; |
| } |
| } |
| |
| /* apply literals on other SALU/VALU */ |
| if (instr->isSALU() || instr->isVALU()) { |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| Operand op = instr->operands[i]; |
| unsigned bits = get_operand_type(instr, i).constant_bits(); |
| if (op.isTemp() && ctx.info[op.tempId()].is_literal(bits) && ctx.uses[op.tempId()] == 0) { |
| Operand literal = Operand::literal32(ctx.info[op.tempId()].val); |
| instr->format = withoutDPP(instr->format); |
| if (instr->isVALU() && i > 0 && instr->format != Format::VOP3P) |
| instr->format = asVOP3(instr->format); |
| instr->operands[i] = literal; |
| } |
| } |
| } |
| |
| if (instr->isSOPC() && ctx.program->gfx_level < GFX12) |
| try_convert_sopc_to_sopk(instr); |
| |
| if (instr->opcode == aco_opcode::v_fma_mixlo_f16 || instr->opcode == aco_opcode::v_fma_mix_f32) |
| opt_fma_mix_acc(ctx, instr); |
| |
| ctx.instructions.emplace_back(std::move(instr)); |
| } |
| |
| void |
| validate_opt_ctx(opt_ctx& ctx) |
| { |
| if (!(debug_flags & DEBUG_VALIDATE_OPT)) |
| return; |
| |
| Program* program = ctx.program; |
| |
| bool is_valid = true; |
| auto check = [&program, &is_valid](bool success, const char* msg, |
| aco::Instruction* instr) -> void |
| { |
| if (!success) { |
| char* out; |
| size_t outsize; |
| struct u_memstream mem; |
| u_memstream_open(&mem, &out, &outsize); |
| FILE* const memf = u_memstream_get(&mem); |
| |
| fprintf(memf, "Optimizer: %s: ", msg); |
| aco_print_instr(program->gfx_level, instr, memf); |
| u_memstream_close(&mem); |
| |
| aco_err(program, "%s", out); |
| free(out); |
| |
| is_valid = false; |
| } |
| }; |
| |
| for (Block& block : program->blocks) { |
| for (aco_ptr<Instruction>& instr : block.instructions) { |
| if (!instr) |
| continue; |
| for (const Definition& def : instr->definitions) { |
| check(ctx.info[def.tempId()].parent_instr == instr.get(), "parent_instr incorrect", |
| instr.get()); |
| } |
| } |
| } |
| if (!is_valid) { |
| abort(); |
| } |
| } |
| |
| void rename_loop_header_phis(opt_ctx& ctx) { |
| for (Block& block : ctx.program->blocks) { |
| if (!(block.kind & block_kind_loop_header)) |
| continue; |
| |
| for (auto& instr : block.instructions) { |
| if (!is_phi(instr)) |
| break; |
| |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| if (!instr->operands[i].isTemp()) |
| continue; |
| |
| ssa_info info = ctx.info[instr->operands[i].tempId()]; |
| while (info.is_temp()) { |
| pseudo_propagate_temp(ctx, instr, info.temp, i); |
| info = ctx.info[info.temp.id()]; |
| } |
| } |
| } |
| } |
| } |
| |
| } /* end namespace */ |
| |
| void |
| optimize(Program* program) |
| { |
| opt_ctx ctx; |
| ctx.program = program; |
| ctx.info = std::vector<ssa_info>(program->peekAllocationId()); |
| |
| /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */ |
| for (Block& block : program->blocks) { |
| ctx.fp_mode = block.fp_mode; |
| for (aco_ptr<Instruction>& instr : block.instructions) |
| label_instruction(ctx, instr); |
| } |
| |
| validate_opt_ctx(ctx); |
| |
| rename_loop_header_phis(ctx); |
| |
| validate_opt_ctx(ctx); |
| |
| ctx.uses = dead_code_analysis(program); |
| |
| /* 2. Rematerialize constants in every block. */ |
| rematerialize_constants(ctx); |
| |
| validate_opt_ctx(ctx); |
| |
| /* 3. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */ |
| for (Block& block : program->blocks) { |
| ctx.fp_mode = block.fp_mode; |
| for (aco_ptr<Instruction>& instr : block.instructions) |
| combine_instruction(ctx, instr); |
| } |
| |
| validate_opt_ctx(ctx); |
| |
| /* 4. Top-Down DAG pass (backward) to select instructions (includes DCE) */ |
| for (auto block_rit = program->blocks.rbegin(); block_rit != program->blocks.rend(); |
| ++block_rit) { |
| Block* block = &(*block_rit); |
| ctx.fp_mode = block->fp_mode; |
| for (auto instr_rit = block->instructions.rbegin(); instr_rit != block->instructions.rend(); |
| ++instr_rit) |
| select_instruction(ctx, *instr_rit); |
| } |
| |
| validate_opt_ctx(ctx); |
| |
| /* 5. Add literals to instructions */ |
| for (Block& block : program->blocks) { |
| ctx.instructions.reserve(block.instructions.size()); |
| ctx.fp_mode = block.fp_mode; |
| for (aco_ptr<Instruction>& instr : block.instructions) |
| apply_literals(ctx, instr); |
| block.instructions = std::move(ctx.instructions); |
| } |
| |
| validate_opt_ctx(ctx); |
| } |
| |
| } // namespace aco |