| /* |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include <assert.h> |
| #include <stdbool.h> |
| #include <string.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| #include <sys/mman.h> |
| #include "drm-uapi/drm_fourcc.h" |
| |
| #include "anv_private.h" |
| #include "common/intel_aux_map.h" |
| #include "util/u_debug.h" |
| #include "vk_util.h" |
| #include "util/u_math.h" |
| |
| #include "vk_format.h" |
| |
| #define ANV_OFFSET_IMPLICIT UINT64_MAX |
| |
| static const enum isl_surf_dim |
| vk_to_isl_surf_dim[] = { |
| [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D, |
| [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D, |
| [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D, |
| }; |
| |
| static uint64_t MUST_CHECK UNUSED |
| memory_range_end(struct anv_image_memory_range memory_range) |
| { |
| assert(anv_is_aligned(memory_range.offset, memory_range.alignment)); |
| return memory_range.offset + memory_range.size; |
| } |
| |
| /** |
| * Get binding for VkImagePlaneMemoryRequirementsInfo, |
| * VkBindImagePlaneMemoryInfo and VkDeviceImageMemoryRequirements. |
| */ |
| struct anv_image_binding * |
| anv_image_aspect_to_binding(struct anv_image *image, |
| VkImageAspectFlags aspect) |
| { |
| uint32_t plane = 0; |
| |
| assert(image->disjoint); |
| |
| if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { |
| /* Spec requires special aspects for modifier images. */ |
| assert(aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT || |
| aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT || |
| aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT || |
| aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT); |
| |
| /* We don't advertise DISJOINT for modifiers with aux, and therefore we |
| * don't handle queries of the modifier's "aux plane" here. |
| */ |
| assert(!isl_drm_modifier_has_aux(image->vk.drm_format_mod)); |
| |
| switch(aspect) { |
| case VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT: plane = 0; break; |
| case VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT: plane = 1; break; |
| case VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT: plane = 2; break; |
| case VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT: plane = 3; break; |
| } |
| } else { |
| plane = anv_image_aspect_to_plane(image, aspect); |
| } |
| |
| return &image->bindings[ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane]; |
| } |
| |
| /** |
| * Extend the memory binding's range by appending a new memory range with `size` |
| * and `alignment` at `offset`. Return the appended range. |
| * |
| * Offset is ignored if ANV_OFFSET_IMPLICIT. |
| * |
| * The given binding must not be ANV_IMAGE_MEMORY_BINDING_MAIN. The function |
| * converts to MAIN as needed. |
| */ |
| static VkResult MUST_CHECK |
| image_binding_grow(const struct anv_device *device, |
| struct anv_image *image, |
| enum anv_image_memory_binding binding, |
| uint64_t offset, |
| uint64_t size, |
| uint32_t alignment, |
| struct anv_image_memory_range *out_range) |
| { |
| /* We overwrite 'offset' but need to remember if it was implicit. */ |
| const bool has_implicit_offset = (offset == ANV_OFFSET_IMPLICIT); |
| |
| assert(size > 0); |
| assert(util_is_power_of_two_or_zero(alignment)); |
| |
| switch (binding) { |
| case ANV_IMAGE_MEMORY_BINDING_MAIN: |
| /* The caller must not pre-translate BINDING_PLANE_i to BINDING_MAIN. */ |
| unreachable("ANV_IMAGE_MEMORY_BINDING_MAIN"); |
| case ANV_IMAGE_MEMORY_BINDING_PLANE_0: |
| case ANV_IMAGE_MEMORY_BINDING_PLANE_1: |
| case ANV_IMAGE_MEMORY_BINDING_PLANE_2: |
| if (!image->disjoint) |
| binding = ANV_IMAGE_MEMORY_BINDING_MAIN; |
| break; |
| case ANV_IMAGE_MEMORY_BINDING_PRIVATE: |
| assert(offset == ANV_OFFSET_IMPLICIT); |
| break; |
| case ANV_IMAGE_MEMORY_BINDING_END: |
| unreachable("ANV_IMAGE_MEMORY_BINDING_END"); |
| } |
| |
| struct anv_image_memory_range *container = |
| &image->bindings[binding].memory_range; |
| |
| if (has_implicit_offset) { |
| offset = align64(container->offset + container->size, alignment); |
| } else { |
| /* Offset must be validated because it comes from |
| * VkImageDrmFormatModifierExplicitCreateInfoEXT. |
| */ |
| if (unlikely(!anv_is_aligned(offset, alignment))) { |
| return vk_errorf(device, |
| VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT, |
| "VkImageDrmFormatModifierExplicitCreateInfoEXT::" |
| "pPlaneLayouts[]::offset is misaligned"); |
| } |
| } |
| |
| /* Surfaces can be added out of memory-order. Track the end of each memory |
| * plane to update the binding size properly. |
| */ |
| uint64_t memory_range_end; |
| if (__builtin_add_overflow(offset, size, &memory_range_end)) { |
| if (has_implicit_offset) { |
| assert(!"overflow"); |
| return vk_errorf(device, VK_ERROR_UNKNOWN, |
| "internal error: overflow in %s", __func__); |
| } else { |
| return vk_errorf(device, |
| VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT, |
| "VkImageDrmFormatModifierExplicitCreateInfoEXT::" |
| "pPlaneLayouts[]::offset is too large"); |
| } |
| } |
| |
| container->size = MAX2(container->size, memory_range_end); |
| container->alignment = MAX2(container->alignment, alignment); |
| |
| *out_range = (struct anv_image_memory_range) { |
| .binding = binding, |
| .offset = offset, |
| .size = size, |
| .alignment = alignment, |
| }; |
| |
| return VK_SUCCESS; |
| } |
| |
| /** |
| * Adjust range 'a' to contain range 'b'. |
| * |
| * For simplicity's sake, the offset of 'a' must be 0 and remains 0. |
| * If 'a' and 'b' target different bindings, then no merge occurs. |
| */ |
| static void |
| memory_range_merge(struct anv_image_memory_range *a, |
| const struct anv_image_memory_range b) |
| { |
| if (b.size == 0) |
| return; |
| |
| if (a->binding != b.binding) |
| return; |
| |
| assert(a->offset == 0); |
| assert(anv_is_aligned(a->offset, a->alignment)); |
| assert(anv_is_aligned(b.offset, b.alignment)); |
| |
| a->alignment = MAX2(a->alignment, b.alignment); |
| a->size = MAX2(a->size, b.offset + b.size); |
| } |
| |
| isl_surf_usage_flags_t |
| anv_image_choose_isl_surf_usage(struct anv_physical_device *device, |
| VkImageCreateFlags vk_create_flags, |
| VkImageUsageFlags vk_usage, |
| isl_surf_usage_flags_t isl_extra_usage, |
| VkImageAspectFlagBits aspect) |
| { |
| isl_surf_usage_flags_t isl_usage = isl_extra_usage; |
| |
| /* On platform like MTL, we choose to allocate additional CCS memory at the |
| * back of the VkDeviceMemory objects since different images can share the |
| * AUX-TT PTE because the HW doesn't care about the image format in the |
| * PTE. That means we can always ignore the AUX-TT alignment requirement |
| * from an ISL point of view. |
| */ |
| if (device->alloc_aux_tt_mem) |
| isl_usage |= ISL_SURF_USAGE_NO_AUX_TT_ALIGNMENT_BIT; |
| |
| if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT) |
| isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; |
| |
| if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) |
| isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; |
| |
| if (vk_usage & VK_IMAGE_USAGE_STORAGE_BIT) |
| isl_usage |= ISL_SURF_USAGE_STORAGE_BIT; |
| |
| if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) |
| isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; |
| |
| if (vk_usage & VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR) |
| isl_usage |= ISL_SURF_USAGE_CPB_BIT; |
| |
| if (vk_create_flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) |
| isl_usage |= ISL_SURF_USAGE_SPARSE_BIT | |
| ISL_SURF_USAGE_DISABLE_AUX_BIT; |
| |
| if (vk_usage & VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR || |
| vk_usage & VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR) |
| isl_usage |= ISL_SURF_USAGE_VIDEO_DECODE_BIT; |
| |
| if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) |
| isl_usage |= ISL_SURF_USAGE_CUBE_BIT; |
| |
| if (vk_create_flags & (VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT | |
| VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT)) |
| isl_usage |= ISL_SURF_USAGE_2D_3D_COMPATIBLE_BIT; |
| |
| /* Even if we're only using it for transfer operations, clears to depth and |
| * stencil images happen as depth and stencil so they need the right ISL |
| * usage bits or else things will fall apart. |
| */ |
| switch (aspect) { |
| case VK_IMAGE_ASPECT_DEPTH_BIT: |
| isl_usage |= ISL_SURF_USAGE_DEPTH_BIT; |
| break; |
| case VK_IMAGE_ASPECT_STENCIL_BIT: |
| isl_usage |= ISL_SURF_USAGE_STENCIL_BIT; |
| break; |
| case VK_IMAGE_ASPECT_COLOR_BIT: |
| case VK_IMAGE_ASPECT_PLANE_0_BIT: |
| case VK_IMAGE_ASPECT_PLANE_1_BIT: |
| case VK_IMAGE_ASPECT_PLANE_2_BIT: |
| break; |
| default: |
| unreachable("bad VkImageAspect"); |
| } |
| |
| if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) { |
| /* blorp implements transfers by sampling from the source image. */ |
| isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; |
| } |
| |
| if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT && |
| aspect == VK_IMAGE_ASPECT_COLOR_BIT) { |
| /* blorp implements transfers by rendering into the destination image. |
| * Only request this with color images, as we deal with depth/stencil |
| * formats differently. */ |
| isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; |
| } |
| |
| return isl_usage; |
| } |
| |
| static isl_tiling_flags_t |
| choose_isl_tiling_flags(const struct intel_device_info *devinfo, |
| const struct anv_image_create_info *anv_info, |
| const struct isl_drm_modifier_info *isl_mod_info, |
| bool legacy_scanout) |
| { |
| const VkImageCreateInfo *base_info = anv_info->vk_info; |
| isl_tiling_flags_t flags = 0; |
| |
| assert((isl_mod_info != NULL) == |
| (base_info->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)); |
| |
| switch (base_info->tiling) { |
| default: |
| unreachable("bad VkImageTiling"); |
| case VK_IMAGE_TILING_OPTIMAL: |
| flags = ISL_TILING_ANY_MASK; |
| break; |
| case VK_IMAGE_TILING_LINEAR: |
| flags = ISL_TILING_LINEAR_BIT; |
| break; |
| case VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT: |
| flags = 1 << isl_mod_info->tiling; |
| } |
| |
| if (anv_info->isl_tiling_flags) { |
| assert(isl_mod_info == NULL); |
| flags &= anv_info->isl_tiling_flags; |
| } |
| |
| if (legacy_scanout) { |
| isl_tiling_flags_t legacy_mask = ISL_TILING_LINEAR_BIT; |
| if (devinfo->has_tiling_uapi) |
| legacy_mask |= ISL_TILING_X_BIT; |
| flags &= legacy_mask; |
| } |
| |
| assert(flags); |
| |
| return flags; |
| } |
| |
| /** |
| * Add the surface to the binding at the given offset. |
| * |
| * \see image_binding_grow() |
| */ |
| static VkResult MUST_CHECK |
| add_surface(struct anv_device *device, |
| struct anv_image *image, |
| struct anv_surface *surf, |
| enum anv_image_memory_binding binding, |
| uint64_t offset) |
| { |
| /* isl surface must be initialized */ |
| assert(surf->isl.size_B > 0); |
| |
| return image_binding_grow(device, image, binding, offset, |
| surf->isl.size_B, |
| surf->isl.alignment_B, |
| &surf->memory_range); |
| } |
| |
| static bool |
| can_fast_clear_with_non_zero_color(const struct intel_device_info *devinfo, |
| const struct anv_image *image, |
| uint32_t plane, |
| const VkImageFormatListCreateInfo *fmt_list) |
| { |
| /* If we don't have an AUX surface where fast clears apply, we can return |
| * early. |
| */ |
| if (!isl_aux_usage_has_fast_clears(image->planes[plane].aux_usage)) |
| return false; |
| |
| /* On TGL (< C0), if a block of fragment shader outputs match the surface's |
| * clear color, the HW may convert them to fast-clears (see HSD 1607794140). |
| * This can lead to rendering corruptions if not handled properly. We |
| * restrict the clear color to zero to avoid issues that can occur with: |
| * - Texture view rendering (including blorp_copy calls) |
| * - Images with multiple levels or array layers |
| */ |
| if (image->planes[plane].aux_usage == ISL_AUX_USAGE_FCV_CCS_E) |
| return false; |
| |
| /* Turning on non zero fast clears for CCS_E introduces a performance |
| * regression for games such as F1 22 and RDR2 by introducing additional |
| * partial resolves. Let's turn non zero fast clears back off till we can |
| * fix performance. |
| */ |
| if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E && |
| devinfo->ver >= 12) |
| return false; |
| |
| /* Non mutable image, we can fast clear with any color supported by HW. |
| */ |
| if (!(image->vk.create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) |
| return true; |
| |
| /* Mutable image with no format list, we have to assume all formats */ |
| if (!fmt_list || fmt_list->viewFormatCount == 0) |
| return false; |
| |
| enum isl_format img_format = image->planes[plane].primary_surface.isl.format; |
| |
| /* Check bit compatibility for clear color components */ |
| for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) { |
| if (fmt_list->pViewFormats[i] == VK_FORMAT_UNDEFINED) |
| continue; |
| |
| struct anv_format_plane view_format_plane = |
| anv_get_format_plane(devinfo, fmt_list->pViewFormats[i], |
| plane, image->vk.tiling); |
| |
| enum isl_format view_format = view_format_plane.isl_format; |
| |
| if (!isl_formats_have_same_bits_per_channel(img_format, view_format)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Return true if the storage image could be used with atomics. |
| * |
| * If the image was created with an explicit format, we check it for typed |
| * atomic support. If MUTABLE_FORMAT_BIT is set, then we check the optional |
| * format list, seeing if /any/ of the formats support typed atomics. If no |
| * list is supplied, we fall back to using the bpb, as the application could |
| * make an image view with a format that does use atomics. |
| */ |
| static bool |
| storage_image_format_supports_atomic(const struct intel_device_info *devinfo, |
| VkImageCreateFlags create_flags, |
| enum isl_format format, |
| VkImageTiling vk_tiling, |
| const VkImageFormatListCreateInfo *fmt_list) |
| { |
| if (isl_format_supports_typed_atomics(devinfo, format)) |
| return true; |
| |
| if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) |
| return false; |
| |
| if (fmt_list) { |
| for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) { |
| if (fmt_list->pViewFormats[i] == VK_FORMAT_UNDEFINED) |
| continue; |
| |
| enum isl_format view_format = |
| anv_get_isl_format(devinfo, fmt_list->pViewFormats[i], |
| VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling); |
| |
| if (isl_format_supports_typed_atomics(devinfo, view_format)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* No explicit format list. Any 16/32/64bpp format could be used with atomics. */ |
| unsigned bpb = isl_format_get_layout(format)->bpb; |
| return bpb == 16 || bpb == 32 || bpb == 64; |
| } |
| |
| static enum isl_format |
| anv_get_isl_format_with_usage(const struct intel_device_info *devinfo, |
| VkFormat vk_format, |
| VkImageAspectFlagBits vk_aspect, |
| VkImageUsageFlags vk_usage, |
| VkImageTiling vk_tiling) |
| { |
| assert(util_bitcount(vk_usage) == 1); |
| struct anv_format_plane format = |
| anv_get_format_aspect(devinfo, vk_format, vk_aspect, |
| vk_tiling); |
| |
| return format.isl_format; |
| } |
| |
| static bool |
| formats_ccs_e_compatible(const struct intel_device_info *devinfo, |
| VkImageCreateFlags create_flags, |
| enum isl_format format, VkImageTiling vk_tiling, |
| VkImageUsageFlags vk_usage, |
| const VkImageFormatListCreateInfo *fmt_list) |
| { |
| if (!anv_format_supports_ccs_e(devinfo, format)) |
| return false; |
| |
| /* For images created without MUTABLE_FORMAT_BIT set, we know that they will |
| * always be used with the original format. In particular, they will always |
| * be used with a format that supports color compression. |
| */ |
| if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) |
| return true; |
| |
| if (!fmt_list || fmt_list->viewFormatCount == 0) |
| return false; |
| |
| for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) { |
| if (fmt_list->pViewFormats[i] == VK_FORMAT_UNDEFINED) |
| continue; |
| |
| enum isl_format view_format = |
| anv_get_isl_format_with_usage(devinfo, fmt_list->pViewFormats[i], |
| VK_IMAGE_ASPECT_COLOR_BIT, vk_usage, |
| vk_tiling); |
| |
| if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool |
| anv_format_supports_ccs_e(const struct intel_device_info *devinfo, |
| const enum isl_format format) |
| { |
| /* CCS_E for YCRCB_NORMAL and YCRCB_SWAP_UV is not currently supported by |
| * ANV so leave it disabled for now. |
| */ |
| if (isl_format_is_yuv(format)) |
| return false; |
| |
| return isl_format_supports_ccs_e(devinfo, format); |
| } |
| |
| bool |
| anv_formats_ccs_e_compatible(const struct intel_device_info *devinfo, |
| VkImageCreateFlags create_flags, |
| VkFormat vk_format, VkImageTiling vk_tiling, |
| VkImageUsageFlags vk_usage, |
| const VkImageFormatListCreateInfo *fmt_list) |
| { |
| enum isl_format format = |
| anv_get_isl_format_with_usage(devinfo, vk_format, |
| VK_IMAGE_ASPECT_COLOR_BIT, |
| VK_IMAGE_USAGE_SAMPLED_BIT, vk_tiling); |
| |
| if (!formats_ccs_e_compatible(devinfo, create_flags, format, vk_tiling, |
| VK_IMAGE_USAGE_SAMPLED_BIT, fmt_list)) |
| return false; |
| |
| if (vk_usage & VK_IMAGE_USAGE_STORAGE_BIT) { |
| if (devinfo->verx10 < 125) |
| return false; |
| |
| enum isl_format lower_format = |
| anv_get_isl_format_with_usage(devinfo, vk_format, |
| VK_IMAGE_ASPECT_COLOR_BIT, |
| VK_IMAGE_USAGE_STORAGE_BIT, vk_tiling); |
| |
| if (!isl_formats_are_ccs_e_compatible(devinfo, format, lower_format)) |
| return false; |
| |
| if (!formats_ccs_e_compatible(devinfo, create_flags, format, vk_tiling, |
| VK_IMAGE_USAGE_STORAGE_BIT, fmt_list)) |
| return false; |
| |
| /* Disable compression when surface can be potentially used for atomic |
| * operation. |
| */ |
| if (storage_image_format_supports_atomic(devinfo, create_flags, format, |
| vk_tiling, fmt_list)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * For color images that have an auxiliary surface, request allocation for an |
| * additional buffer that mainly stores fast-clear values. Use of this buffer |
| * allows us to access the image's subresources while being aware of their |
| * fast-clear values in non-trivial cases (e.g., outside of a render pass in |
| * which a fast clear has occurred). |
| * |
| * In order to avoid having multiple clear colors for a single plane of an |
| * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on |
| * the first slice (level 0, layer 0). At the time of our testing (Jan 17, |
| * 2018), there were no known applications which would benefit from fast- |
| * clearing more than just the first slice. |
| * |
| * The fast clear portion of the image is laid out in the following order: |
| * |
| * * 1 or 4 dwords (depending on hardware generation) for the clear color |
| * * 1 dword for the anv_fast_clear_type of the clear color |
| * * On gfx9+, 1 dword per level and layer of the image (3D levels count |
| * multiple layers) in level-major order for compression state. |
| * |
| * For the purpose of discoverability, the algorithm used to manage |
| * compression and fast-clears is described here: |
| * |
| * * On a transition from UNDEFINED or PREINITIALIZED to a defined layout, |
| * all of the values in the fast clear portion of the image are initialized |
| * to default values. |
| * |
| * * On fast-clear, the clear value is written into surface state and also |
| * into the buffer and the fast clear type is set appropriately. Both |
| * setting the fast-clear value in the buffer and setting the fast-clear |
| * type happen from the GPU using MI commands. |
| * |
| * * Whenever a render or blorp operation is performed with CCS_E, we call |
| * genX(cmd_buffer_mark_image_written) to set the compression state to |
| * true (which is represented by UINT32_MAX). |
| * |
| * * On pipeline barrier transitions, the worst-case transition is computed |
| * from the image layouts. The command streamer inspects the fast clear |
| * type and compression state dwords and constructs a predicate. The |
| * worst-case resolve is performed with the given predicate and the fast |
| * clear and compression state is set accordingly. |
| * |
| * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for |
| * details on exactly what is allowed in what layouts. |
| * |
| * On gfx7-9, we do not have a concept of indirect clear colors in hardware. |
| * In order to deal with this, we have to do some clear color management. |
| * |
| * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear |
| * value from the buffer into the surface state with MI commands. |
| * |
| * * For any blorp operations, we pass the address to the clear value into |
| * blorp and it knows to copy the clear color. |
| */ |
| static VkResult MUST_CHECK |
| add_aux_state_tracking_buffer(struct anv_device *device, |
| struct anv_image *image, |
| uint64_t state_offset, |
| uint32_t plane) |
| { |
| assert(image && device); |
| assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_NONE && |
| image->vk.aspects & (VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV | |
| VK_IMAGE_ASPECT_DEPTH_BIT)); |
| |
| unsigned clear_color_state_size; |
| if (device->info->ver >= 11) { |
| /* When importing an image from another source with a drm modifier that |
| * supports clear color, the clear color values are in a 32-byte struct |
| * defined in drm_fourcc.h. The fast clear type and compression state |
| * are not defined in these drm_fourcc.h, so there won't be memory |
| * allocated for these extra meta data by the source. |
| * |
| * We use the last 2 dwords of the clear color struct's memory to store |
| * the fast clear type and the first compression state, so the driver |
| * doesn't assume the extra size or need another allocation later. |
| * |
| * So far, the 2 stolen dwords are either not used in the clear color |
| * struct or for features not enabled. There should be no side effect to |
| * the hardware and destinations of images exported by this driver. |
| * |
| * Images with multiple levels or layers are not supported by drm |
| * modifiers, so we don't have to apply the above approach or face a |
| * bigger shortage from multiple compression states. We just apply the |
| * approach to all cases to keep the design unified. |
| * |
| * As a result, the state starts 8 bytes lower than where it should be. |
| */ |
| assert(device->isl_dev.ss.clear_color_state_size >= 32); |
| clear_color_state_size = device->isl_dev.ss.clear_color_state_size - 8; |
| } else { |
| clear_color_state_size = device->isl_dev.ss.clear_value_size; |
| } |
| |
| /* Clear color and fast clear type */ |
| unsigned state_size = clear_color_state_size + 4; |
| |
| /* We only need to track compression on CCS_E surfaces. */ |
| if (isl_aux_usage_has_ccs_e(image->planes[plane].aux_usage)) { |
| if (image->vk.image_type == VK_IMAGE_TYPE_3D) { |
| for (uint32_t l = 0; l < image->vk.mip_levels; l++) |
| state_size += u_minify(image->vk.extent.depth, l) * 4; |
| } else { |
| state_size += image->vk.mip_levels * image->vk.array_layers * 4; |
| } |
| } |
| |
| enum anv_image_memory_binding binding = |
| ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane; |
| |
| /* If an auxiliary surface is used for an externally-shareable image, |
| * we have to hide this from the memory of the image since other |
| * processes with access to the memory may not be aware of it or of |
| * its current state. So put that auxiliary data into a separate |
| * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE). |
| * |
| * But when the image is created with a drm modifier that supports |
| * clear color, it will be exported along with main surface. |
| */ |
| if (anv_image_is_externally_shared(image) |
| && !isl_drm_modifier_get_info(image->vk.drm_format_mod)->supports_clear_color) { |
| binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE; |
| } |
| |
| /* We believe that 256B alignment may be sufficient, but we choose 4K due to |
| * lack of testing. And MI_LOAD/STORE operations require dword-alignment. |
| */ |
| return image_binding_grow(device, image, binding, |
| state_offset, state_size, 4096, |
| &image->planes[plane].fast_clear_memory_range); |
| } |
| |
| static VkResult MUST_CHECK |
| add_compression_control_buffer(struct anv_device *device, |
| struct anv_image *image, |
| uint32_t plane, |
| uint32_t binding, |
| uint64_t offset) |
| { |
| assert(device->info->has_aux_map); |
| |
| uint64_t ratio = intel_aux_get_main_to_aux_ratio(device->aux_map_ctx); |
| assert(image->planes[plane].primary_surface.isl.size_B % ratio == 0); |
| uint64_t size = image->planes[plane].primary_surface.isl.size_B / ratio; |
| |
| /* The diagram in the Bspec section, Memory Compression - Gfx12 (44930), |
| * shows that the CCS is indexed in 256B chunks for TGL, 4K chunks for MTL. |
| * When modifiers are in use, the 4K alignment requirement of the |
| * PLANE_AUX_DIST::Auxiliary Surface Distance field must be considered |
| * (Bspec 50379). Keep things simple and just use 4K. |
| */ |
| uint32_t alignment = 4096; |
| |
| return image_binding_grow(device, image, binding, offset, size, alignment, |
| &image->planes[plane].compr_ctrl_memory_range); |
| } |
| |
| /** |
| * The return code indicates whether creation of the VkImage should continue |
| * or fail, not whether the creation of the aux surface succeeded. If the aux |
| * surface is not required (for example, by neither hardware nor DRM format |
| * modifier), then this may return VK_SUCCESS when creation of the aux surface |
| * fails. |
| * |
| * @param offset See add_surface() |
| */ |
| static VkResult |
| add_aux_surface_if_supported(struct anv_device *device, |
| struct anv_image *image, |
| uint32_t plane, |
| struct anv_format_plane plane_format, |
| const VkImageFormatListCreateInfo *fmt_list, |
| uint64_t offset, |
| uint32_t stride, |
| uint64_t aux_state_offset, |
| isl_surf_usage_flags_t isl_extra_usage_flags) |
| { |
| VkImageAspectFlags aspect = plane_format.aspect; |
| VkResult result; |
| bool ok; |
| |
| /* The aux surface must not be already added. */ |
| assert(!anv_surface_is_valid(&image->planes[plane].aux_surface)); |
| |
| if ((isl_extra_usage_flags & ISL_SURF_USAGE_DISABLE_AUX_BIT)) |
| return VK_SUCCESS; |
| |
| /* TODO: consider whether compression with sparse is workable. */ |
| if (anv_image_is_sparse(image)) |
| return VK_SUCCESS; |
| |
| /* If resource created with sharing mode CONCURRENT when multiple queues |
| * are supported, we can't support the compression since we can't do |
| * FULL_RESOLVE/PARTIAL_RESOLVE to construct the main surface data without |
| * barrier. |
| */ |
| if (image->vk.sharing_mode == VK_SHARING_MODE_CONCURRENT && |
| device->queue_count > 1) |
| return VK_SUCCESS; |
| |
| uint32_t binding; |
| if (image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID || |
| isl_drm_modifier_has_aux(image->vk.drm_format_mod)) { |
| binding = ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane; |
| } else { |
| binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE; |
| } |
| |
| if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { |
| /* We don't advertise that depth buffers could be used as storage |
| * images. |
| */ |
| assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)); |
| |
| /* Allow the user to control HiZ enabling. Disable by default on gfx7 |
| * because resolves are not currently implemented pre-BDW. |
| */ |
| if (!(image->vk.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { |
| /* It will never be used as an attachment, HiZ is pointless. */ |
| return VK_SUCCESS; |
| } |
| |
| if (image->vk.mip_levels > 1) { |
| anv_perf_warn(VK_LOG_OBJS(&image->vk.base), "Enable multi-LOD HiZ"); |
| return VK_SUCCESS; |
| } |
| |
| ok = isl_surf_get_hiz_surf(&device->isl_dev, |
| &image->planes[plane].primary_surface.isl, |
| &image->planes[plane].aux_surface.isl); |
| if (!ok) |
| return VK_SUCCESS; |
| |
| if (!isl_surf_supports_ccs(&device->isl_dev, |
| &image->planes[plane].primary_surface.isl, |
| &image->planes[plane].aux_surface.isl)) { |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ; |
| } else if (image->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT | |
| VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) && |
| image->vk.samples == 1) { |
| /* If it's used as an input attachment or a texture and it's |
| * single-sampled (this is a requirement for HiZ+CCS write-through |
| * mode), use write-through mode so that we don't need to resolve |
| * before texturing. This will make depth testing a bit slower but |
| * texturing faster. |
| * |
| * TODO: This is a heuristic trade-off; we haven't tuned it at all. |
| */ |
| assert(device->info->ver >= 12); |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS_WT; |
| } else { |
| assert(device->info->ver >= 12); |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS; |
| } |
| |
| result = add_surface(device, image, &image->planes[plane].aux_surface, |
| binding, ANV_OFFSET_IMPLICIT); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| if (anv_image_plane_uses_aux_map(device, image, plane)) { |
| result = add_compression_control_buffer(device, image, plane, |
| binding, |
| ANV_OFFSET_IMPLICIT); |
| if (result != VK_SUCCESS) |
| return result; |
| } |
| |
| if (image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT) |
| return add_aux_state_tracking_buffer(device, image, |
| aux_state_offset, |
| plane); |
| } else if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT) { |
| if (!isl_surf_supports_ccs(&device->isl_dev, |
| &image->planes[plane].primary_surface.isl, |
| NULL)) |
| return VK_SUCCESS; |
| |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_STC_CCS; |
| |
| if (device->info->has_aux_map) { |
| result = add_compression_control_buffer(device, image, plane, |
| binding, |
| ANV_OFFSET_IMPLICIT); |
| if (result != VK_SUCCESS) |
| return result; |
| } |
| } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->vk.samples == 1) { |
| if (image->n_planes != 1) { |
| /* Multiplanar images seem to hit a sampler bug with CCS and R16G16 |
| * format. (Putting the clear state a page/4096bytes further fixes |
| * the issue). |
| */ |
| return VK_SUCCESS; |
| } |
| |
| if ((image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) && !image->from_wsi) { |
| /* The image may alias a plane of a multiplanar image. Above we ban |
| * CCS on multiplanar images. |
| * |
| * We must also reject aliasing of any image that uses |
| * ANV_IMAGE_MEMORY_BINDING_PRIVATE. Since we're already rejecting all |
| * aliasing here, there's no need to further analyze if the image needs |
| * a private binding. |
| */ |
| return VK_SUCCESS; |
| } |
| |
| ok = isl_surf_get_ccs_surf(&device->isl_dev, |
| &image->planes[plane].primary_surface.isl, |
| NULL, |
| &image->planes[plane].aux_surface.isl, |
| stride); |
| if (!ok) |
| return VK_SUCCESS; |
| |
| /* Choose aux usage */ |
| if (anv_formats_ccs_e_compatible(device->info, image->vk.create_flags, |
| image->vk.format, image->vk.tiling, |
| image->vk.usage, fmt_list)) { |
| if (intel_needs_workaround(device->info, 1607794140)) { |
| /* FCV is permanently enabled on this HW. */ |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_FCV_CCS_E; |
| } else if (device->info->verx10 >= 125 && |
| !device->physical->disable_fcv) { |
| /* FCV is enabled via 3DSTATE_3D_MODE. We'd expect plain CCS_E to |
| * perform better because it allows for non-zero fast clear colors, |
| * but we've run into regressions in several benchmarks (F1 22 and |
| * RDR2) when trying to enable it. When non-zero clear colors are |
| * enabled, we've observed many partial resolves. We haven't yet |
| * root-caused what layout transitions are causing these resolves, |
| * so in the meantime, we choose to reduce our clear color support. |
| * With only zero clear colors being supported, we might as well |
| * turn on FCV. |
| */ |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_FCV_CCS_E; |
| } else { |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E; |
| } |
| } else if (device->info->ver >= 12) { |
| anv_perf_warn(VK_LOG_OBJS(&image->vk.base), |
| "The CCS_D aux mode is not yet handled on " |
| "Gfx12+. Not allocating a CCS buffer."); |
| image->planes[plane].aux_surface.isl.size_B = 0; |
| return VK_SUCCESS; |
| } else { |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_D; |
| } |
| |
| if (device->info->has_flat_ccs) { |
| result = VK_SUCCESS; |
| } else if (device->info->has_aux_map) { |
| result = add_compression_control_buffer(device, image, plane, |
| binding, offset); |
| } else { |
| result = add_surface(device, image, |
| &image->planes[plane].aux_surface, binding, |
| offset); |
| } |
| if (result != VK_SUCCESS) |
| return result; |
| |
| return add_aux_state_tracking_buffer(device, image, |
| aux_state_offset, |
| plane); |
| } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->vk.samples > 1) { |
| assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)); |
| ok = isl_surf_get_mcs_surf(&device->isl_dev, |
| &image->planes[plane].primary_surface.isl, |
| &image->planes[plane].aux_surface.isl); |
| if (!ok) |
| return VK_SUCCESS; |
| |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS; |
| |
| result = add_surface(device, image, &image->planes[plane].aux_surface, |
| binding, ANV_OFFSET_IMPLICIT); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| return add_aux_state_tracking_buffer(device, image, |
| aux_state_offset, |
| plane); |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| static VkResult |
| add_video_buffers(struct anv_device *device, |
| struct anv_image *image, |
| const struct VkVideoProfileListInfoKHR *profile_list) |
| { |
| ASSERTED bool ok; |
| unsigned size = 0; |
| |
| for (unsigned i = 0; i < profile_list->profileCount; i++) { |
| if (profile_list->pProfiles[i].videoCodecOperation == VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR) { |
| unsigned w_mb = DIV_ROUND_UP(image->vk.extent.width, ANV_MB_WIDTH); |
| unsigned h_mb = DIV_ROUND_UP(image->vk.extent.height, ANV_MB_HEIGHT); |
| size = w_mb * h_mb * 128; |
| } |
| else if (profile_list->pProfiles[i].videoCodecOperation == VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR) { |
| unsigned w_mb = DIV_ROUND_UP(image->vk.extent.width, 32); |
| unsigned h_mb = DIV_ROUND_UP(image->vk.extent.height, 32); |
| size = ALIGN(w_mb * h_mb, 2) << 6; |
| } |
| } |
| |
| if (size == 0) |
| return VK_SUCCESS; |
| |
| ok = image_binding_grow(device, image, ANV_IMAGE_MEMORY_BINDING_PRIVATE, |
| ANV_OFFSET_IMPLICIT, size, 65536, &image->vid_dmv_top_surface); |
| return ok; |
| } |
| |
| /** |
| * Initialize the anv_image::*_surface selected by \a aspect. Then update the |
| * image's memory requirements (that is, the image's size and alignment). |
| * |
| * @param offset See add_surface() |
| */ |
| static VkResult |
| add_primary_surface(struct anv_device *device, |
| struct anv_image *image, |
| uint32_t plane, |
| struct anv_format_plane plane_format, |
| uint64_t offset, |
| uint32_t stride, |
| isl_tiling_flags_t isl_tiling_flags, |
| isl_surf_usage_flags_t isl_usage) |
| { |
| struct anv_surface *anv_surf = &image->planes[plane].primary_surface; |
| bool ok; |
| |
| uint32_t width = image->vk.extent.width; |
| uint32_t height = image->vk.extent.height; |
| const struct vk_format_ycbcr_info *ycbcr_info = |
| vk_format_get_ycbcr_info(image->vk.format); |
| if (ycbcr_info) { |
| assert(plane < ycbcr_info->n_planes); |
| width /= ycbcr_info->planes[plane].denominator_scales[0]; |
| height /= ycbcr_info->planes[plane].denominator_scales[1]; |
| } |
| |
| ok = isl_surf_init(&device->isl_dev, &anv_surf->isl, |
| .dim = vk_to_isl_surf_dim[image->vk.image_type], |
| .format = plane_format.isl_format, |
| .width = width, |
| .height = height, |
| .depth = image->vk.extent.depth, |
| .levels = image->vk.mip_levels, |
| .array_len = image->vk.array_layers, |
| .samples = image->vk.samples, |
| .min_alignment_B = 0, |
| .row_pitch_B = stride, |
| .usage = isl_usage, |
| .tiling_flags = isl_tiling_flags); |
| |
| if (!ok) { |
| /* TODO: Should return |
| * VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT in come cases. |
| */ |
| return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| } |
| |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE; |
| |
| return add_surface(device, image, anv_surf, |
| ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane, offset); |
| } |
| |
| #ifndef NDEBUG |
| static bool MUST_CHECK |
| memory_range_is_aligned(struct anv_image_memory_range memory_range) |
| { |
| return anv_is_aligned(memory_range.offset, memory_range.alignment); |
| } |
| |
| static bool MUST_CHECK |
| memory_ranges_equal(struct anv_image_memory_range a, |
| struct anv_image_memory_range b) |
| { |
| return a.binding == b.binding && |
| a.offset == b.offset && |
| a.size == b.size && |
| a.alignment == b.alignment; |
| } |
| #endif |
| |
| struct check_memory_range_params { |
| struct anv_image_memory_range *accum_ranges; |
| const struct anv_surface *test_surface; |
| const struct anv_image_memory_range *test_range; |
| enum anv_image_memory_binding expect_binding; |
| }; |
| |
| #define check_memory_range(...) \ |
| check_memory_range_s(&(struct check_memory_range_params) { __VA_ARGS__ }) |
| |
| static void UNUSED |
| check_memory_range_s(const struct check_memory_range_params *p) |
| { |
| assert((p->test_surface == NULL) != (p->test_range == NULL)); |
| |
| const struct anv_image_memory_range *test_range = |
| p->test_range ?: &p->test_surface->memory_range; |
| |
| struct anv_image_memory_range *accum_range = |
| &p->accum_ranges[p->expect_binding]; |
| |
| assert(test_range->binding == p->expect_binding); |
| assert(test_range->offset >= memory_range_end(*accum_range)); |
| assert(memory_range_is_aligned(*test_range)); |
| |
| if (p->test_surface) { |
| assert(anv_surface_is_valid(p->test_surface)); |
| assert(p->test_surface->memory_range.alignment == |
| p->test_surface->isl.alignment_B); |
| } |
| |
| memory_range_merge(accum_range, *test_range); |
| } |
| |
| /** |
| * Validate the image's memory bindings *after* all its surfaces and memory |
| * ranges are final. |
| * |
| * For simplicity's sake, we do not validate free-form layout of the image's |
| * memory bindings. We validate the layout described in the comments of struct |
| * anv_image. |
| */ |
| static void |
| check_memory_bindings(const struct anv_device *device, |
| const struct anv_image *image) |
| { |
| #ifdef DEBUG |
| /* As we inspect each part of the image, we merge the part's memory range |
| * into these accumulation ranges. |
| */ |
| struct anv_image_memory_range accum_ranges[ANV_IMAGE_MEMORY_BINDING_END]; |
| for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) { |
| accum_ranges[i] = (struct anv_image_memory_range) { |
| .binding = i, |
| }; |
| } |
| |
| for (uint32_t p = 0; p < image->n_planes; ++p) { |
| const struct anv_image_plane *plane = &image->planes[p]; |
| |
| /* The binding that must contain the plane's primary surface. */ |
| const enum anv_image_memory_binding primary_binding = image->disjoint |
| ? ANV_IMAGE_MEMORY_BINDING_PLANE_0 + p |
| : ANV_IMAGE_MEMORY_BINDING_MAIN; |
| |
| /* Aliasing is incompatible with the private binding because it does not |
| * live in a VkDeviceMemory. The exception is either swapchain images or |
| * that the private binding is for a video motion vector buffer. |
| */ |
| assert(!(image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) || |
| image->from_wsi || |
| (plane->primary_surface.isl.usage & ISL_SURF_USAGE_VIDEO_DECODE_BIT) || |
| image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].memory_range.size == 0); |
| |
| /* Check primary surface */ |
| check_memory_range(accum_ranges, |
| .test_surface = &plane->primary_surface, |
| .expect_binding = primary_binding); |
| |
| /* Check aux_surface */ |
| const struct anv_image_memory_range *aux_mem_range = |
| anv_image_get_aux_memory_range(image, p); |
| if (aux_mem_range->size > 0) { |
| enum anv_image_memory_binding binding = primary_binding; |
| |
| /* If an auxiliary surface is used for an externally-shareable image, |
| * we have to hide this from the memory of the image since other |
| * processes with access to the memory may not be aware of it or of |
| * its current state. So put that auxiliary data into a separate |
| * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE). |
| */ |
| if (anv_image_is_externally_shared(image) && |
| !isl_drm_modifier_has_aux(image->vk.drm_format_mod)) { |
| binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE; |
| } |
| |
| /* Display hardware requires that the aux surface start at |
| * a higher address than the primary surface. The 3D hardware |
| * doesn't care, but we enforce the display requirement in case |
| * the image is sent to display. |
| */ |
| check_memory_range(accum_ranges, |
| .test_range = aux_mem_range, |
| .expect_binding = binding); |
| } |
| |
| /* Check fast clear state */ |
| if (plane->fast_clear_memory_range.size > 0) { |
| enum anv_image_memory_binding binding = primary_binding; |
| |
| /* If an auxiliary surface is used for an externally-shareable image, |
| * we have to hide this from the memory of the image since other |
| * processes with access to the memory may not be aware of it or of |
| * its current state. So put that auxiliary data into a separate |
| * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE). |
| * |
| * But when the image is created with a drm modifier that supports |
| * clear color, it will be exported along with main surface. |
| */ |
| if (anv_image_is_externally_shared(image) |
| && !isl_drm_modifier_get_info(image->vk.drm_format_mod)->supports_clear_color) { |
| binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE; |
| } |
| |
| /* We believe that 256B alignment may be sufficient, but we choose 4K |
| * due to lack of testing. And MI_LOAD/STORE operations require |
| * dword-alignment. |
| */ |
| assert(plane->fast_clear_memory_range.alignment == 4096); |
| check_memory_range(accum_ranges, |
| .test_range = &plane->fast_clear_memory_range, |
| .expect_binding = binding); |
| } |
| } |
| #endif |
| } |
| |
| /** |
| * Check that the fully-initialized anv_image is compatible with its DRM format |
| * modifier. |
| * |
| * Checking compatibility at the end of image creation is prudent, not |
| * superfluous, because usage of modifiers triggers numerous special cases |
| * throughout queries and image creation, and because |
| * vkGetPhysicalDeviceImageFormatProperties2 has difficulty detecting all |
| * incompatibilities. |
| * |
| * Return VK_ERROR_UNKNOWN if the incompatibility is difficult to detect in |
| * vkGetPhysicalDeviceImageFormatProperties2. Otherwise, assert fail. |
| * |
| * Ideally, if vkGetPhysicalDeviceImageFormatProperties2() succeeds with a given |
| * modifier, then vkCreateImage() produces an image that is compatible with the |
| * modifier. However, it is difficult to reconcile the two functions to agree |
| * due to their complexity. For example, isl_surf_get_ccs_surf() may |
| * unexpectedly fail in vkCreateImage(), eliminating the image's aux surface |
| * even when the modifier requires one. (Maybe we should reconcile the two |
| * functions despite the difficulty). |
| */ |
| static VkResult MUST_CHECK |
| check_drm_format_mod(const struct anv_device *device, |
| const struct anv_image *image) |
| { |
| /* Image must have a modifier if and only if it has modifier tiling. */ |
| assert((image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID) == |
| (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)); |
| |
| if (image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID) |
| return VK_SUCCESS; |
| |
| const struct isl_drm_modifier_info *isl_mod_info = |
| isl_drm_modifier_get_info(image->vk.drm_format_mod); |
| |
| /* Driver must support the modifier. */ |
| assert(isl_drm_modifier_get_score(device->info, isl_mod_info->modifier)); |
| |
| /* Enforced by us, not the Vulkan spec. */ |
| assert(image->vk.image_type == VK_IMAGE_TYPE_2D); |
| assert(!(image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT)); |
| assert(!(image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT)); |
| assert(image->vk.mip_levels == 1); |
| assert(image->vk.array_layers == 1); |
| assert(image->vk.samples == 1); |
| |
| for (int i = 0; i < image->n_planes; ++i) { |
| const struct anv_image_plane *plane = &image->planes[i]; |
| ASSERTED const struct isl_format_layout *isl_layout = |
| isl_format_get_layout(plane->primary_surface.isl.format); |
| |
| /* Enforced by us, not the Vulkan spec. */ |
| assert(isl_layout->txc == ISL_TXC_NONE); |
| assert(isl_layout->colorspace == ISL_COLORSPACE_LINEAR || |
| isl_layout->colorspace == ISL_COLORSPACE_SRGB); |
| |
| if (isl_drm_modifier_has_aux(isl_mod_info->modifier)) { |
| /* Reject DISJOINT for consistency with the GL driver. */ |
| assert(!image->disjoint); |
| |
| /* The modifier's required aux usage mandates the image's aux usage. |
| * The inverse, however, does not hold; if the modifier has no aux |
| * usage, then we may enable a private aux surface. |
| */ |
| if ((isl_mod_info->supports_media_compression && |
| plane->aux_usage != ISL_AUX_USAGE_MC) || |
| (isl_mod_info->supports_render_compression && |
| !isl_aux_usage_has_ccs_e(plane->aux_usage))) { |
| return vk_errorf(device, VK_ERROR_UNKNOWN, |
| "image with modifier unexpectedly has wrong aux " |
| "usage"); |
| } |
| } |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| /** |
| * Use when the app does not provide |
| * VkImageDrmFormatModifierExplicitCreateInfoEXT. |
| */ |
| static VkResult MUST_CHECK |
| add_all_surfaces_implicit_layout( |
| struct anv_device *device, |
| struct anv_image *image, |
| const VkImageFormatListCreateInfo *format_list_info, |
| uint32_t stride, |
| isl_tiling_flags_t isl_tiling_flags, |
| isl_surf_usage_flags_t isl_extra_usage_flags) |
| { |
| const struct intel_device_info *devinfo = device->info; |
| VkResult result; |
| |
| const struct vk_format_ycbcr_info *ycbcr_info = |
| vk_format_get_ycbcr_info(image->vk.format); |
| if (ycbcr_info) |
| assert(ycbcr_info->n_planes == image->n_planes); |
| |
| unsigned num_aspects = 0; |
| VkImageAspectFlagBits aspects[3]; |
| u_foreach_bit(b, image->vk.aspects) { |
| assert(num_aspects < 3); |
| aspects[num_aspects++] = 1 << b; |
| } |
| assert(num_aspects == image->n_planes); |
| |
| /* The Android hardware buffer YV12 format has the planes ordered as Y-Cr-Cb, |
| * while Vulkan expects VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM to be in Y-Cb-Cr. |
| * Adjust the order we add the ISL surfaces accordingly so the implicit |
| * offset gets calculated correctly. |
| */ |
| if (image->from_ahb && image->vk.format == VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM) { |
| assert(num_aspects == 3); |
| assert(aspects[1] == VK_IMAGE_ASPECT_PLANE_1_BIT); |
| assert(aspects[2] == VK_IMAGE_ASPECT_PLANE_2_BIT); |
| aspects[1] = VK_IMAGE_ASPECT_PLANE_2_BIT; |
| aspects[2] = VK_IMAGE_ASPECT_PLANE_1_BIT; |
| } |
| |
| for (unsigned i = 0; i < num_aspects; i++) { |
| VkImageAspectFlagBits aspect = aspects[i]; |
| const uint32_t plane = anv_image_aspect_to_plane(image, aspect); |
| const struct anv_format_plane plane_format = |
| anv_get_format_plane(devinfo, image->vk.format, plane, image->vk.tiling); |
| |
| enum isl_format isl_fmt = plane_format.isl_format; |
| assert(isl_fmt != ISL_FORMAT_UNSUPPORTED); |
| |
| uint32_t plane_stride = stride * isl_format_get_layout(isl_fmt)->bpb / 8; |
| if (ycbcr_info) |
| plane_stride /= ycbcr_info->planes[plane].denominator_scales[0]; |
| |
| VkImageUsageFlags vk_usage = vk_image_usage(&image->vk, aspect); |
| isl_surf_usage_flags_t isl_usage = |
| anv_image_choose_isl_surf_usage(device->physical, |
| image->vk.create_flags, vk_usage, |
| isl_extra_usage_flags, aspect); |
| |
| result = add_primary_surface(device, image, plane, plane_format, |
| ANV_OFFSET_IMPLICIT, plane_stride, |
| isl_tiling_flags, isl_usage); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| result = add_aux_surface_if_supported(device, image, plane, plane_format, |
| format_list_info, |
| ANV_OFFSET_IMPLICIT, plane_stride, |
| ANV_OFFSET_IMPLICIT, |
| isl_extra_usage_flags); |
| if (result != VK_SUCCESS) |
| return result; |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| /** |
| * Use when the app provides VkImageDrmFormatModifierExplicitCreateInfoEXT. |
| */ |
| static VkResult |
| add_all_surfaces_explicit_layout( |
| struct anv_device *device, |
| struct anv_image *image, |
| const VkImageFormatListCreateInfo *format_list_info, |
| const VkImageDrmFormatModifierExplicitCreateInfoEXT *drm_info, |
| isl_tiling_flags_t isl_tiling_flags, |
| isl_surf_usage_flags_t isl_extra_usage_flags) |
| { |
| const struct intel_device_info *devinfo = device->info; |
| const uint32_t mod_plane_count = drm_info->drmFormatModifierPlaneCount; |
| const bool mod_has_aux = |
| isl_drm_modifier_has_aux(drm_info->drmFormatModifier); |
| VkResult result; |
| |
| /* Currently there is no way to properly map memory planes to format planes |
| * and aux planes due to the lack of defined ABI for external multi-planar |
| * images. |
| */ |
| if (image->n_planes == 1) |
| assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT); |
| else |
| assert(!(image->vk.aspects & ~VK_IMAGE_ASPECT_PLANES_BITS_ANV)); |
| |
| if (mod_has_aux) { |
| assert(image->n_planes == 1); |
| |
| /* About valid usage in the Vulkan spec: |
| * |
| * Unlike vanilla vkCreateImage, which produces undefined behavior on user |
| * error, here the spec requires the implementation to return |
| * VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT if the app provides |
| * a bad plane layout. However, the spec does require |
| * drmFormatModifierPlaneCount to be valid. |
| * |
| * Most validation of plane layout occurs in add_surface(). |
| */ |
| uint32_t n_mod_planes = |
| isl_drm_modifier_get_plane_count(devinfo, |
| drm_info->drmFormatModifier, |
| image->n_planes); |
| assert(n_mod_planes == mod_plane_count); |
| } else { |
| assert(image->n_planes == mod_plane_count); |
| } |
| |
| /* Reject special values in the app-provided plane layouts. */ |
| for (uint32_t i = 0; i < mod_plane_count; ++i) { |
| if (drm_info->pPlaneLayouts[i].rowPitch == 0) { |
| return vk_errorf(device, |
| VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT, |
| "VkImageDrmFormatModifierExplicitCreateInfoEXT::" |
| "pPlaneLayouts[%u]::rowPitch is 0", i); |
| } |
| |
| if (drm_info->pPlaneLayouts[i].offset == ANV_OFFSET_IMPLICIT) { |
| return vk_errorf(device, |
| VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT, |
| "VkImageDrmFormatModifierExplicitCreateInfoEXT::" |
| "pPlaneLayouts[%u]::offset is %" PRIu64, |
| i, ANV_OFFSET_IMPLICIT); |
| } |
| } |
| |
| u_foreach_bit(b, image->vk.aspects) { |
| const VkImageAspectFlagBits aspect = 1 << b; |
| const uint32_t plane = anv_image_aspect_to_plane(image, aspect); |
| const struct anv_format_plane format_plane = |
| anv_get_format_plane(devinfo, image->vk.format, plane, image->vk.tiling); |
| const VkSubresourceLayout *primary_layout = &drm_info->pPlaneLayouts[plane]; |
| |
| result = add_primary_surface(device, image, plane, |
| format_plane, |
| primary_layout->offset, |
| primary_layout->rowPitch, |
| isl_tiling_flags, |
| isl_extra_usage_flags); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| if (mod_has_aux) { |
| const VkSubresourceLayout flat_ccs_layout = { |
| .offset = ANV_OFFSET_IMPLICIT, |
| }; |
| |
| const VkSubresourceLayout *aux_layout; |
| |
| uint64_t aux_state_offset = ANV_OFFSET_IMPLICIT; |
| |
| /* We already asserted on image->n_planes == 1 when mod_has_aux is |
| * true above, so the indexes of aux and clear color are just hard- |
| * coded without ambiguity. |
| */ |
| if (devinfo->has_flat_ccs) { |
| aux_layout = &flat_ccs_layout; |
| if (isl_drm_modifier_get_info( |
| drm_info->drmFormatModifier)->supports_clear_color) { |
| aux_state_offset = drm_info->pPlaneLayouts[1].offset; |
| } |
| } else { |
| aux_layout = &drm_info->pPlaneLayouts[1]; |
| if (isl_drm_modifier_get_info( |
| drm_info->drmFormatModifier)->supports_clear_color) { |
| aux_state_offset = drm_info->pPlaneLayouts[2].offset; |
| } |
| } |
| |
| result = add_aux_surface_if_supported(device, image, plane, |
| format_plane, |
| format_list_info, |
| aux_layout->offset, |
| aux_layout->rowPitch, |
| aux_state_offset, |
| isl_extra_usage_flags); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| assert(isl_aux_usage_has_ccs(image->planes[plane].aux_usage)); |
| } |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| static const struct isl_drm_modifier_info * |
| choose_drm_format_mod(const struct anv_physical_device *device, |
| uint32_t modifier_count, const uint64_t *modifiers) |
| { |
| uint64_t best_mod = UINT64_MAX; |
| uint32_t best_score = 0; |
| |
| for (uint32_t i = 0; i < modifier_count; ++i) { |
| uint32_t score = isl_drm_modifier_get_score(&device->info, modifiers[i]); |
| if (score > best_score) { |
| best_mod = modifiers[i]; |
| best_score = score; |
| } |
| } |
| |
| if (best_score > 0) |
| return isl_drm_modifier_get_info(best_mod); |
| else |
| return NULL; |
| } |
| |
| static VkImageUsageFlags |
| anv_image_create_usage(const VkImageCreateInfo *pCreateInfo, |
| VkImageUsageFlags usage) |
| { |
| /* Add TRANSFER_SRC usage for multisample attachment images. This is |
| * because we might internally use the TRANSFER_SRC layout on them for |
| * blorp operations associated with resolving those into other attachments |
| * at the end of a subpass. |
| * |
| * Without this additional usage, we compute an incorrect AUX state in |
| * anv_layout_to_aux_state(). |
| */ |
| if (pCreateInfo->samples > VK_SAMPLE_COUNT_1_BIT && |
| (usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT))) |
| usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; |
| return usage; |
| } |
| |
| static VkResult MUST_CHECK |
| alloc_private_binding(struct anv_device *device, |
| struct anv_image *image, |
| const VkImageCreateInfo *create_info) |
| { |
| struct anv_image_binding *binding = |
| &image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE]; |
| |
| if (binding->memory_range.size == 0) |
| return VK_SUCCESS; |
| |
| const VkImageSwapchainCreateInfoKHR *swapchain_info = |
| vk_find_struct_const(create_info->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR); |
| |
| if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) { |
| /* The image will be bound to swapchain memory. */ |
| return VK_SUCCESS; |
| } |
| |
| VkResult result = anv_device_alloc_bo(device, "image-binding-private", |
| binding->memory_range.size, 0, 0, |
| &binding->address.bo); |
| if (result == VK_SUCCESS) { |
| pthread_mutex_lock(&device->mutex); |
| list_addtail(&image->link, &device->image_private_objects); |
| pthread_mutex_unlock(&device->mutex); |
| } |
| |
| return result; |
| } |
| |
| static void |
| anv_image_finish_sparse_bindings(struct anv_image *image) |
| { |
| struct anv_device *device = |
| container_of(image->vk.base.device, struct anv_device, vk); |
| |
| assert(anv_image_is_sparse(image)); |
| |
| for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; i++) { |
| struct anv_image_binding *b = &image->bindings[i]; |
| |
| if (b->sparse_data.size != 0) { |
| assert(b->memory_range.size == b->sparse_data.size); |
| assert(b->address.offset == b->sparse_data.address); |
| anv_free_sparse_bindings(device, &b->sparse_data); |
| } |
| } |
| } |
| |
| static VkResult MUST_CHECK |
| anv_image_init_sparse_bindings(struct anv_image *image) |
| { |
| struct anv_device *device = |
| container_of(image->vk.base.device, struct anv_device, vk); |
| VkResult result; |
| |
| assert(anv_image_is_sparse(image)); |
| |
| for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; i++) { |
| struct anv_image_binding *b = &image->bindings[i]; |
| |
| if (b->memory_range.size != 0) { |
| assert(b->sparse_data.size == 0); |
| |
| /* From the spec, Custom Sparse Image Block Shapes section: |
| * "... the size in bytes of the custom sparse image block shape |
| * will be reported in VkMemoryRequirements::alignment." |
| * |
| * ISL should have set this for us, so just assert it here. |
| */ |
| assert(b->memory_range.alignment == ANV_SPARSE_BLOCK_SIZE); |
| assert(b->memory_range.size % ANV_SPARSE_BLOCK_SIZE == 0); |
| |
| result = anv_init_sparse_bindings(device, |
| b->memory_range.size, |
| &b->sparse_data, 0, 0, |
| &b->address); |
| if (result != VK_SUCCESS) { |
| anv_image_finish_sparse_bindings(image); |
| return result; |
| } |
| } |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult |
| anv_image_init(struct anv_device *device, struct anv_image *image, |
| const struct anv_image_create_info *create_info) |
| { |
| const VkImageCreateInfo *pCreateInfo = create_info->vk_info; |
| const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_explicit_info = NULL; |
| const struct isl_drm_modifier_info *isl_mod_info = NULL; |
| VkResult r; |
| |
| vk_image_init(&device->vk, &image->vk, pCreateInfo); |
| |
| image->vk.usage = anv_image_create_usage(pCreateInfo, image->vk.usage); |
| image->vk.stencil_usage = |
| anv_image_create_usage(pCreateInfo, image->vk.stencil_usage); |
| |
| if (pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { |
| assert(!image->vk.wsi_legacy_scanout); |
| mod_explicit_info = |
| vk_find_struct_const(pCreateInfo->pNext, |
| IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT); |
| if (mod_explicit_info) { |
| isl_mod_info = isl_drm_modifier_get_info(mod_explicit_info->drmFormatModifier); |
| } else { |
| const struct VkImageDrmFormatModifierListCreateInfoEXT *mod_list_info = |
| vk_find_struct_const(pCreateInfo->pNext, |
| IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT); |
| isl_mod_info = choose_drm_format_mod(device->physical, |
| mod_list_info->drmFormatModifierCount, |
| mod_list_info->pDrmFormatModifiers); |
| } |
| |
| assert(isl_mod_info); |
| assert(image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID); |
| image->vk.drm_format_mod = isl_mod_info->modifier; |
| } |
| |
| for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) { |
| image->bindings[i] = (struct anv_image_binding) { |
| .memory_range = { .binding = i }, |
| }; |
| } |
| |
| /* In case of AHardwareBuffer import, we don't know the layout yet */ |
| if (image->vk.external_handle_types & |
| VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) { |
| image->from_ahb = true; |
| #if DETECT_OS_ANDROID |
| image->vk.ahb_format = anv_ahb_format_for_vk_format(image->vk.format); |
| #endif |
| return VK_SUCCESS; |
| } |
| |
| image->n_planes = anv_get_format_planes(image->vk.format); |
| |
| image->from_wsi = |
| vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA) != NULL; |
| |
| /* The Vulkan 1.2.165 glossary says: |
| * |
| * A disjoint image consists of multiple disjoint planes, and is created |
| * with the VK_IMAGE_CREATE_DISJOINT_BIT bit set. |
| */ |
| image->disjoint = image->n_planes > 1 && |
| (pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT); |
| |
| isl_surf_usage_flags_t isl_extra_usage_flags = create_info->isl_extra_usage_flags; |
| if (anv_is_format_emulated(device->physical, pCreateInfo->format)) { |
| assert(image->n_planes == 1 && |
| vk_format_is_compressed(image->vk.format)); |
| assert(!(image->vk.create_flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT)); |
| |
| image->emu_plane_format = |
| anv_get_emulation_format(device->physical, image->vk.format); |
| |
| /* for fetching the raw copmressed data and storing the decompressed |
| * data |
| */ |
| image->vk.create_flags |= |
| VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT | |
| VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT; |
| if (image->vk.image_type == VK_IMAGE_TYPE_3D) |
| image->vk.create_flags |= VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT; |
| image->vk.usage |= |
| VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT; |
| |
| /* TODO: enable compression on emulation plane */ |
| isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; |
| } |
| |
| /* Disable aux if image supports export without modifiers. */ |
| if (image->vk.external_handle_types != 0 && |
| image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) |
| isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; |
| |
| const isl_tiling_flags_t isl_tiling_flags = |
| choose_isl_tiling_flags(device->info, create_info, isl_mod_info, |
| image->vk.wsi_legacy_scanout); |
| |
| const VkImageFormatListCreateInfo *fmt_list = |
| vk_find_struct_const(pCreateInfo->pNext, |
| IMAGE_FORMAT_LIST_CREATE_INFO); |
| |
| if (mod_explicit_info) { |
| r = add_all_surfaces_explicit_layout(device, image, fmt_list, |
| mod_explicit_info, isl_tiling_flags, |
| isl_extra_usage_flags); |
| } else { |
| r = add_all_surfaces_implicit_layout(device, image, fmt_list, create_info->stride, |
| isl_tiling_flags, |
| isl_extra_usage_flags); |
| } |
| |
| if (r != VK_SUCCESS) |
| goto fail; |
| |
| if (image->emu_plane_format != VK_FORMAT_UNDEFINED) { |
| const struct intel_device_info *devinfo = device->info; |
| const uint32_t plane = image->n_planes; |
| const struct anv_format_plane plane_format = anv_get_format_plane( |
| devinfo, image->emu_plane_format, 0, image->vk.tiling); |
| |
| isl_surf_usage_flags_t isl_usage = anv_image_choose_isl_surf_usage( |
| device->physical, image->vk.create_flags, image->vk.usage, |
| isl_extra_usage_flags, VK_IMAGE_ASPECT_COLOR_BIT); |
| |
| r = add_primary_surface(device, image, plane, plane_format, |
| ANV_OFFSET_IMPLICIT, 0, |
| isl_tiling_flags, isl_usage); |
| if (r != VK_SUCCESS) |
| goto fail; |
| } |
| |
| const VkVideoProfileListInfoKHR *video_profile = |
| vk_find_struct_const(pCreateInfo->pNext, |
| VIDEO_PROFILE_LIST_INFO_KHR); |
| if (video_profile) { |
| r = add_video_buffers(device, image, video_profile); |
| if (r != VK_SUCCESS) |
| goto fail; |
| } |
| |
| if (!create_info->no_private_binding_alloc) { |
| r = alloc_private_binding(device, image, pCreateInfo); |
| if (r != VK_SUCCESS) |
| goto fail; |
| } |
| |
| check_memory_bindings(device, image); |
| |
| r = check_drm_format_mod(device, image); |
| if (r != VK_SUCCESS) |
| goto fail; |
| |
| /* Once we have all the bindings, determine whether we can do non 0 fast |
| * clears for each plane. |
| */ |
| for (uint32_t p = 0; p < image->n_planes; p++) { |
| image->planes[p].can_non_zero_fast_clear = |
| can_fast_clear_with_non_zero_color(device->info, image, p, fmt_list); |
| } |
| |
| if (anv_image_is_sparse(image)) { |
| r = anv_image_init_sparse_bindings(image); |
| if (r != VK_SUCCESS) |
| goto fail; |
| } |
| |
| return VK_SUCCESS; |
| |
| fail: |
| vk_image_finish(&image->vk); |
| return r; |
| } |
| |
| void |
| anv_image_finish(struct anv_image *image) |
| { |
| struct anv_device *device = |
| container_of(image->vk.base.device, struct anv_device, vk); |
| |
| if (anv_image_is_sparse(image)) |
| anv_image_finish_sparse_bindings(image); |
| |
| /* Unmap a CCS so that if the bound region of the image is rebound to |
| * another image, the AUX tables will be cleared to allow for a new |
| * mapping. |
| */ |
| for (int p = 0; p < image->n_planes; ++p) { |
| if (image->planes[p].aux_tt.mapped) { |
| intel_aux_map_del_mapping(device->aux_map_ctx, |
| image->planes[p].aux_tt.addr, |
| image->planes[p].aux_tt.size); |
| } |
| } |
| |
| if (image->from_gralloc) { |
| assert(!image->disjoint); |
| assert(image->n_planes == 1); |
| assert(image->planes[0].primary_surface.memory_range.binding == |
| ANV_IMAGE_MEMORY_BINDING_MAIN); |
| assert(image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo != NULL); |
| anv_device_release_bo(device, image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo); |
| } |
| |
| struct anv_bo *private_bo = image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo; |
| if (private_bo) { |
| pthread_mutex_lock(&device->mutex); |
| list_del(&image->link); |
| pthread_mutex_unlock(&device->mutex); |
| anv_device_release_bo(device, private_bo); |
| } |
| |
| vk_image_finish(&image->vk); |
| } |
| |
| static struct anv_image * |
| anv_swapchain_get_image(VkSwapchainKHR swapchain, |
| uint32_t index) |
| { |
| VkImage image = wsi_common_get_image(swapchain, index); |
| return anv_image_from_handle(image); |
| } |
| |
| static VkResult |
| anv_image_init_from_create_info(struct anv_device *device, |
| struct anv_image *image, |
| const VkImageCreateInfo *pCreateInfo, |
| bool no_private_binding_alloc) |
| { |
| if (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) { |
| VkResult result = |
| anv_sparse_image_check_support(device->physical, |
| pCreateInfo->flags, |
| pCreateInfo->tiling, |
| pCreateInfo->samples, |
| pCreateInfo->imageType, |
| pCreateInfo->format); |
| if (result != VK_SUCCESS) |
| return result; |
| } |
| |
| const VkNativeBufferANDROID *gralloc_info = |
| vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID); |
| if (gralloc_info) |
| return anv_image_init_from_gralloc(device, image, pCreateInfo, |
| gralloc_info); |
| |
| struct anv_image_create_info create_info = { |
| .vk_info = pCreateInfo, |
| .no_private_binding_alloc = no_private_binding_alloc, |
| }; |
| |
| /* For dmabuf imports, configure the primary surface without support for |
| * compression if the modifier doesn't specify it. This helps to create |
| * VkImages with memory requirements that are compatible with the buffers |
| * apps provide. |
| */ |
| const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_explicit_info = |
| vk_find_struct_const(pCreateInfo->pNext, |
| IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT); |
| if (mod_explicit_info && |
| !isl_drm_modifier_has_aux(mod_explicit_info->drmFormatModifier)) |
| create_info.isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; |
| |
| return anv_image_init(device, image, &create_info); |
| } |
| |
| VkResult anv_CreateImage( |
| VkDevice _device, |
| const VkImageCreateInfo* pCreateInfo, |
| const VkAllocationCallbacks* pAllocator, |
| VkImage* pImage) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| |
| if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) && |
| INTEL_DEBUG(DEBUG_SPARSE) && |
| pCreateInfo->flags & (VK_IMAGE_CREATE_SPARSE_BINDING_BIT | |
| VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | |
| VK_IMAGE_CREATE_SPARSE_ALIASED_BIT)) |
| fprintf(stderr, "=== %s %s:%d flags:0x%08x\n", __func__, __FILE__, |
| __LINE__, pCreateInfo->flags); |
| |
| #ifndef VK_USE_PLATFORM_ANDROID_KHR |
| /* Ignore swapchain creation info on Android. Since we don't have an |
| * implementation in Mesa, we're guaranteed to access an Android object |
| * incorrectly. |
| */ |
| const VkImageSwapchainCreateInfoKHR *swapchain_info = |
| vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR); |
| if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) { |
| return wsi_common_create_swapchain_image(&device->physical->wsi_device, |
| pCreateInfo, |
| swapchain_info->swapchain, |
| pImage); |
| } |
| #endif |
| |
| struct anv_image *image = |
| vk_object_zalloc(&device->vk, pAllocator, sizeof(*image), |
| VK_OBJECT_TYPE_IMAGE); |
| if (!image) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| VkResult result = anv_image_init_from_create_info(device, image, |
| pCreateInfo, |
| false); |
| if (result != VK_SUCCESS) { |
| vk_object_free(&device->vk, pAllocator, image); |
| return result; |
| } |
| |
| ANV_RMV(image_create, device, false, image); |
| |
| *pImage = anv_image_to_handle(image); |
| |
| return result; |
| } |
| |
| void |
| anv_DestroyImage(VkDevice _device, VkImage _image, |
| const VkAllocationCallbacks *pAllocator) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| ANV_FROM_HANDLE(anv_image, image, _image); |
| |
| if (!image) |
| return; |
| |
| ANV_RMV(image_destroy, device, image); |
| |
| assert(&device->vk == image->vk.base.device); |
| anv_image_finish(image); |
| |
| vk_free2(&device->vk.alloc, pAllocator, image); |
| } |
| |
| /* We are binding AHardwareBuffer. Get a description, resolve the |
| * format and prepare anv_image properly. |
| */ |
| static void |
| resolve_ahw_image(struct anv_device *device, |
| struct anv_image *image, |
| struct anv_device_memory *mem) |
| { |
| #if DETECT_OS_ANDROID && ANDROID_API_LEVEL >= 26 |
| assert(mem->vk.ahardware_buffer); |
| AHardwareBuffer_Desc desc; |
| AHardwareBuffer_describe(mem->vk.ahardware_buffer, &desc); |
| VkResult result; |
| |
| /* Check tiling. */ |
| enum isl_tiling tiling; |
| result = anv_device_get_bo_tiling(device, mem->bo, &tiling); |
| assert(result == VK_SUCCESS); |
| isl_tiling_flags_t isl_tiling_flags = (1u << tiling); |
| |
| /* Check format. */ |
| VkFormat vk_format = vk_format_from_android(desc.format, desc.usage); |
| assert(vk_format != VK_FORMAT_UNDEFINED); |
| |
| /* Now we are able to fill anv_image fields properly and create |
| * isl_surface for it. |
| */ |
| vk_image_set_format(&image->vk, vk_format); |
| image->n_planes = anv_get_format_planes(image->vk.format); |
| |
| result = add_all_surfaces_implicit_layout(device, image, NULL, desc.stride, |
| isl_tiling_flags, |
| ISL_SURF_USAGE_DISABLE_AUX_BIT); |
| assert(result == VK_SUCCESS); |
| #endif |
| } |
| |
| void |
| anv_image_get_memory_requirements(struct anv_device *device, |
| struct anv_image *image, |
| VkImageAspectFlags aspects, |
| VkMemoryRequirements2 *pMemoryRequirements) |
| { |
| /* The Vulkan spec (git aaed022) says: |
| * |
| * memoryTypeBits is a bitfield and contains one bit set for every |
| * supported memory type for the resource. The bit `1<<i` is set if and |
| * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties |
| * structure for the physical device is supported. |
| */ |
| uint32_t memory_types = |
| (image->vk.create_flags & VK_IMAGE_CREATE_PROTECTED_BIT) ? |
| device->physical->memory.protected_mem_types : |
| device->physical->memory.default_buffer_mem_types; |
| |
| vk_foreach_struct(ext, pMemoryRequirements->pNext) { |
| switch (ext->sType) { |
| case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { |
| VkMemoryDedicatedRequirements *requirements = (void *)ext; |
| if (image->vk.wsi_legacy_scanout || |
| image->from_ahb || |
| (isl_drm_modifier_has_aux(image->vk.drm_format_mod) && |
| anv_image_uses_aux_map(device, image))) { |
| /* If we need to set the tiling for external consumers or the |
| * modifier involves AUX tables, we need a dedicated allocation. |
| * |
| * See also anv_AllocateMemory. |
| */ |
| requirements->prefersDedicatedAllocation = true; |
| requirements->requiresDedicatedAllocation = true; |
| } else { |
| requirements->prefersDedicatedAllocation = false; |
| requirements->requiresDedicatedAllocation = false; |
| } |
| break; |
| } |
| |
| default: |
| anv_debug_ignored_stype(ext->sType); |
| break; |
| } |
| } |
| |
| /* If the image is disjoint, then we must return the memory requirements for |
| * the single plane specified in VkImagePlaneMemoryRequirementsInfo. If |
| * non-disjoint, then exactly one set of memory requirements exists for the |
| * whole image. |
| * |
| * This is enforced by the Valid Usage for VkImageMemoryRequirementsInfo2, |
| * which requires that the app provide VkImagePlaneMemoryRequirementsInfo if |
| * and only if the image is disjoint (that is, multi-planar format and |
| * VK_IMAGE_CREATE_DISJOINT_BIT). |
| */ |
| const struct anv_image_binding *binding; |
| if (image->disjoint) { |
| assert(util_bitcount(aspects) == 1); |
| assert(aspects & image->vk.aspects); |
| binding = anv_image_aspect_to_binding(image, aspects); |
| } else { |
| assert(aspects == image->vk.aspects); |
| binding = &image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN]; |
| } |
| |
| pMemoryRequirements->memoryRequirements = (VkMemoryRequirements) { |
| .size = binding->memory_range.size, |
| .alignment = binding->memory_range.alignment, |
| .memoryTypeBits = memory_types, |
| }; |
| } |
| |
| void anv_GetImageMemoryRequirements2( |
| VkDevice _device, |
| const VkImageMemoryRequirementsInfo2* pInfo, |
| VkMemoryRequirements2* pMemoryRequirements) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| ANV_FROM_HANDLE(anv_image, image, pInfo->image); |
| |
| VkImageAspectFlags aspects = image->vk.aspects; |
| |
| vk_foreach_struct_const(ext, pInfo->pNext) { |
| switch (ext->sType) { |
| case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: { |
| assert(image->disjoint); |
| const VkImagePlaneMemoryRequirementsInfo *plane_reqs = |
| (const VkImagePlaneMemoryRequirementsInfo *) ext; |
| aspects = plane_reqs->planeAspect; |
| break; |
| } |
| |
| default: |
| anv_debug_ignored_stype(ext->sType); |
| break; |
| } |
| } |
| |
| anv_image_get_memory_requirements(device, image, aspects, |
| pMemoryRequirements); |
| } |
| |
| void anv_GetDeviceImageMemoryRequirements( |
| VkDevice _device, |
| const VkDeviceImageMemoryRequirements* pInfo, |
| VkMemoryRequirements2* pMemoryRequirements) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| struct anv_image image = { 0 }; |
| |
| if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) && |
| INTEL_DEBUG(DEBUG_SPARSE) && |
| pInfo->pCreateInfo->flags & (VK_IMAGE_CREATE_SPARSE_BINDING_BIT | |
| VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | |
| VK_IMAGE_CREATE_SPARSE_ALIASED_BIT)) |
| fprintf(stderr, "=== %s %s:%d flags:0x%08x\n", __func__, __FILE__, |
| __LINE__, pInfo->pCreateInfo->flags); |
| |
| ASSERTED VkResult result = |
| anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo, true); |
| assert(result == VK_SUCCESS); |
| |
| VkImageAspectFlags aspects = |
| image.disjoint ? pInfo->planeAspect : image.vk.aspects; |
| |
| anv_image_get_memory_requirements(device, &image, aspects, |
| pMemoryRequirements); |
| anv_image_finish(&image); |
| } |
| |
| static void |
| anv_image_get_sparse_memory_requirements( |
| struct anv_device *device, |
| struct anv_image *image, |
| VkImageAspectFlags aspects, |
| uint32_t *pSparseMemoryRequirementCount, |
| VkSparseImageMemoryRequirements2 *pSparseMemoryRequirements) |
| { |
| VK_OUTARRAY_MAKE_TYPED(VkSparseImageMemoryRequirements2, reqs, |
| pSparseMemoryRequirements, |
| pSparseMemoryRequirementCount); |
| |
| /* From the spec: |
| * "The sparse image must have been created using the |
| * VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag to retrieve valid sparse |
| * image memory requirements." |
| */ |
| if (!(image->vk.create_flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT)) |
| return; |
| |
| VkSparseImageMemoryRequirements ds_mem_reqs = {}; |
| VkSparseImageMemoryRequirements2 *ds_reqs_ptr = NULL; |
| |
| u_foreach_bit(b, aspects) { |
| VkImageAspectFlagBits aspect = 1 << b; |
| const uint32_t plane = anv_image_aspect_to_plane(image, aspect); |
| struct isl_surf *surf = &image->planes[plane].primary_surface.isl; |
| |
| VkSparseImageFormatProperties format_props = |
| anv_sparse_calc_image_format_properties(device->physical, aspect, |
| image->vk.image_type, surf); |
| |
| uint32_t miptail_first_lod; |
| VkDeviceSize miptail_size, miptail_offset, miptail_stride; |
| anv_sparse_calc_miptail_properties(device, image, aspect, |
| &miptail_first_lod, &miptail_size, |
| &miptail_offset, &miptail_stride); |
| |
| VkSparseImageMemoryRequirements mem_reqs = { |
| .formatProperties = format_props, |
| .imageMipTailFirstLod = miptail_first_lod, |
| .imageMipTailSize = miptail_size, |
| .imageMipTailOffset = miptail_offset, |
| .imageMipTailStride = miptail_stride, |
| }; |
| |
| /* If both depth and stencil are the same, unify them if possible. */ |
| if (aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | |
| VK_IMAGE_ASPECT_STENCIL_BIT)) { |
| if (!ds_reqs_ptr) { |
| ds_mem_reqs = mem_reqs; |
| } else if (ds_mem_reqs.formatProperties.imageGranularity.width == |
| mem_reqs.formatProperties.imageGranularity.width && |
| ds_mem_reqs.formatProperties.imageGranularity.height == |
| mem_reqs.formatProperties.imageGranularity.height && |
| ds_mem_reqs.formatProperties.imageGranularity.depth == |
| mem_reqs.formatProperties.imageGranularity.depth && |
| ds_mem_reqs.imageMipTailFirstLod == |
| mem_reqs.imageMipTailFirstLod && |
| ds_mem_reqs.imageMipTailSize == |
| mem_reqs.imageMipTailSize && |
| ds_mem_reqs.imageMipTailOffset == |
| mem_reqs.imageMipTailOffset && |
| ds_mem_reqs.imageMipTailStride == |
| mem_reqs.imageMipTailStride) { |
| ds_reqs_ptr->memoryRequirements.formatProperties.aspectMask |= |
| aspect; |
| continue; |
| } |
| } |
| |
| vk_outarray_append_typed(VkSparseImageMemoryRequirements2, &reqs, r) { |
| r->memoryRequirements = mem_reqs; |
| if (aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | |
| VK_IMAGE_ASPECT_STENCIL_BIT)) |
| ds_reqs_ptr = r; |
| } |
| } |
| } |
| |
| void anv_GetImageSparseMemoryRequirements2( |
| VkDevice _device, |
| const VkImageSparseMemoryRequirementsInfo2* pInfo, |
| uint32_t* pSparseMemoryRequirementCount, |
| VkSparseImageMemoryRequirements2* pSparseMemoryRequirements) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| ANV_FROM_HANDLE(anv_image, image, pInfo->image); |
| |
| if (!anv_sparse_residency_is_enabled(device)) { |
| if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) && |
| INTEL_DEBUG(DEBUG_SPARSE)) |
| fprintf(stderr, "=== [%s:%d] [%s]\n", __FILE__, __LINE__, __func__); |
| |
| *pSparseMemoryRequirementCount = 0; |
| return; |
| } |
| |
| anv_image_get_sparse_memory_requirements(device, image, image->vk.aspects, |
| pSparseMemoryRequirementCount, |
| pSparseMemoryRequirements); |
| } |
| |
| void anv_GetDeviceImageSparseMemoryRequirements( |
| VkDevice _device, |
| const VkDeviceImageMemoryRequirements* pInfo, |
| uint32_t* pSparseMemoryRequirementCount, |
| VkSparseImageMemoryRequirements2* pSparseMemoryRequirements) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| struct anv_image image = { 0 }; |
| |
| if (!anv_sparse_residency_is_enabled(device)) { |
| if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) && |
| INTEL_DEBUG(DEBUG_SPARSE)) |
| fprintf(stderr, "=== [%s:%d] [%s]\n", __FILE__, __LINE__, __func__); |
| |
| *pSparseMemoryRequirementCount = 0; |
| return; |
| } |
| |
| /* This function is similar to anv_GetDeviceImageMemoryRequirements, in |
| * which it actually creates an image, gets the properties and then |
| * destroys the image. |
| * |
| * We could one day refactor things to allow us to gather the properties |
| * without having to actually create the image, maybe by reworking ISL to |
| * separate creation from parameter computing. |
| */ |
| |
| ASSERTED VkResult result = |
| anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo, |
| true /* no_private_binding_alloc */); |
| assert(result == VK_SUCCESS); |
| |
| /* The spec says: |
| * "planeAspect is a VkImageAspectFlagBits value specifying the aspect |
| * corresponding to the image plane to query. This parameter is ignored |
| * unless pCreateInfo::tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, |
| * or pCreateInfo::flags has VK_IMAGE_CREATE_DISJOINT_BIT set." |
| */ |
| VkImageAspectFlags aspects = |
| (pInfo->pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT) || |
| (pInfo->pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) |
| ? pInfo->planeAspect : image.vk.aspects; |
| |
| anv_image_get_sparse_memory_requirements(device, &image, aspects, |
| pSparseMemoryRequirementCount, |
| pSparseMemoryRequirements); |
| |
| anv_image_finish(&image); |
| } |
| |
| static bool |
| anv_image_map_aux_tt(struct anv_device *device, |
| struct anv_image *image, uint32_t plane) |
| { |
| const struct anv_address main_addr = anv_image_address( |
| image, &image->planes[plane].primary_surface.memory_range); |
| struct anv_bo *bo = main_addr.bo; |
| assert(bo != NULL); |
| |
| /* If the additional memory padding was added at the end of the BO for CCS |
| * data, map this region at the granularity of the main/CCS pages. |
| * |
| * Otherwise the image should have additional CCS data at the computed |
| * offset. |
| */ |
| if (device->physical->alloc_aux_tt_mem && |
| (bo->alloc_flags & ANV_BO_ALLOC_AUX_CCS)) { |
| uint64_t main_aux_alignment = |
| intel_aux_map_get_alignment(device->aux_map_ctx); |
| assert(bo->offset % main_aux_alignment == 0); |
| const struct anv_address start_addr = (struct anv_address) { |
| .bo = bo, |
| .offset = ROUND_DOWN_TO(main_addr.offset, main_aux_alignment), |
| }; |
| const struct anv_address aux_addr = (struct anv_address) { |
| .bo = bo, |
| .offset = bo->ccs_offset + |
| intel_aux_main_to_aux_offset(device->aux_map_ctx, |
| start_addr.offset), |
| }; |
| const struct isl_surf *surf = &image->planes[plane].primary_surface.isl; |
| const uint64_t format_bits = |
| intel_aux_map_format_bits_for_isl_surf(surf); |
| /* Make sure to have the mapping cover the entire image from the aux |
| * aligned start. |
| */ |
| const uint64_t main_size = align( |
| (main_addr.offset - start_addr.offset) + surf->size_B, |
| main_aux_alignment); |
| |
| if (intel_aux_map_add_mapping(device->aux_map_ctx, |
| anv_address_physical(start_addr), |
| anv_address_physical(aux_addr), |
| main_size, format_bits)) { |
| image->planes[plane].aux_tt.mapped = true; |
| image->planes[plane].aux_tt.addr = anv_address_physical(start_addr); |
| image->planes[plane].aux_tt.size = main_size; |
| return true; |
| } |
| } else { |
| if (anv_address_allows_aux_map(device, main_addr)) { |
| const struct anv_address aux_addr = |
| anv_image_address(image, |
| &image->planes[plane].compr_ctrl_memory_range); |
| const struct isl_surf *surf = |
| &image->planes[plane].primary_surface.isl; |
| const uint64_t format_bits = |
| intel_aux_map_format_bits_for_isl_surf(surf); |
| if (intel_aux_map_add_mapping(device->aux_map_ctx, |
| anv_address_physical(main_addr), |
| anv_address_physical(aux_addr), |
| surf->size_B, format_bits)) { |
| image->planes[plane].aux_tt.mapped = true; |
| image->planes[plane].aux_tt.addr = anv_address_physical(main_addr); |
| image->planes[plane].aux_tt.size = surf->size_B; |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| |
| } |
| |
| static VkResult |
| anv_bind_image_memory(struct anv_device *device, |
| const VkBindImageMemoryInfo *bind_info) |
| { |
| ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory); |
| ANV_FROM_HANDLE(anv_image, image, bind_info->image); |
| bool did_bind = false; |
| |
| const VkBindMemoryStatusKHR *bind_status = |
| vk_find_struct_const(bind_info->pNext, BIND_MEMORY_STATUS_KHR); |
| |
| assert(!anv_image_is_sparse(image)); |
| |
| /* Resolve will alter the image's aspects, do this first. */ |
| if (mem && mem->vk.ahardware_buffer) |
| resolve_ahw_image(device, image, mem); |
| |
| vk_foreach_struct_const(s, bind_info->pNext) { |
| switch (s->sType) { |
| case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: { |
| const VkBindImagePlaneMemoryInfo *plane_info = |
| (const VkBindImagePlaneMemoryInfo *) s; |
| |
| /* Workaround for possible spec bug. |
| * |
| * Unlike VkImagePlaneMemoryRequirementsInfo, which requires that |
| * the image be disjoint (that is, multi-planar format and |
| * VK_IMAGE_CREATE_DISJOINT_BIT), VkBindImagePlaneMemoryInfo allows |
| * the image to be non-disjoint and requires only that the image |
| * have the DISJOINT flag. In this case, regardless of the value of |
| * VkImagePlaneMemoryRequirementsInfo::planeAspect, the behavior is |
| * the same as if VkImagePlaneMemoryRequirementsInfo were omitted. |
| */ |
| if (!image->disjoint) |
| break; |
| |
| struct anv_image_binding *binding = |
| anv_image_aspect_to_binding(image, plane_info->planeAspect); |
| |
| binding->address = (struct anv_address) { |
| .bo = mem->bo, |
| .offset = bind_info->memoryOffset, |
| }; |
| |
| ANV_RMV(image_bind, device, image, |
| binding - image->bindings); |
| |
| did_bind = true; |
| break; |
| } |
| case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: { |
| /* Ignore this struct on Android, we cannot access swapchain |
| * structures there. |
| */ |
| #ifndef VK_USE_PLATFORM_ANDROID_KHR |
| const VkBindImageMemorySwapchainInfoKHR *swapchain_info = |
| (const VkBindImageMemorySwapchainInfoKHR *) s; |
| struct anv_image *swapchain_image = |
| anv_swapchain_get_image(swapchain_info->swapchain, |
| swapchain_info->imageIndex); |
| assert(swapchain_image); |
| assert(image->vk.aspects == swapchain_image->vk.aspects); |
| assert(mem == NULL); |
| |
| for (int j = 0; j < ARRAY_SIZE(image->bindings); ++j) { |
| assert(memory_ranges_equal(image->bindings[j].memory_range, |
| swapchain_image->bindings[j].memory_range)); |
| image->bindings[j].address = swapchain_image->bindings[j].address; |
| } |
| |
| /* We must bump the private binding's bo's refcount because, unlike the other |
| * bindings, its lifetime is not application-managed. |
| */ |
| struct anv_bo *private_bo = |
| image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo; |
| if (private_bo) |
| anv_bo_ref(private_bo); |
| |
| did_bind = true; |
| #endif |
| break; |
| } |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wswitch" |
| case VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID: { |
| const VkNativeBufferANDROID *gralloc_info = |
| (const VkNativeBufferANDROID *)s; |
| VkResult result = anv_image_bind_from_gralloc(device, image, |
| gralloc_info); |
| if (result != VK_SUCCESS) |
| return result; |
| did_bind = true; |
| break; |
| } |
| #pragma GCC diagnostic pop |
| default: |
| anv_debug_ignored_stype(s->sType); |
| break; |
| } |
| } |
| |
| if (!did_bind) { |
| assert(!image->disjoint); |
| |
| image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address = |
| (struct anv_address) { |
| .bo = mem->bo, |
| .offset = bind_info->memoryOffset, |
| }; |
| |
| ANV_RMV(image_bind, device, image, |
| ANV_IMAGE_MEMORY_BINDING_MAIN); |
| |
| did_bind = true; |
| } |
| |
| /* Now that we have the BO, finalize CCS setup. */ |
| for (int p = 0; p < image->n_planes; ++p) { |
| enum anv_image_memory_binding binding = |
| image->planes[p].primary_surface.memory_range.binding; |
| const struct anv_bo *bo = |
| image->bindings[binding].address.bo; |
| |
| if (!bo || !isl_aux_usage_has_ccs(image->planes[p].aux_usage)) |
| continue; |
| |
| /* Do nothing if flat CCS requirements are satisfied. |
| * |
| * Also, assume that imported BOs with a modifier including |
| * CCS live only in local memory. Otherwise the exporter should |
| * have failed the creation of the BO. |
| */ |
| if (device->info->has_flat_ccs && |
| (anv_bo_is_vram_only(bo) || |
| (bo->alloc_flags & ANV_BO_ALLOC_IMPORTED))) |
| continue; |
| |
| /* If the AUX-TT mapping succeeds, there is nothing else to do. */ |
| if (device->info->has_aux_map && anv_image_map_aux_tt(device, image, p)) |
| continue; |
| |
| /* Do nothing prior to gfx12. There are no special requirements. */ |
| if (device->info->ver < 12) |
| continue; |
| |
| /* The plane's BO cannot support CCS, disable compression on it. */ |
| assert(!isl_drm_modifier_has_aux(image->vk.drm_format_mod)); |
| |
| anv_perf_warn(VK_LOG_OBJS(&image->vk.base), |
| "BO lacks CCS support. Disabling the CCS aux usage."); |
| |
| if (image->planes[p].aux_surface.memory_range.size > 0) { |
| assert(image->planes[p].aux_usage == ISL_AUX_USAGE_HIZ_CCS || |
| image->planes[p].aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT); |
| image->planes[p].aux_usage = ISL_AUX_USAGE_HIZ; |
| } else { |
| assert(image->planes[p].aux_usage == ISL_AUX_USAGE_CCS_E || |
| image->planes[p].aux_usage == ISL_AUX_USAGE_FCV_CCS_E || |
| image->planes[p].aux_usage == ISL_AUX_USAGE_STC_CCS); |
| image->planes[p].aux_usage = ISL_AUX_USAGE_NONE; |
| } |
| } |
| |
| if (bind_status) |
| *bind_status->pResult = VK_SUCCESS; |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult anv_BindImageMemory2( |
| VkDevice _device, |
| uint32_t bindInfoCount, |
| const VkBindImageMemoryInfo* pBindInfos) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| VkResult result = VK_SUCCESS; |
| |
| for (uint32_t i = 0; i < bindInfoCount; i++) { |
| VkResult res = anv_bind_image_memory(device, &pBindInfos[i]); |
| if (result == VK_SUCCESS && res != VK_SUCCESS) |
| result = res; |
| } |
| |
| return result; |
| } |
| |
| static inline void |
| get_image_fast_clear_layout(const struct anv_image *image, |
| VkSubresourceLayout *out_layout) |
| { |
| /* If the memory binding differs between primary and fast clear |
| * region, then the returned offset will be incorrect. |
| */ |
| assert(image->planes[0].fast_clear_memory_range.binding == |
| image->planes[0].primary_surface.memory_range.binding); |
| out_layout->offset = image->planes[0].fast_clear_memory_range.offset; |
| out_layout->size = image->planes[0].fast_clear_memory_range.size; |
| /* Refer to the comment above add_aux_state_tracking_buffer() for the |
| * design of fast clear region. It is not a typical isl surface, so we |
| * just push some values in these pitches when no other requirements |
| * to meet. We have some freedom to do so according to the spec of |
| * VkSubresourceLayout: |
| * |
| * If the image is non-linear, then rowPitch, arrayPitch, and depthPitch |
| * have an implementation-dependent meaning. |
| * |
| * Fast clear is neither supported on linear tiling formats nor linear |
| * modifiers, which don't have the fast clear plane. We should be safe |
| * with these values. |
| */ |
| out_layout->arrayPitch = 1; |
| out_layout->depthPitch = 1; |
| /* On TGL and DG2, 64-byte alignment on clear color is required. |
| * This pitch is ignored on MTL. (drm_fourcc.h) |
| */ |
| out_layout->rowPitch = 64; |
| } |
| |
| static void |
| anv_get_image_subresource_layout(const struct anv_image *image, |
| const VkImageSubresource2KHR *subresource, |
| VkSubresourceLayout2KHR *layout) |
| { |
| const struct anv_image_memory_range *mem_range; |
| const struct isl_surf *isl_surf; |
| |
| assert(__builtin_popcount(subresource->imageSubresource.aspectMask) == 1); |
| |
| /* The Vulkan spec requires that aspectMask be |
| * VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT if tiling is |
| * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT. |
| * |
| * For swapchain images, the Vulkan spec says that every swapchain image has |
| * tiling VK_IMAGE_TILING_OPTIMAL, but we may choose |
| * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT internally. Vulkan doesn't allow |
| * vkGetImageSubresourceLayout for images with VK_IMAGE_TILING_OPTIMAL, |
| * therefore it's invalid for the application to call this on a swapchain |
| * image. The WSI code, however, knows when it has internally created |
| * a swapchain image with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, |
| * so it _should_ correctly use VK_IMAGE_ASPECT_MEMORY_PLANE_* in that case. |
| * But it incorrectly uses VK_IMAGE_ASPECT_PLANE_*, so we have a temporary |
| * workaround. |
| * |
| * https://gitlab.freedesktop.org/mesa/mesa/-/issues/10176 |
| */ |
| if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { |
| /* TODO(chadv): Drop this workaround when WSI gets fixed. */ |
| uint32_t mem_plane; |
| switch (subresource->imageSubresource.aspectMask) { |
| case VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT: |
| case VK_IMAGE_ASPECT_PLANE_0_BIT: |
| mem_plane = 0; |
| break; |
| case VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT: |
| case VK_IMAGE_ASPECT_PLANE_1_BIT: |
| mem_plane = 1; |
| break; |
| case VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT: |
| case VK_IMAGE_ASPECT_PLANE_2_BIT: |
| mem_plane = 2; |
| break; |
| default: |
| unreachable("bad VkImageAspectFlags"); |
| } |
| if (isl_drm_modifier_plane_is_clear_color(image->vk.drm_format_mod, |
| mem_plane)) { |
| get_image_fast_clear_layout(image, &layout->subresourceLayout); |
| |
| return; |
| } else if (mem_plane == 1 && |
| isl_drm_modifier_has_aux(image->vk.drm_format_mod)) { |
| assert(image->n_planes == 1); |
| /* If the memory binding differs between primary and aux, then the |
| * returned offset will be incorrect. |
| */ |
| mem_range = anv_image_get_aux_memory_range(image, 0); |
| assert(mem_range->binding == |
| image->planes[0].primary_surface.memory_range.binding); |
| isl_surf = &image->planes[0].aux_surface.isl; |
| } else { |
| assert(mem_plane < image->n_planes); |
| mem_range = &image->planes[mem_plane].primary_surface.memory_range; |
| isl_surf = &image->planes[mem_plane].primary_surface.isl; |
| } |
| } else { |
| const uint32_t plane = |
| anv_image_aspect_to_plane(image, subresource->imageSubresource.aspectMask); |
| mem_range = &image->planes[plane].primary_surface.memory_range; |
| isl_surf = &image->planes[plane].primary_surface.isl; |
| } |
| |
| layout->subresourceLayout.offset = mem_range->offset; |
| layout->subresourceLayout.rowPitch = isl_surf->row_pitch_B; |
| layout->subresourceLayout.depthPitch = isl_surf_get_array_pitch(isl_surf); |
| layout->subresourceLayout.arrayPitch = isl_surf_get_array_pitch(isl_surf); |
| |
| if (subresource->imageSubresource.mipLevel > 0 || |
| subresource->imageSubresource.arrayLayer > 0) { |
| assert(isl_surf->tiling == ISL_TILING_LINEAR); |
| |
| uint64_t offset_B; |
| isl_surf_get_image_offset_B_tile_sa(isl_surf, |
| subresource->imageSubresource.mipLevel, |
| subresource->imageSubresource.arrayLayer, |
| 0 /* logical_z_offset_px */, |
| &offset_B, NULL, NULL); |
| layout->subresourceLayout.offset += offset_B; |
| layout->subresourceLayout.size = |
| layout->subresourceLayout.rowPitch * |
| u_minify(image->vk.extent.height, |
| subresource->imageSubresource.mipLevel) * |
| image->vk.extent.depth; |
| } else { |
| layout->subresourceLayout.size = mem_range->size; |
| } |
| } |
| |
| void anv_GetImageSubresourceLayout( |
| VkDevice device, |
| VkImage _image, |
| const VkImageSubresource* pSubresource, |
| VkSubresourceLayout* pLayout) |
| { |
| ANV_FROM_HANDLE(anv_image, image, _image); |
| |
| VkImageSubresource2KHR subresource = { |
| .sType = VK_STRUCTURE_TYPE_IMAGE_SUBRESOURCE_2_KHR, |
| .imageSubresource = *pSubresource, |
| }; |
| VkSubresourceLayout2KHR layout = { |
| .sType = VK_STRUCTURE_TYPE_SUBRESOURCE_LAYOUT_2_KHR |
| }; |
| anv_get_image_subresource_layout(image, &subresource, &layout); |
| |
| *pLayout = layout.subresourceLayout; |
| } |
| |
| void anv_GetDeviceImageSubresourceLayoutKHR( |
| VkDevice _device, |
| const VkDeviceImageSubresourceInfoKHR* pInfo, |
| VkSubresourceLayout2KHR* pLayout) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| |
| struct anv_image image = { 0 }; |
| |
| if (anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo, |
| true) != VK_SUCCESS) { |
| pLayout->subresourceLayout = (VkSubresourceLayout) { 0, }; |
| return; |
| } |
| |
| anv_get_image_subresource_layout(&image, pInfo->pSubresource, pLayout); |
| } |
| |
| void anv_GetImageSubresourceLayout2KHR( |
| VkDevice device, |
| VkImage _image, |
| const VkImageSubresource2KHR* pSubresource, |
| VkSubresourceLayout2KHR* pLayout) |
| { |
| ANV_FROM_HANDLE(anv_image, image, _image); |
| |
| anv_get_image_subresource_layout(image, pSubresource, pLayout); |
| } |
| |
| static VkImageUsageFlags |
| anv_image_flags_filter_for_queue(VkImageUsageFlags usages, |
| VkQueueFlagBits queue_flags) |
| { |
| /* Eliminate graphics usages if the queue is not graphics capable */ |
| if (!(queue_flags & VK_QUEUE_GRAPHICS_BIT)) { |
| usages &= ~(VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT | |
| VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR | |
| VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT); |
| } |
| |
| /* Eliminate sampling & storage usages if the queue is neither graphics nor |
| * compute capable |
| */ |
| if (!(queue_flags & (VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT))) { |
| usages &= ~(VK_IMAGE_USAGE_SAMPLED_BIT | |
| VK_IMAGE_USAGE_STORAGE_BIT); |
| } |
| |
| /* Eliminate transfer usages if the queue is neither transfer, compute or |
| * graphics capable |
| */ |
| if (!(queue_flags & (VK_QUEUE_TRANSFER_BIT | |
| VK_QUEUE_COMPUTE_BIT | |
| VK_QUEUE_GRAPHICS_BIT))) { |
| usages &= ~(VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_TRANSFER_DST_BIT); |
| } |
| |
| return usages; |
| } |
| |
| /** |
| * This function returns the assumed isl_aux_state for a given VkImageLayout. |
| * Because Vulkan image layouts don't map directly to isl_aux_state enums, the |
| * returned enum is the assumed worst case. |
| * |
| * @param devinfo The device information of the Intel GPU. |
| * @param image The image that may contain a collection of buffers. |
| * @param aspect The aspect of the image to be accessed. |
| * @param layout The current layout of the image aspect(s). |
| * |
| * @return The primary buffer that should be used for the given layout. |
| */ |
| enum isl_aux_state ATTRIBUTE_PURE |
| anv_layout_to_aux_state(const struct intel_device_info * const devinfo, |
| const struct anv_image * const image, |
| const VkImageAspectFlagBits aspect, |
| const VkImageLayout layout, |
| const VkQueueFlagBits queue_flags) |
| { |
| /* Validate the inputs. */ |
| |
| /* The devinfo is needed as the optimal buffer varies across generations. */ |
| assert(devinfo != NULL); |
| |
| /* The layout of a NULL image is not properly defined. */ |
| assert(image != NULL); |
| |
| /* The aspect must be exactly one of the image aspects. */ |
| assert(util_bitcount(aspect) == 1 && (aspect & image->vk.aspects)); |
| |
| /* Determine the optimal buffer. */ |
| |
| const uint32_t plane = anv_image_aspect_to_plane(image, aspect); |
| |
| /* If we don't have an aux buffer then aux state makes no sense */ |
| const enum isl_aux_usage aux_usage = image->planes[plane].aux_usage; |
| assert(aux_usage != ISL_AUX_USAGE_NONE); |
| |
| /* All images that use an auxiliary surface are required to be tiled. */ |
| assert(image->planes[plane].primary_surface.isl.tiling != ISL_TILING_LINEAR); |
| |
| /* Handle a few special cases */ |
| switch (layout) { |
| /* Invalid layouts */ |
| case VK_IMAGE_LAYOUT_MAX_ENUM: |
| unreachable("Invalid image layout."); |
| |
| /* Undefined layouts |
| * |
| * The pre-initialized layout is equivalent to the undefined layout for |
| * optimally-tiled images. We can only do color compression (CCS or HiZ) |
| * on tiled images. |
| */ |
| case VK_IMAGE_LAYOUT_UNDEFINED: |
| case VK_IMAGE_LAYOUT_PREINITIALIZED: |
| return ISL_AUX_STATE_AUX_INVALID; |
| |
| case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: { |
| assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT); |
| |
| enum isl_aux_state aux_state = |
| isl_drm_modifier_get_default_aux_state(image->vk.drm_format_mod); |
| |
| switch (aux_state) { |
| case ISL_AUX_STATE_AUX_INVALID: |
| /* The modifier does not support compression. But, if we arrived |
| * here, then we have enabled compression on it anyway, in which case |
| * we must resolve the aux surface before we release ownership to the |
| * presentation engine (because, having no modifier, the presentation |
| * engine will not be aware of the aux surface). The presentation |
| * engine will not access the aux surface (because it is unware of |
| * it), and so the aux surface will still be resolved when we |
| * re-acquire ownership. |
| * |
| * Therefore, at ownership transfers in either direction, there does |
| * exist an aux surface despite the lack of modifier and its state is |
| * pass-through. |
| */ |
| return ISL_AUX_STATE_PASS_THROUGH; |
| case ISL_AUX_STATE_COMPRESSED_CLEAR: |
| return ISL_AUX_STATE_COMPRESSED_CLEAR; |
| case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: |
| return ISL_AUX_STATE_COMPRESSED_NO_CLEAR; |
| default: |
| unreachable("unexpected isl_aux_state"); |
| } |
| } |
| |
| default: |
| break; |
| } |
| |
| const bool read_only = vk_image_layout_is_read_only(layout, aspect); |
| |
| const VkImageUsageFlags image_aspect_usage = |
| anv_image_flags_filter_for_queue( |
| vk_image_usage(&image->vk, aspect), queue_flags); |
| const VkImageUsageFlags usage = |
| vk_image_layout_to_usage_flags(layout, aspect) & image_aspect_usage; |
| |
| bool aux_supported = true; |
| bool clear_supported = isl_aux_usage_has_fast_clears(aux_usage); |
| |
| if ((usage & (VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT)) && |
| !read_only) { |
| /* This image could be used as both an input attachment and a render |
| * target (depth, stencil, or color) at the same time and this can cause |
| * corruption. |
| * |
| * We currently only disable aux in this way for depth even though we |
| * disable it for color in GL. |
| * |
| * TODO: Should we be disabling this in more cases? |
| */ |
| if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT && devinfo->ver <= 9) { |
| aux_supported = false; |
| clear_supported = false; |
| } |
| } |
| |
| if (usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_SAMPLED_BIT | |
| VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) { |
| switch (aux_usage) { |
| case ISL_AUX_USAGE_HIZ: |
| if (!anv_can_sample_with_hiz(devinfo, image)) { |
| aux_supported = false; |
| clear_supported = false; |
| } |
| break; |
| |
| case ISL_AUX_USAGE_HIZ_CCS: |
| aux_supported = false; |
| clear_supported = false; |
| break; |
| |
| case ISL_AUX_USAGE_HIZ_CCS_WT: |
| break; |
| |
| case ISL_AUX_USAGE_CCS_D: |
| aux_supported = false; |
| clear_supported = false; |
| break; |
| |
| case ISL_AUX_USAGE_MCS: |
| if (!anv_can_sample_mcs_with_clear(devinfo, image)) |
| clear_supported = false; |
| break; |
| |
| case ISL_AUX_USAGE_CCS_E: |
| case ISL_AUX_USAGE_FCV_CCS_E: |
| case ISL_AUX_USAGE_STC_CCS: |
| break; |
| |
| default: |
| unreachable("Unsupported aux usage"); |
| } |
| } |
| |
| switch (aux_usage) { |
| case ISL_AUX_USAGE_HIZ: |
| case ISL_AUX_USAGE_HIZ_CCS: |
| case ISL_AUX_USAGE_HIZ_CCS_WT: |
| if (aux_supported) { |
| assert(clear_supported); |
| return ISL_AUX_STATE_COMPRESSED_CLEAR; |
| } else if (read_only) { |
| return ISL_AUX_STATE_RESOLVED; |
| } else { |
| return ISL_AUX_STATE_AUX_INVALID; |
| } |
| |
| case ISL_AUX_USAGE_CCS_D: |
| /* We only support clear in exactly one state */ |
| if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || |
| layout == VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL) { |
| assert(aux_supported); |
| assert(clear_supported); |
| return ISL_AUX_STATE_PARTIAL_CLEAR; |
| } else { |
| return ISL_AUX_STATE_PASS_THROUGH; |
| } |
| |
| case ISL_AUX_USAGE_CCS_E: |
| case ISL_AUX_USAGE_FCV_CCS_E: |
| if (aux_supported) { |
| assert(clear_supported); |
| return ISL_AUX_STATE_COMPRESSED_CLEAR; |
| } else { |
| return ISL_AUX_STATE_PASS_THROUGH; |
| } |
| |
| case ISL_AUX_USAGE_MCS: |
| assert(aux_supported); |
| if (clear_supported) { |
| return ISL_AUX_STATE_COMPRESSED_CLEAR; |
| } else { |
| return ISL_AUX_STATE_COMPRESSED_NO_CLEAR; |
| } |
| |
| case ISL_AUX_USAGE_STC_CCS: |
| assert(aux_supported); |
| assert(!clear_supported); |
| return ISL_AUX_STATE_COMPRESSED_NO_CLEAR; |
| |
| default: |
| unreachable("Unsupported aux usage"); |
| } |
| } |
| |
| /** |
| * This function determines the optimal buffer to use for a given |
| * VkImageLayout and other pieces of information needed to make that |
| * determination. This does not determine the optimal buffer to use |
| * during a resolve operation. |
| * |
| * @param devinfo The device information of the Intel GPU. |
| * @param image The image that may contain a collection of buffers. |
| * @param aspect The aspect of the image to be accessed. |
| * @param usage The usage which describes how the image will be accessed. |
| * @param layout The current layout of the image aspect(s). |
| * |
| * @return The primary buffer that should be used for the given layout. |
| */ |
| enum isl_aux_usage ATTRIBUTE_PURE |
| anv_layout_to_aux_usage(const struct intel_device_info * const devinfo, |
| const struct anv_image * const image, |
| const VkImageAspectFlagBits aspect, |
| const VkImageUsageFlagBits usage, |
| const VkImageLayout layout, |
| const VkQueueFlagBits queue_flags) |
| { |
| const uint32_t plane = anv_image_aspect_to_plane(image, aspect); |
| |
| /* If there is no auxiliary surface allocated, we must use the one and only |
| * main buffer. |
| */ |
| if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) |
| return ISL_AUX_USAGE_NONE; |
| |
| enum isl_aux_state aux_state = |
| anv_layout_to_aux_state(devinfo, image, aspect, layout, queue_flags); |
| |
| switch (aux_state) { |
| case ISL_AUX_STATE_CLEAR: |
| unreachable("We never use this state"); |
| |
| case ISL_AUX_STATE_PARTIAL_CLEAR: |
| assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); |
| assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D); |
| assert(image->vk.samples == 1); |
| return ISL_AUX_USAGE_CCS_D; |
| |
| case ISL_AUX_STATE_COMPRESSED_CLEAR: |
| case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: |
| return image->planes[plane].aux_usage; |
| |
| case ISL_AUX_STATE_RESOLVED: |
| /* We can only use RESOLVED in read-only layouts because any write will |
| * either land us in AUX_INVALID or COMPRESSED_NO_CLEAR. We can do |
| * writes in PASS_THROUGH without destroying it so that is allowed. |
| */ |
| assert(vk_image_layout_is_read_only(layout, aspect)); |
| assert(util_is_power_of_two_or_zero(usage)); |
| if (usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { |
| /* If we have valid HiZ data and are using the image as a read-only |
| * depth/stencil attachment, we should enable HiZ so that we can get |
| * faster depth testing. |
| */ |
| return image->planes[plane].aux_usage; |
| } else { |
| return ISL_AUX_USAGE_NONE; |
| } |
| |
| case ISL_AUX_STATE_PASS_THROUGH: |
| case ISL_AUX_STATE_AUX_INVALID: |
| return ISL_AUX_USAGE_NONE; |
| } |
| |
| unreachable("Invalid isl_aux_state"); |
| } |
| |
| /** |
| * This function returns the level of unresolved fast-clear support of the |
| * given image in the given VkImageLayout. |
| * |
| * @param devinfo The device information of the Intel GPU. |
| * @param image The image that may contain a collection of buffers. |
| * @param aspect The aspect of the image to be accessed. |
| * @param usage The usage which describes how the image will be accessed. |
| * @param layout The current layout of the image aspect(s). |
| */ |
| enum anv_fast_clear_type ATTRIBUTE_PURE |
| anv_layout_to_fast_clear_type(const struct intel_device_info * const devinfo, |
| const struct anv_image * const image, |
| const VkImageAspectFlagBits aspect, |
| const VkImageLayout layout, |
| const VkQueueFlagBits queue_flags) |
| { |
| if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR)) |
| return ANV_FAST_CLEAR_NONE; |
| |
| const uint32_t plane = anv_image_aspect_to_plane(image, aspect); |
| |
| /* If there is no auxiliary surface allocated, there are no fast-clears */ |
| if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) |
| return ANV_FAST_CLEAR_NONE; |
| |
| enum isl_aux_state aux_state = |
| anv_layout_to_aux_state(devinfo, image, aspect, layout, queue_flags); |
| |
| const VkImageUsageFlags layout_usage = |
| vk_image_layout_to_usage_flags(layout, aspect); |
| |
| switch (aux_state) { |
| case ISL_AUX_STATE_CLEAR: |
| unreachable("We never use this state"); |
| |
| case ISL_AUX_STATE_PARTIAL_CLEAR: |
| case ISL_AUX_STATE_COMPRESSED_CLEAR: |
| if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { |
| return ANV_FAST_CLEAR_DEFAULT_VALUE; |
| } else if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || |
| layout == VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL) { |
| /* The image might not support non zero fast clears when mutable. */ |
| if (!image->planes[plane].can_non_zero_fast_clear) |
| return ANV_FAST_CLEAR_DEFAULT_VALUE; |
| |
| /* When we're in a render pass we have the clear color data from the |
| * VkRenderPassBeginInfo and we can use arbitrary clear colors. They |
| * must get partially resolved before we leave the render pass. |
| */ |
| return ANV_FAST_CLEAR_ANY; |
| } else if (layout_usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_TRANSFER_DST_BIT)) { |
| /* Fast clear with non zero color is not supported during transfer |
| * operations since transfer may do format reinterpretation. |
| */ |
| return ANV_FAST_CLEAR_DEFAULT_VALUE; |
| } else if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS || |
| image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E || |
| image->planes[plane].aux_usage == ISL_AUX_USAGE_FCV_CCS_E) { |
| if (devinfo->ver >= 11) { |
| /* The image might not support non zero fast clears when mutable. */ |
| if (!image->planes[plane].can_non_zero_fast_clear) |
| return ANV_FAST_CLEAR_DEFAULT_VALUE; |
| |
| /* On ICL and later, the sampler hardware uses a copy of the clear |
| * value that is encoded as a pixel value. Therefore, we can use |
| * any clear color we like for sampling. |
| */ |
| return ANV_FAST_CLEAR_ANY; |
| } else { |
| /* If the image has MCS or CCS_E enabled all the time then we can |
| * use fast-clear as long as the clear color is the default value |
| * of zero since this is the default value we program into every |
| * surface state used for texturing. |
| */ |
| return ANV_FAST_CLEAR_DEFAULT_VALUE; |
| } |
| } else { |
| return ANV_FAST_CLEAR_NONE; |
| } |
| |
| case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: |
| case ISL_AUX_STATE_RESOLVED: |
| case ISL_AUX_STATE_PASS_THROUGH: |
| case ISL_AUX_STATE_AUX_INVALID: |
| return ANV_FAST_CLEAR_NONE; |
| } |
| |
| unreachable("Invalid isl_aux_state"); |
| } |
| |
| |
| /** |
| * This function determines if the layout & usage of an image can have |
| * untracked aux writes. When we see a transition that matches this criteria, |
| * we need to mark the image as compressed written so that our predicated |
| * resolves work properly. |
| * |
| * @param devinfo The device information of the Intel GPU. |
| * @param image The image that may contain a collection of buffers. |
| * @param aspect The aspect of the image to be accessed. |
| * @param layout The current layout of the image aspect(s). |
| */ |
| bool |
| anv_layout_has_untracked_aux_writes(const struct intel_device_info * const devinfo, |
| const struct anv_image * const image, |
| const VkImageAspectFlagBits aspect, |
| const VkImageLayout layout, |
| const VkQueueFlagBits queue_flags) |
| { |
| const VkImageUsageFlags image_aspect_usage = |
| vk_image_usage(&image->vk, aspect); |
| const VkImageUsageFlags usage = |
| vk_image_layout_to_usage_flags(layout, aspect) & image_aspect_usage; |
| |
| /* Storage is the only usage where we do not write the image through a |
| * render target but through a descriptor. Since VK_EXT_descriptor_indexing |
| * and the update-after-bind feature, it has become impossible to track |
| * writes to images in descriptor at the command buffer build time. So it's |
| * not possible to mark an image as compressed like we do in |
| * genX_cmd_buffer.c(EndRendering) or anv_blorp.c for all transfer |
| * operations. |
| */ |
| if (!(usage & VK_IMAGE_USAGE_STORAGE_BIT)) |
| return false; |
| |
| /* No AUX, no writes to the AUX surface :) */ |
| const uint32_t plane = anv_image_aspect_to_plane(image, aspect); |
| const enum isl_aux_usage aux_usage = image->planes[plane].aux_usage; |
| if (aux_usage == ISL_AUX_USAGE_NONE) |
| return false; |
| |
| return true; |
| } |
| |
| static struct anv_state |
| maybe_alloc_surface_state(struct anv_device *device, |
| struct anv_state_stream *surface_state_stream) |
| { |
| if (device->physical->indirect_descriptors) { |
| if (surface_state_stream) |
| return anv_state_stream_alloc(surface_state_stream, 64, 64); |
| return anv_state_pool_alloc(&device->bindless_surface_state_pool, 64, 64); |
| } else { |
| return ANV_STATE_NULL; |
| } |
| } |
| |
| static enum isl_channel_select |
| remap_swizzle(VkComponentSwizzle swizzle, |
| struct isl_swizzle format_swizzle) |
| { |
| switch (swizzle) { |
| case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO; |
| case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE; |
| case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r; |
| case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g; |
| case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b; |
| case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a; |
| default: |
| unreachable("Invalid swizzle"); |
| } |
| } |
| |
| void |
| anv_image_fill_surface_state(struct anv_device *device, |
| const struct anv_image *image, |
| VkImageAspectFlagBits aspect, |
| const struct isl_view *view_in, |
| isl_surf_usage_flags_t view_usage, |
| enum isl_aux_usage aux_usage, |
| const union isl_color_value *clear_color, |
| enum anv_image_view_state_flags flags, |
| struct anv_surface_state *state_inout) |
| { |
| uint32_t plane = anv_image_aspect_to_plane(image, aspect); |
| if (image->emu_plane_format != VK_FORMAT_UNDEFINED) { |
| const uint16_t view_bpb = isl_format_get_layout(view_in->format)->bpb; |
| const uint16_t plane_bpb = isl_format_get_layout( |
| image->planes[plane].primary_surface.isl.format)->bpb; |
| |
| /* We should redirect to the hidden plane when the original view format |
| * is compressed or when the view usage is storage. But we don't always |
| * have visibility to the original view format so we also check for size |
| * compatibility. |
| */ |
| if (isl_format_is_compressed(view_in->format) || |
| (view_usage & ISL_SURF_USAGE_STORAGE_BIT) || |
| view_bpb != plane_bpb) { |
| plane = image->n_planes; |
| assert(isl_format_get_layout( |
| image->planes[plane].primary_surface.isl.format)->bpb == |
| view_bpb); |
| } |
| } |
| |
| const struct anv_surface *surface = &image->planes[plane].primary_surface, |
| *aux_surface = &image->planes[plane].aux_surface; |
| |
| struct isl_view view = *view_in; |
| view.usage |= view_usage; |
| |
| if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT) |
| view.swizzle = anv_swizzle_for_render(view.swizzle); |
| |
| /* If this is a HiZ buffer we can sample from with a programmable clear |
| * value (SKL+), define the clear value to the optimal constant. |
| */ |
| union isl_color_value default_clear_color = { .u32 = { 0, } }; |
| if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) |
| default_clear_color.f32[0] = ANV_HZ_FC_VAL; |
| if (!clear_color) |
| clear_color = &default_clear_color; |
| |
| const struct anv_address address = |
| anv_image_address(image, &surface->memory_range); |
| |
| void *surface_state_map = state_inout->state_data.data; |
| |
| const struct isl_surf *isl_surf = &surface->isl; |
| |
| struct isl_surf tmp_surf; |
| uint64_t offset_B = 0; |
| uint32_t tile_x_sa = 0, tile_y_sa = 0; |
| if (isl_format_is_compressed(surface->isl.format) && |
| !isl_format_is_compressed(view.format)) { |
| /* We're creating an uncompressed view of a compressed surface. This is |
| * allowed but only for a single level/layer. |
| */ |
| assert(surface->isl.samples == 1); |
| assert(view.levels == 1); |
| |
| ASSERTED bool ok = |
| isl_surf_get_uncompressed_surf(&device->isl_dev, isl_surf, &view, |
| &tmp_surf, &view, |
| &offset_B, &tile_x_sa, &tile_y_sa); |
| assert(ok); |
| isl_surf = &tmp_surf; |
| } |
| |
| state_inout->address = anv_address_add(address, offset_B); |
| |
| struct anv_address aux_address = ANV_NULL_ADDRESS; |
| if (aux_usage != ISL_AUX_USAGE_NONE) |
| aux_address = anv_image_address(image, &aux_surface->memory_range); |
| state_inout->aux_address = aux_address; |
| |
| struct anv_address clear_address = ANV_NULL_ADDRESS; |
| if (device->info->ver >= 10 && isl_aux_usage_has_fast_clears(aux_usage)) { |
| clear_address = anv_image_get_clear_color_addr(device, image, aspect); |
| } |
| state_inout->clear_address = clear_address; |
| |
| isl_surf_fill_state(&device->isl_dev, surface_state_map, |
| .surf = isl_surf, |
| .view = &view, |
| .address = anv_address_physical(state_inout->address), |
| .clear_color = *clear_color, |
| .aux_surf = &aux_surface->isl, |
| .aux_usage = aux_usage, |
| .aux_address = anv_address_physical(aux_address), |
| .clear_address = anv_address_physical(clear_address), |
| .use_clear_address = !anv_address_is_null(clear_address), |
| .mocs = anv_mocs(device, state_inout->address.bo, |
| view_usage), |
| .x_offset_sa = tile_x_sa, |
| .y_offset_sa = tile_y_sa, |
| /* Assume robustness with EXT_pipeline_robustness |
| * because this can be turned on/off per pipeline and |
| * we have no visibility on this here. |
| */ |
| .robust_image_access = |
| device->vk.enabled_features.robustImageAccess || |
| device->vk.enabled_features.robustImageAccess2 || |
| device->vk.enabled_extensions.EXT_pipeline_robustness); |
| |
| /* With the exception of gfx8, the bottom 12 bits of the MCS base address |
| * are used to store other information. This should be ok, however, because |
| * the surface buffer addresses are always 4K page aligned. |
| */ |
| if (!anv_address_is_null(aux_address)) { |
| uint32_t *aux_addr_dw = surface_state_map + |
| device->isl_dev.ss.aux_addr_offset; |
| assert((aux_address.offset & 0xfff) == 0); |
| state_inout->aux_address.offset |= *aux_addr_dw & 0xfff; |
| } |
| |
| if (device->info->ver >= 10 && clear_address.bo) { |
| uint32_t *clear_addr_dw = surface_state_map + |
| device->isl_dev.ss.clear_color_state_offset; |
| assert((clear_address.offset & 0x3f) == 0); |
| state_inout->clear_address.offset |= *clear_addr_dw & 0x3f; |
| } |
| |
| if (state_inout->state.map) |
| memcpy(state_inout->state.map, surface_state_map, ANV_SURFACE_STATE_SIZE); |
| } |
| |
| static uint32_t |
| anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask) |
| { |
| anv_assert_valid_aspect_set(aspect_mask); |
| return util_bitcount(aspect_mask); |
| } |
| |
| bool |
| anv_can_hiz_clear_ds_view(struct anv_device *device, |
| const struct anv_image_view *iview, |
| VkImageLayout layout, |
| VkImageAspectFlags clear_aspects, |
| float depth_clear_value, |
| VkRect2D render_area, |
| const VkQueueFlagBits queue_flags) |
| { |
| if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR)) |
| return false; |
| |
| /* If we're just clearing stencil, we can always HiZ clear */ |
| if (!(clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) |
| return true; |
| |
| /* We must have depth in order to have HiZ */ |
| if (!(iview->image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) |
| return false; |
| |
| const enum isl_aux_usage clear_aux_usage = |
| anv_layout_to_aux_usage(device->info, iview->image, |
| VK_IMAGE_ASPECT_DEPTH_BIT, |
| VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, |
| layout, queue_flags); |
| if (!blorp_can_hiz_clear_depth(device->info, |
| &iview->image->planes[0].primary_surface.isl, |
| clear_aux_usage, |
| iview->planes[0].isl.base_level, |
| iview->planes[0].isl.base_array_layer, |
| render_area.offset.x, |
| render_area.offset.y, |
| render_area.offset.x + |
| render_area.extent.width, |
| render_area.offset.y + |
| render_area.extent.height)) |
| return false; |
| |
| if (depth_clear_value != ANV_HZ_FC_VAL) |
| return false; |
| |
| /* If we got here, then we can fast clear */ |
| return true; |
| } |
| |
| static bool |
| isl_color_value_requires_conversion(union isl_color_value color, |
| const struct isl_surf *surf, |
| const struct isl_view *view) |
| { |
| if (surf->format == view->format && isl_swizzle_is_identity(view->swizzle)) |
| return false; |
| |
| uint32_t surf_pack[4] = { 0, 0, 0, 0 }; |
| isl_color_value_pack(&color, surf->format, surf_pack); |
| |
| uint32_t view_pack[4] = { 0, 0, 0, 0 }; |
| union isl_color_value swiz_color = |
| isl_color_value_swizzle_inv(color, view->swizzle); |
| isl_color_value_pack(&swiz_color, view->format, view_pack); |
| |
| return memcmp(surf_pack, view_pack, sizeof(surf_pack)) != 0; |
| } |
| |
| bool |
| anv_can_fast_clear_color_view(struct anv_device *device, |
| struct anv_image_view *iview, |
| VkImageLayout layout, |
| union isl_color_value clear_color, |
| uint32_t num_layers, |
| VkRect2D render_area, |
| const VkQueueFlagBits queue_flags) |
| { |
| if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR)) |
| return false; |
| |
| if (iview->planes[0].isl.base_array_layer >= |
| anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT, |
| iview->planes[0].isl.base_level)) |
| return false; |
| |
| /* Start by getting the fast clear type. We use the first subpass |
| * layout here because we don't want to fast-clear if the first subpass |
| * to use the attachment can't handle fast-clears. |
| */ |
| enum anv_fast_clear_type fast_clear_type = |
| anv_layout_to_fast_clear_type(device->info, iview->image, |
| VK_IMAGE_ASPECT_COLOR_BIT, |
| layout, queue_flags); |
| switch (fast_clear_type) { |
| case ANV_FAST_CLEAR_NONE: |
| return false; |
| case ANV_FAST_CLEAR_DEFAULT_VALUE: |
| if (!isl_color_value_is_zero(clear_color, iview->planes[0].isl.format)) |
| return false; |
| break; |
| case ANV_FAST_CLEAR_ANY: |
| break; |
| } |
| |
| /* Potentially, we could do partial fast-clears but doing so has crazy |
| * alignment restrictions. It's easier to just restrict to full size |
| * fast clears for now. |
| */ |
| if (render_area.offset.x != 0 || |
| render_area.offset.y != 0 || |
| render_area.extent.width != iview->vk.extent.width || |
| render_area.extent.height != iview->vk.extent.height) |
| return false; |
| |
| /* If the clear color is one that would require non-trivial format |
| * conversion on resolve, we don't bother with the fast clear. This |
| * shouldn't be common as most clear colors are 0/1 and the most common |
| * format re-interpretation is for sRGB. |
| */ |
| if (isl_color_value_requires_conversion(clear_color, |
| &iview->image->planes[0].primary_surface.isl, |
| &iview->planes[0].isl)) { |
| anv_perf_warn(VK_LOG_OBJS(&iview->vk.base), |
| "Cannot fast-clear to colors which would require " |
| "format conversion on resolve"); |
| return false; |
| } |
| |
| /* We only allow fast clears to the first slice of an image (level 0, |
| * layer 0) and only for the entire slice. This guarantees us that, at |
| * any given time, there is only one clear color on any given image at |
| * any given time. At the time of our testing (Jan 17, 2018), there |
| * were no known applications which would benefit from fast-clearing |
| * more than just the first slice. |
| */ |
| if (iview->planes[0].isl.base_level > 0 || |
| iview->planes[0].isl.base_array_layer > 0) { |
| anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base), |
| "Rendering with multi-lod or multi-layer framebuffer " |
| "with LOAD_OP_LOAD and baseMipLevel > 0 or " |
| "baseArrayLayer > 0. Not fast clearing."); |
| return false; |
| } |
| |
| if (num_layers > 1) { |
| anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base), |
| "Rendering to a multi-layer framebuffer with " |
| "LOAD_OP_CLEAR. Only fast-clearing the first slice"); |
| } |
| |
| /* Wa_18020603990 - slow clear surfaces up to 256x256, 32bpp. */ |
| if (intel_needs_workaround(device->info, 18020603990)) { |
| const struct anv_surface *anv_surf = |
| &iview->image->planes->primary_surface; |
| if (isl_format_get_layout(anv_surf->isl.format)->bpb <= 32 && |
| anv_surf->isl.logical_level0_px.w <= 256 && |
| anv_surf->isl.logical_level0_px.h <= 256) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void |
| anv_image_view_init(struct anv_device *device, |
| struct anv_image_view *iview, |
| const VkImageViewCreateInfo *pCreateInfo, |
| struct anv_state_stream *surface_state_stream) |
| { |
| ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image); |
| |
| vk_image_view_init(&device->vk, &iview->vk, false, pCreateInfo); |
| iview->image = image; |
| iview->n_planes = anv_image_aspect_get_planes(iview->vk.aspects); |
| iview->use_surface_state_stream = surface_state_stream != NULL; |
| |
| /* Now go through the underlying image selected planes and map them to |
| * planes in the image view. |
| */ |
| anv_foreach_image_aspect_bit(iaspect_bit, image, iview->vk.aspects) { |
| const uint32_t vplane = |
| anv_aspect_to_plane(iview->vk.aspects, 1UL << iaspect_bit); |
| |
| VkFormat view_format = iview->vk.view_format; |
| if (anv_is_format_emulated(device->physical, view_format)) { |
| assert(image->emu_plane_format != VK_FORMAT_UNDEFINED); |
| view_format = |
| anv_get_emulation_format(device->physical, view_format); |
| } |
| const struct anv_format_plane format = anv_get_format_plane( |
| device->info, view_format, vplane, image->vk.tiling); |
| |
| iview->planes[vplane].isl = (struct isl_view) { |
| .format = format.isl_format, |
| .base_level = iview->vk.base_mip_level, |
| .levels = iview->vk.level_count, |
| .base_array_layer = iview->vk.base_array_layer, |
| .array_len = iview->vk.layer_count, |
| .min_lod_clamp = iview->vk.min_lod, |
| .swizzle = { |
| .r = remap_swizzle(iview->vk.swizzle.r, format.swizzle), |
| .g = remap_swizzle(iview->vk.swizzle.g, format.swizzle), |
| .b = remap_swizzle(iview->vk.swizzle.b, format.swizzle), |
| .a = remap_swizzle(iview->vk.swizzle.a, format.swizzle), |
| }, |
| }; |
| |
| if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) { |
| iview->planes[vplane].isl.base_array_layer = 0; |
| iview->planes[vplane].isl.array_len = iview->vk.extent.depth; |
| } |
| |
| if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE || |
| pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) { |
| iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT; |
| } else { |
| iview->planes[vplane].isl.usage = 0; |
| } |
| |
| if (iview->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT | |
| VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) { |
| iview->planes[vplane].optimal_sampler.state = |
| maybe_alloc_surface_state(device, surface_state_stream); |
| iview->planes[vplane].general_sampler.state = |
| maybe_alloc_surface_state(device, surface_state_stream); |
| |
| enum isl_aux_usage general_aux_usage = |
| anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit, |
| VK_IMAGE_USAGE_SAMPLED_BIT, |
| VK_IMAGE_LAYOUT_GENERAL, |
| VK_QUEUE_GRAPHICS_BIT | |
| VK_QUEUE_COMPUTE_BIT | |
| VK_QUEUE_TRANSFER_BIT); |
| enum isl_aux_usage optimal_aux_usage = |
| anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit, |
| VK_IMAGE_USAGE_SAMPLED_BIT, |
| VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, |
| VK_QUEUE_GRAPHICS_BIT | |
| VK_QUEUE_COMPUTE_BIT | |
| VK_QUEUE_TRANSFER_BIT); |
| |
| anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, |
| &iview->planes[vplane].isl, |
| ISL_SURF_USAGE_TEXTURE_BIT, |
| optimal_aux_usage, NULL, |
| ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL, |
| &iview->planes[vplane].optimal_sampler); |
| |
| anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, |
| &iview->planes[vplane].isl, |
| ISL_SURF_USAGE_TEXTURE_BIT, |
| general_aux_usage, NULL, |
| 0, |
| &iview->planes[vplane].general_sampler); |
| } |
| |
| /* NOTE: This one needs to go last since it may stomp isl_view.format */ |
| if (iview->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT) { |
| struct isl_view storage_view = iview->planes[vplane].isl; |
| if (iview->vk.view_type == VK_IMAGE_VIEW_TYPE_3D) { |
| storage_view.base_array_layer = iview->vk.storage.z_slice_offset; |
| storage_view.array_len = iview->vk.storage.z_slice_count; |
| } |
| |
| enum isl_aux_usage general_aux_usage = |
| anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit, |
| VK_IMAGE_USAGE_STORAGE_BIT, |
| VK_IMAGE_LAYOUT_GENERAL, |
| VK_QUEUE_GRAPHICS_BIT | |
| VK_QUEUE_COMPUTE_BIT | |
| VK_QUEUE_TRANSFER_BIT); |
| iview->planes[vplane].storage.state = |
| maybe_alloc_surface_state(device, surface_state_stream); |
| |
| anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, |
| &storage_view, |
| ISL_SURF_USAGE_STORAGE_BIT, |
| general_aux_usage, NULL, |
| 0, |
| &iview->planes[vplane].storage); |
| } |
| } |
| } |
| |
| void |
| anv_image_view_finish(struct anv_image_view *iview) |
| { |
| struct anv_device *device = |
| container_of(iview->vk.base.device, struct anv_device, vk); |
| |
| if (!iview->use_surface_state_stream) { |
| for (uint32_t plane = 0; plane < iview->n_planes; plane++) { |
| if (iview->planes[plane].optimal_sampler.state.alloc_size) { |
| anv_state_pool_free(&device->bindless_surface_state_pool, |
| iview->planes[plane].optimal_sampler.state); |
| } |
| |
| if (iview->planes[plane].general_sampler.state.alloc_size) { |
| anv_state_pool_free(&device->bindless_surface_state_pool, |
| iview->planes[plane].general_sampler.state); |
| } |
| |
| if (iview->planes[plane].storage.state.alloc_size) { |
| anv_state_pool_free(&device->bindless_surface_state_pool, |
| iview->planes[plane].storage.state); |
| } |
| } |
| } |
| |
| vk_image_view_finish(&iview->vk); |
| } |
| |
| VkResult |
| anv_CreateImageView(VkDevice _device, |
| const VkImageViewCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| VkImageView *pView) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| struct anv_image_view *iview; |
| |
| iview = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*iview), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (iview == NULL) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| anv_image_view_init(device, iview, pCreateInfo, NULL); |
| |
| *pView = anv_image_view_to_handle(iview); |
| |
| return VK_SUCCESS; |
| } |
| |
| void |
| anv_DestroyImageView(VkDevice _device, VkImageView _iview, |
| const VkAllocationCallbacks *pAllocator) |
| { |
| ANV_FROM_HANDLE(anv_image_view, iview, _iview); |
| |
| if (!iview) |
| return; |
| |
| anv_image_view_finish(iview); |
| vk_free2(&iview->vk.base.device->alloc, pAllocator, iview); |
| } |
| |
| static void |
| anv_fill_buffer_view_surface_state(struct anv_device *device, |
| struct anv_buffer_state *state, |
| enum isl_format format, |
| struct isl_swizzle swizzle, |
| isl_surf_usage_flags_t usage, |
| struct anv_address address, |
| uint32_t range, uint32_t stride) |
| { |
| anv_fill_buffer_surface_state(device, |
| state->state_data.data, |
| format, swizzle, usage, |
| address, range, stride); |
| |
| if (state->state.map) |
| memcpy(state->state.map, state->state_data.data, ANV_SURFACE_STATE_SIZE); |
| } |
| |
| VkResult |
| anv_CreateBufferView(VkDevice _device, |
| const VkBufferViewCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| VkBufferView *pView) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer); |
| struct anv_buffer_view *view; |
| |
| view = vk_buffer_view_create(&device->vk, pCreateInfo, |
| pAllocator, sizeof(*view)); |
| if (!view) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| const VkBufferUsageFlags2CreateInfoKHR *view_usage_info = |
| vk_find_struct_const(pCreateInfo->pNext, BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR); |
| const VkBufferUsageFlags buffer_usage = |
| view_usage_info != NULL ? view_usage_info->usage : buffer->vk.usage; |
| |
| struct anv_format_plane format; |
| format = anv_get_format_plane(device->info, pCreateInfo->format, |
| 0, VK_IMAGE_TILING_LINEAR); |
| |
| const uint32_t format_bs = isl_format_get_layout(format.isl_format)->bpb / 8; |
| const uint32_t align_range = |
| align_down_npot_u32(view->vk.range, format_bs); |
| |
| view->address = anv_address_add(buffer->address, pCreateInfo->offset); |
| |
| if (buffer_usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) { |
| view->general.state = maybe_alloc_surface_state(device, NULL); |
| |
| anv_fill_buffer_view_surface_state(device, |
| &view->general, |
| format.isl_format, |
| format.swizzle, |
| ISL_SURF_USAGE_TEXTURE_BIT, |
| view->address, align_range, format_bs); |
| } else { |
| view->general.state = ANV_STATE_NULL; |
| } |
| |
| if (buffer_usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) { |
| view->storage.state = maybe_alloc_surface_state(device, NULL); |
| |
| anv_fill_buffer_view_surface_state(device, |
| &view->storage, |
| format.isl_format, format.swizzle, |
| ISL_SURF_USAGE_STORAGE_BIT, |
| view->address, align_range, format_bs); |
| } else { |
| view->storage.state = ANV_STATE_NULL; |
| } |
| |
| *pView = anv_buffer_view_to_handle(view); |
| |
| return VK_SUCCESS; |
| } |
| |
| void |
| anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView, |
| const VkAllocationCallbacks *pAllocator) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| ANV_FROM_HANDLE(anv_buffer_view, view, bufferView); |
| |
| if (!view) |
| return; |
| |
| if (view->general.state.alloc_size > 0) { |
| anv_state_pool_free(&device->bindless_surface_state_pool, |
| view->general.state); |
| } |
| |
| if (view->storage.state.alloc_size > 0) { |
| anv_state_pool_free(&device->bindless_surface_state_pool, |
| view->storage.state); |
| } |
| |
| vk_buffer_view_destroy(&device->vk, pAllocator, &view->vk); |
| } |
| |
| void anv_GetRenderingAreaGranularityKHR( |
| VkDevice _device, |
| const VkRenderingAreaInfoKHR* pRenderingAreaInfo, |
| VkExtent2D* pGranularity) |
| { |
| *pGranularity = (VkExtent2D) { |
| .width = 1, |
| .height = 1, |
| }; |
| } |