| /* |
| * Copyright © 2016 Red Hat. |
| * Copyright © 2016 Bas Nieuwenhuizen |
| * |
| * based in part on anv driver which is: |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "radv_cs.h" |
| #include "radv_debug.h" |
| #include "radv_private.h" |
| #include "vk_semaphore.h" |
| #include "vk_sync.h" |
| |
| #include "ac_debug.h" |
| |
| enum radeon_ctx_priority |
| radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoKHR *pObj) |
| { |
| /* Default to MEDIUM when a specific global priority isn't requested */ |
| if (!pObj) |
| return RADEON_CTX_PRIORITY_MEDIUM; |
| |
| switch (pObj->globalPriority) { |
| case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR: |
| return RADEON_CTX_PRIORITY_REALTIME; |
| case VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR: |
| return RADEON_CTX_PRIORITY_HIGH; |
| case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR: |
| return RADEON_CTX_PRIORITY_MEDIUM; |
| case VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR: |
| return RADEON_CTX_PRIORITY_LOW; |
| default: |
| unreachable("Illegal global priority value"); |
| return RADEON_CTX_PRIORITY_INVALID; |
| } |
| } |
| |
| static VkResult |
| radv_sparse_buffer_bind_memory(struct radv_device *device, const VkSparseBufferMemoryBindInfo *bind) |
| { |
| RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer); |
| VkResult result = VK_SUCCESS; |
| |
| struct radv_device_memory *mem = NULL; |
| VkDeviceSize resourceOffset = 0; |
| VkDeviceSize size = 0; |
| VkDeviceSize memoryOffset = 0; |
| for (uint32_t i = 0; i < bind->bindCount; ++i) { |
| struct radv_device_memory *cur_mem = NULL; |
| |
| if (bind->pBinds[i].memory != VK_NULL_HANDLE) |
| cur_mem = radv_device_memory_from_handle(bind->pBinds[i].memory); |
| if (i && mem == cur_mem) { |
| if (mem) { |
| if (bind->pBinds[i].resourceOffset == resourceOffset + size && |
| bind->pBinds[i].memoryOffset == memoryOffset + size) { |
| size += bind->pBinds[i].size; |
| continue; |
| } |
| } else { |
| if (bind->pBinds[i].resourceOffset == resourceOffset + size) { |
| size += bind->pBinds[i].size; |
| continue; |
| } |
| } |
| } |
| if (size) { |
| result = device->ws->buffer_virtual_bind(device->ws, buffer->bo, resourceOffset, size, mem ? mem->bo : NULL, |
| memoryOffset); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| if (bind->pBinds[i].memory) |
| radv_rmv_log_sparse_add_residency(device, buffer->bo, memoryOffset); |
| else |
| radv_rmv_log_sparse_remove_residency(device, buffer->bo, memoryOffset); |
| } |
| mem = cur_mem; |
| resourceOffset = bind->pBinds[i].resourceOffset; |
| size = bind->pBinds[i].size; |
| memoryOffset = bind->pBinds[i].memoryOffset; |
| } |
| if (size) { |
| result = device->ws->buffer_virtual_bind(device->ws, buffer->bo, resourceOffset, size, mem ? mem->bo : NULL, |
| memoryOffset); |
| |
| if (mem) |
| radv_rmv_log_sparse_add_residency(device, buffer->bo, memoryOffset); |
| else |
| radv_rmv_log_sparse_remove_residency(device, buffer->bo, memoryOffset); |
| } |
| |
| return result; |
| } |
| |
| static VkResult |
| radv_sparse_image_opaque_bind_memory(struct radv_device *device, const VkSparseImageOpaqueMemoryBindInfo *bind) |
| { |
| RADV_FROM_HANDLE(radv_image, image, bind->image); |
| VkResult result; |
| |
| for (uint32_t i = 0; i < bind->bindCount; ++i) { |
| struct radv_device_memory *mem = NULL; |
| |
| if (bind->pBinds[i].memory != VK_NULL_HANDLE) |
| mem = radv_device_memory_from_handle(bind->pBinds[i].memory); |
| |
| result = |
| device->ws->buffer_virtual_bind(device->ws, image->bindings[0].bo, bind->pBinds[i].resourceOffset, |
| bind->pBinds[i].size, mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| if (bind->pBinds[i].memory) |
| radv_rmv_log_sparse_add_residency(device, image->bindings[0].bo, bind->pBinds[i].resourceOffset); |
| else |
| radv_rmv_log_sparse_remove_residency(device, image->bindings[0].bo, bind->pBinds[i].resourceOffset); |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| static VkResult |
| radv_sparse_image_bind_memory(struct radv_device *device, const VkSparseImageMemoryBindInfo *bind) |
| { |
| RADV_FROM_HANDLE(radv_image, image, bind->image); |
| struct radeon_surf *surface = &image->planes[0].surface; |
| uint32_t bs = vk_format_get_blocksize(image->vk.format); |
| VkResult result; |
| |
| for (uint32_t i = 0; i < bind->bindCount; ++i) { |
| struct radv_device_memory *mem = NULL; |
| uint64_t offset, depth_pitch; |
| uint32_t pitch; |
| uint64_t mem_offset = bind->pBinds[i].memoryOffset; |
| const uint32_t layer = bind->pBinds[i].subresource.arrayLayer; |
| const uint32_t level = bind->pBinds[i].subresource.mipLevel; |
| |
| VkExtent3D bind_extent = bind->pBinds[i].extent; |
| bind_extent.width = DIV_ROUND_UP(bind_extent.width, vk_format_get_blockwidth(image->vk.format)); |
| bind_extent.height = DIV_ROUND_UP(bind_extent.height, vk_format_get_blockheight(image->vk.format)); |
| |
| VkOffset3D bind_offset = bind->pBinds[i].offset; |
| bind_offset.x /= vk_format_get_blockwidth(image->vk.format); |
| bind_offset.y /= vk_format_get_blockheight(image->vk.format); |
| |
| if (bind->pBinds[i].memory != VK_NULL_HANDLE) |
| mem = radv_device_memory_from_handle(bind->pBinds[i].memory); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX9) { |
| offset = surface->u.gfx9.surf_slice_size * layer + surface->u.gfx9.prt_level_offset[level]; |
| pitch = surface->u.gfx9.prt_level_pitch[level]; |
| depth_pitch = surface->u.gfx9.surf_slice_size; |
| } else { |
| depth_pitch = surface->u.legacy.level[level].slice_size_dw * 4; |
| offset = (uint64_t)surface->u.legacy.level[level].offset_256B * 256 + depth_pitch * layer; |
| pitch = surface->u.legacy.level[level].nblk_x; |
| } |
| |
| offset += |
| bind_offset.z * depth_pitch + ((uint64_t)bind_offset.y * pitch * surface->prt_tile_depth + |
| (uint64_t)bind_offset.x * surface->prt_tile_height * surface->prt_tile_depth) * |
| bs; |
| |
| uint32_t aligned_extent_width = ALIGN(bind_extent.width, surface->prt_tile_width); |
| uint32_t aligned_extent_height = ALIGN(bind_extent.height, surface->prt_tile_height); |
| uint32_t aligned_extent_depth = ALIGN(bind_extent.depth, surface->prt_tile_depth); |
| |
| bool whole_subres = (bind_extent.height <= surface->prt_tile_height || aligned_extent_width == pitch) && |
| (bind_extent.depth <= surface->prt_tile_depth || |
| (uint64_t)aligned_extent_width * aligned_extent_height * bs == depth_pitch); |
| |
| if (whole_subres) { |
| uint64_t size = (uint64_t)aligned_extent_width * aligned_extent_height * aligned_extent_depth * bs; |
| result = device->ws->buffer_virtual_bind(device->ws, image->bindings[0].bo, offset, size, mem ? mem->bo : NULL, |
| mem_offset); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| if (bind->pBinds[i].memory) |
| radv_rmv_log_sparse_add_residency(device, image->bindings[0].bo, offset); |
| else |
| radv_rmv_log_sparse_remove_residency(device, image->bindings[0].bo, offset); |
| |
| } else { |
| uint32_t img_y_increment = pitch * bs * surface->prt_tile_depth; |
| uint32_t mem_y_increment = aligned_extent_width * bs * surface->prt_tile_depth; |
| uint64_t mem_z_increment = (uint64_t)aligned_extent_width * aligned_extent_height * bs; |
| uint64_t size = mem_y_increment * surface->prt_tile_height; |
| for (unsigned z = 0; z < bind_extent.depth; |
| z += surface->prt_tile_depth, offset += depth_pitch * surface->prt_tile_depth) { |
| for (unsigned y = 0; y < bind_extent.height; y += surface->prt_tile_height) { |
| result = device->ws->buffer_virtual_bind( |
| device->ws, image->bindings[0].bo, offset + (uint64_t)img_y_increment * y, size, mem ? mem->bo : NULL, |
| mem_offset + (uint64_t)mem_y_increment * y + mem_z_increment * z); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| if (bind->pBinds[i].memory) |
| radv_rmv_log_sparse_add_residency(device, image->bindings[0].bo, offset); |
| else |
| radv_rmv_log_sparse_remove_residency(device, image->bindings[0].bo, offset); |
| } |
| } |
| } |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| static VkResult |
| radv_queue_submit_bind_sparse_memory(struct radv_device *device, struct vk_queue_submit *submission) |
| { |
| for (uint32_t i = 0; i < submission->buffer_bind_count; ++i) { |
| VkResult result = radv_sparse_buffer_bind_memory(device, submission->buffer_binds + i); |
| if (result != VK_SUCCESS) |
| return result; |
| } |
| |
| for (uint32_t i = 0; i < submission->image_opaque_bind_count; ++i) { |
| VkResult result = radv_sparse_image_opaque_bind_memory(device, submission->image_opaque_binds + i); |
| if (result != VK_SUCCESS) |
| return result; |
| } |
| |
| for (uint32_t i = 0; i < submission->image_bind_count; ++i) { |
| VkResult result = radv_sparse_image_bind_memory(device, submission->image_binds + i); |
| if (result != VK_SUCCESS) |
| return result; |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| static VkResult |
| radv_queue_submit_empty(struct radv_queue *queue, struct vk_queue_submit *submission) |
| { |
| struct radeon_winsys_ctx *ctx = queue->hw_ctx; |
| struct radv_winsys_submit_info submit = { |
| .ip_type = radv_queue_ring(queue), |
| .queue_index = queue->vk.index_in_family, |
| }; |
| |
| return queue->device->ws->cs_submit(ctx, &submit, submission->wait_count, submission->waits, |
| submission->signal_count, submission->signals); |
| } |
| |
| static void |
| radv_fill_shader_rings(struct radv_device *device, uint32_t *desc, struct radeon_winsys_bo *scratch_bo, |
| uint32_t esgs_ring_size, struct radeon_winsys_bo *esgs_ring_bo, uint32_t gsvs_ring_size, |
| struct radeon_winsys_bo *gsvs_ring_bo, struct radeon_winsys_bo *tess_rings_bo, |
| struct radeon_winsys_bo *task_rings_bo, struct radeon_winsys_bo *mesh_scratch_ring_bo, |
| uint32_t attr_ring_size, struct radeon_winsys_bo *attr_ring_bo) |
| { |
| if (scratch_bo) { |
| uint64_t scratch_va = radv_buffer_get_va(scratch_bo); |
| uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) |
| rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX11(1); |
| else |
| rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX6(1); |
| |
| desc[0] = scratch_va; |
| desc[1] = rsrc1; |
| } |
| |
| desc += 4; |
| |
| if (esgs_ring_bo) { |
| uint64_t esgs_va = radv_buffer_get_va(esgs_ring_bo); |
| |
| /* stride 0, num records - size, add tid, swizzle, elsize4, |
| index stride 64 */ |
| desc[0] = esgs_va; |
| desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32); |
| desc[2] = esgs_ring_size; |
| desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | |
| S_008F0C_INDEX_STRIDE(3) | S_008F0C_ADD_TID_ENABLE(1); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) |
| desc[1] |= S_008F04_SWIZZLE_ENABLE_GFX11(1); |
| else |
| desc[1] |= S_008F04_SWIZZLE_ENABLE_GFX6(1); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED); |
| } else if (device->physical_device->rad_info.gfx_level >= GFX10) { |
| desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | |
| S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1); |
| } else if (device->physical_device->rad_info.gfx_level >= GFX8) { |
| /* DATA_FORMAT is STRIDE[14:17] for MUBUF with ADD_TID_ENABLE=1 */ |
| desc[3] |= |
| S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(0) | S_008F0C_ELEMENT_SIZE(1); |
| } else { |
| desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | |
| S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1); |
| } |
| |
| /* GS entry for ES->GS ring */ |
| /* stride 0, num records - size, elsize0, |
| index stride 0 */ |
| desc[4] = esgs_va; |
| desc[5] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32); |
| desc[6] = esgs_ring_size; |
| desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED); |
| } else if (device->physical_device->rad_info.gfx_level >= GFX10) { |
| desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | |
| S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1); |
| } else { |
| desc[7] |= |
| S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); |
| } |
| } |
| |
| desc += 8; |
| |
| if (gsvs_ring_bo) { |
| uint64_t gsvs_va = radv_buffer_get_va(gsvs_ring_bo); |
| |
| /* VS entry for GS->VS ring */ |
| /* stride 0, num records - size, elsize0, |
| index stride 0 */ |
| desc[0] = gsvs_va; |
| desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32); |
| desc[2] = gsvs_ring_size; |
| desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED); |
| } else if (device->physical_device->rad_info.gfx_level >= GFX10) { |
| desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | |
| S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1); |
| } else { |
| desc[3] |= |
| S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); |
| } |
| |
| /* stride gsvs_itemsize, num records 64 |
| elsize 4, index stride 16 */ |
| /* shader will patch stride and desc[2] */ |
| desc[4] = gsvs_va; |
| desc[5] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32); |
| desc[6] = 0; |
| desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | |
| S_008F0C_INDEX_STRIDE(1) | S_008F0C_ADD_TID_ENABLE(true); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) |
| desc[5] |= S_008F04_SWIZZLE_ENABLE_GFX11(1); |
| else |
| desc[5] |= S_008F04_SWIZZLE_ENABLE_GFX6(1); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED); |
| } else if (device->physical_device->rad_info.gfx_level >= GFX10) { |
| desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | |
| S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1); |
| } else if (device->physical_device->rad_info.gfx_level >= GFX8) { |
| /* DATA_FORMAT is STRIDE[14:17] for MUBUF with ADD_TID_ENABLE=1 */ |
| desc[7] |= |
| S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(0) | S_008F0C_ELEMENT_SIZE(1); |
| } else { |
| desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | |
| S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1); |
| } |
| } |
| |
| desc += 8; |
| |
| if (tess_rings_bo) { |
| uint64_t tess_va = radv_buffer_get_va(tess_rings_bo); |
| uint64_t tess_offchip_va = tess_va + device->physical_device->hs.tess_offchip_ring_offset; |
| |
| desc[0] = tess_va; |
| desc[1] = S_008F04_BASE_ADDRESS_HI(tess_va >> 32); |
| desc[2] = device->physical_device->hs.tess_factor_ring_size; |
| desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW); |
| } else if (device->physical_device->rad_info.gfx_level >= GFX10) { |
| desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | |
| S_008F0C_RESOURCE_LEVEL(1); |
| } else { |
| desc[3] |= |
| S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); |
| } |
| |
| desc[4] = tess_offchip_va; |
| desc[5] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32); |
| desc[6] = device->physical_device->hs.tess_offchip_ring_size; |
| desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW); |
| } else if (device->physical_device->rad_info.gfx_level >= GFX10) { |
| desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | |
| S_008F0C_RESOURCE_LEVEL(1); |
| } else { |
| desc[7] |= |
| S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); |
| } |
| } |
| |
| desc += 8; |
| |
| if (task_rings_bo) { |
| uint64_t task_va = radv_buffer_get_va(task_rings_bo); |
| uint64_t task_draw_ring_va = task_va + device->physical_device->task_info.draw_ring_offset; |
| uint64_t task_payload_ring_va = task_va + device->physical_device->task_info.payload_ring_offset; |
| |
| desc[0] = task_draw_ring_va; |
| desc[1] = S_008F04_BASE_ADDRESS_HI(task_draw_ring_va >> 32); |
| desc[2] = device->physical_device->task_info.num_entries * AC_TASK_DRAW_ENTRY_BYTES; |
| desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_UINT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED); |
| } else { |
| assert(device->physical_device->rad_info.gfx_level >= GFX10_3); |
| desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | |
| S_008F0C_RESOURCE_LEVEL(1); |
| } |
| |
| desc[4] = task_payload_ring_va; |
| desc[5] = S_008F04_BASE_ADDRESS_HI(task_payload_ring_va >> 32); |
| desc[6] = device->physical_device->task_info.num_entries * AC_TASK_PAYLOAD_ENTRY_BYTES; |
| desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_UINT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED); |
| } else { |
| assert(device->physical_device->rad_info.gfx_level >= GFX10_3); |
| desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | |
| S_008F0C_RESOURCE_LEVEL(1); |
| } |
| } |
| |
| desc += 8; |
| |
| if (mesh_scratch_ring_bo) { |
| uint64_t va = radv_buffer_get_va(mesh_scratch_ring_bo); |
| |
| desc[0] = va; |
| desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32); |
| desc[2] = RADV_MESH_SCRATCH_NUM_ENTRIES * RADV_MESH_SCRATCH_ENTRY_BYTES; |
| desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_UINT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED); |
| } else { |
| assert(device->physical_device->rad_info.gfx_level >= GFX10_3); |
| desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | |
| S_008F0C_RESOURCE_LEVEL(1); |
| } |
| } |
| |
| desc += 4; |
| |
| if (attr_ring_bo) { |
| assert(device->physical_device->rad_info.gfx_level >= GFX11); |
| |
| uint64_t va = radv_buffer_get_va(attr_ring_bo); |
| |
| desc[0] = va; |
| desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_SWIZZLE_ENABLE_GFX11(3) /* 16B */; |
| desc[2] = attr_ring_size; |
| desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | |
| S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_32_32_32_FLOAT) | S_008F0C_INDEX_STRIDE(2) /* 32 elements */; |
| } |
| |
| desc += 4; |
| |
| /* add sample positions after all rings */ |
| memcpy(desc, device->sample_locations_1x, 8); |
| desc += 2; |
| memcpy(desc, device->sample_locations_2x, 16); |
| desc += 4; |
| memcpy(desc, device->sample_locations_4x, 32); |
| desc += 8; |
| memcpy(desc, device->sample_locations_8x, 64); |
| } |
| |
| static void |
| radv_emit_gs_ring_sizes(struct radv_device *device, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *esgs_ring_bo, |
| uint32_t esgs_ring_size, struct radeon_winsys_bo *gsvs_ring_bo, uint32_t gsvs_ring_size) |
| { |
| if (!esgs_ring_bo && !gsvs_ring_bo) |
| return; |
| |
| if (esgs_ring_bo) |
| radv_cs_add_buffer(device->ws, cs, esgs_ring_bo); |
| |
| if (gsvs_ring_bo) |
| radv_cs_add_buffer(device->ws, cs, gsvs_ring_bo); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX7) { |
| radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2); |
| radeon_emit(cs, esgs_ring_size >> 8); |
| radeon_emit(cs, gsvs_ring_size >> 8); |
| } else { |
| radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2); |
| radeon_emit(cs, esgs_ring_size >> 8); |
| radeon_emit(cs, gsvs_ring_size >> 8); |
| } |
| } |
| |
| static void |
| radv_emit_tess_factor_ring(struct radv_device *device, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *tess_rings_bo) |
| { |
| uint64_t tf_va; |
| uint32_t tf_ring_size; |
| if (!tess_rings_bo) |
| return; |
| |
| tf_ring_size = device->physical_device->hs.tess_factor_ring_size / 4; |
| tf_va = radv_buffer_get_va(tess_rings_bo); |
| |
| radv_cs_add_buffer(device->ws, cs, tess_rings_bo); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX7) { |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| /* TF_RING_SIZE is per SE on GFX11. */ |
| tf_ring_size /= device->physical_device->rad_info.max_se; |
| } |
| |
| radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(tf_ring_size)); |
| radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE, tf_va >> 8); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX10) { |
| radeon_set_uconfig_reg(cs, R_030984_VGT_TF_MEMORY_BASE_HI, S_030984_BASE_HI(tf_va >> 40)); |
| } else if (device->physical_device->rad_info.gfx_level == GFX9) { |
| radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(tf_va >> 40)); |
| } |
| |
| radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM, device->physical_device->hs.hs_offchip_param); |
| } else { |
| radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size)); |
| radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE, tf_va >> 8); |
| radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM, device->physical_device->hs.hs_offchip_param); |
| } |
| } |
| |
| static VkResult |
| radv_initialise_task_control_buffer(struct radv_device *device, struct radeon_winsys_bo *task_rings_bo) |
| { |
| uint32_t *ptr = (uint32_t *)radv_buffer_map(device->ws, task_rings_bo); |
| if (!ptr) |
| return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| |
| const uint32_t num_entries = device->physical_device->task_info.num_entries; |
| const uint64_t task_va = radv_buffer_get_va(task_rings_bo); |
| const uint64_t task_draw_ring_va = task_va + device->physical_device->task_info.draw_ring_offset; |
| assert((task_draw_ring_va & 0xFFFFFF00) == (task_draw_ring_va & 0xFFFFFFFF)); |
| |
| /* 64-bit write_ptr */ |
| ptr[0] = num_entries; |
| ptr[1] = 0; |
| /* 64-bit read_ptr */ |
| ptr[2] = num_entries; |
| ptr[3] = 0; |
| /* 64-bit dealloc_ptr */ |
| ptr[4] = num_entries; |
| ptr[5] = 0; |
| /* num_entries */ |
| ptr[6] = num_entries; |
| /* 64-bit draw ring address */ |
| ptr[7] = task_draw_ring_va; |
| ptr[8] = task_draw_ring_va >> 32; |
| |
| device->ws->buffer_unmap(device->ws, task_rings_bo, false); |
| return VK_SUCCESS; |
| } |
| |
| static void |
| radv_emit_task_rings(struct radv_device *device, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *task_rings_bo, |
| bool compute) |
| { |
| if (!task_rings_bo) |
| return; |
| |
| const uint64_t task_ctrlbuf_va = radv_buffer_get_va(task_rings_bo); |
| assert(radv_is_aligned(task_ctrlbuf_va, 256)); |
| radv_cs_add_buffer(device->ws, cs, task_rings_bo); |
| |
| /* Tell the GPU where the task control buffer is. */ |
| radeon_emit(cs, PKT3(PKT3_DISPATCH_TASK_STATE_INIT, 1, 0) | PKT3_SHADER_TYPE_S(!!compute)); |
| /* bits [31:8]: control buffer address lo, bits[7:0]: reserved (set to zero) */ |
| radeon_emit(cs, task_ctrlbuf_va & 0xFFFFFF00); |
| /* bits [31:0]: control buffer address hi */ |
| radeon_emit(cs, task_ctrlbuf_va >> 32); |
| } |
| |
| static void |
| radv_emit_graphics_scratch(struct radv_device *device, struct radeon_cmdbuf *cs, uint32_t size_per_wave, uint32_t waves, |
| struct radeon_winsys_bo *scratch_bo) |
| { |
| const struct radeon_info *info = &device->physical_device->rad_info; |
| |
| if (!scratch_bo) |
| return; |
| |
| radv_cs_add_buffer(device->ws, cs, scratch_bo); |
| |
| if (info->gfx_level >= GFX11) { |
| uint64_t va = radv_buffer_get_va(scratch_bo); |
| |
| /* WAVES is per SE for SPI_TMPRING_SIZE. */ |
| waves /= info->num_se; |
| |
| radeon_set_context_reg_seq(cs, R_0286E8_SPI_TMPRING_SIZE, 3); |
| radeon_emit(cs, S_0286E8_WAVES(waves) | S_0286E8_WAVESIZE(DIV_ROUND_UP(size_per_wave, 256))); |
| radeon_emit(cs, va >> 8); /* SPI_GFX_SCRATCH_BASE_LO */ |
| radeon_emit(cs, va >> 40); /* SPI_GFX_SCRATCH_BASE_HI */ |
| } else { |
| radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE, |
| S_0286E8_WAVES(waves) | S_0286E8_WAVESIZE(DIV_ROUND_UP(size_per_wave, 1024))); |
| } |
| } |
| |
| static void |
| radv_emit_compute_scratch(struct radv_device *device, struct radeon_cmdbuf *cs, uint32_t size_per_wave, uint32_t waves, |
| struct radeon_winsys_bo *compute_scratch_bo) |
| { |
| const struct radeon_info *info = &device->physical_device->rad_info; |
| uint64_t scratch_va; |
| uint32_t rsrc1; |
| |
| if (!compute_scratch_bo) |
| return; |
| |
| scratch_va = radv_buffer_get_va(compute_scratch_bo); |
| rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32); |
| |
| if (info->gfx_level >= GFX11) |
| rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX11(1); |
| else |
| rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX6(1); |
| |
| radv_cs_add_buffer(device->ws, cs, compute_scratch_bo); |
| |
| if (info->gfx_level >= GFX11) { |
| radeon_set_sh_reg_seq(cs, R_00B840_COMPUTE_DISPATCH_SCRATCH_BASE_LO, 2); |
| radeon_emit(cs, scratch_va >> 8); |
| radeon_emit(cs, scratch_va >> 40); |
| |
| waves /= info->num_se; |
| } |
| |
| radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2); |
| radeon_emit(cs, scratch_va); |
| radeon_emit(cs, rsrc1); |
| |
| radeon_set_sh_reg( |
| cs, R_00B860_COMPUTE_TMPRING_SIZE, |
| S_00B860_WAVES(waves) | S_00B860_WAVESIZE(DIV_ROUND_UP(size_per_wave, info->gfx_level >= GFX11 ? 256 : 1024))); |
| } |
| |
| static void |
| radv_emit_compute_shader_pointers(struct radv_device *device, struct radeon_cmdbuf *cs, |
| struct radeon_winsys_bo *descriptor_bo) |
| { |
| if (!descriptor_bo) |
| return; |
| |
| uint64_t va = radv_buffer_get_va(descriptor_bo); |
| radv_cs_add_buffer(device->ws, cs, descriptor_bo); |
| |
| /* Compute shader user data 0-1 have the scratch pointer (unlike GFX shaders), |
| * so emit the descriptor pointer to user data 2-3 instead (task_ring_offsets arg). |
| */ |
| radv_emit_shader_pointer(device, cs, R_00B908_COMPUTE_USER_DATA_2, va, true); |
| } |
| |
| static void |
| radv_emit_graphics_shader_pointers(struct radv_device *device, struct radeon_cmdbuf *cs, |
| struct radeon_winsys_bo *descriptor_bo) |
| { |
| uint64_t va; |
| |
| if (!descriptor_bo) |
| return; |
| |
| va = radv_buffer_get_va(descriptor_bo); |
| |
| radv_cs_add_buffer(device->ws, cs, descriptor_bo); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11) { |
| uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B420_SPI_SHADER_PGM_LO_HS, |
| R_00B220_SPI_SHADER_PGM_LO_GS}; |
| |
| for (int i = 0; i < ARRAY_SIZE(regs); ++i) { |
| radv_emit_shader_pointer(device, cs, regs[i], va, true); |
| } |
| } else if (device->physical_device->rad_info.gfx_level >= GFX10) { |
| uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0, |
| R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS, R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS}; |
| |
| for (int i = 0; i < ARRAY_SIZE(regs); ++i) { |
| radv_emit_shader_pointer(device, cs, regs[i], va, true); |
| } |
| } else if (device->physical_device->rad_info.gfx_level == GFX9) { |
| uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0, |
| R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS, R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS}; |
| |
| for (int i = 0; i < ARRAY_SIZE(regs); ++i) { |
| radv_emit_shader_pointer(device, cs, regs[i], va, true); |
| } |
| } else { |
| uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0, |
| R_00B230_SPI_SHADER_USER_DATA_GS_0, R_00B330_SPI_SHADER_USER_DATA_ES_0, |
| R_00B430_SPI_SHADER_USER_DATA_HS_0, R_00B530_SPI_SHADER_USER_DATA_LS_0}; |
| |
| for (int i = 0; i < ARRAY_SIZE(regs); ++i) { |
| radv_emit_shader_pointer(device, cs, regs[i], va, true); |
| } |
| } |
| } |
| |
| static void |
| radv_emit_attribute_ring(struct radv_device *device, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *attr_ring_bo, |
| uint32_t attr_ring_size) |
| { |
| const struct radv_physical_device *pdevice = device->physical_device; |
| uint64_t va; |
| |
| if (!attr_ring_bo) |
| return; |
| |
| assert(pdevice->rad_info.gfx_level >= GFX11); |
| |
| va = radv_buffer_get_va(attr_ring_bo); |
| assert((va >> 32) == pdevice->rad_info.address32_hi); |
| |
| radv_cs_add_buffer(device->ws, cs, attr_ring_bo); |
| |
| /* We must wait for idle using an EOP event before changing the attribute ring registers. Use the |
| * bottom-of-pipe EOP event, but increment the PWS counter instead of writing memory. |
| */ |
| radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0)); |
| radeon_emit(cs, S_490_EVENT_TYPE(V_028A90_BOTTOM_OF_PIPE_TS) | S_490_EVENT_INDEX(5) | S_490_PWS_ENABLE(1)); |
| radeon_emit(cs, 0); /* DST_SEL, INT_SEL, DATA_SEL */ |
| radeon_emit(cs, 0); /* ADDRESS_LO */ |
| radeon_emit(cs, 0); /* ADDRESS_HI */ |
| radeon_emit(cs, 0); /* DATA_LO */ |
| radeon_emit(cs, 0); /* DATA_HI */ |
| radeon_emit(cs, 0); /* INT_CTXID */ |
| |
| /* Wait for the PWS counter. */ |
| radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0)); |
| radeon_emit(cs, S_580_PWS_STAGE_SEL(V_580_CP_ME) | S_580_PWS_COUNTER_SEL(V_580_TS_SELECT) | S_580_PWS_ENA2(1) | |
| S_580_PWS_COUNT(0)); |
| radeon_emit(cs, 0xffffffff); /* GCR_SIZE */ |
| radeon_emit(cs, 0x01ffffff); /* GCR_SIZE_HI */ |
| radeon_emit(cs, 0); /* GCR_BASE_LO */ |
| radeon_emit(cs, 0); /* GCR_BASE_HI */ |
| radeon_emit(cs, S_585_PWS_ENA(1)); |
| radeon_emit(cs, 0); /* GCR_CNTL */ |
| |
| /* The PS will read inputs from this address. */ |
| radeon_set_uconfig_reg(cs, R_031118_SPI_ATTRIBUTE_RING_BASE, va >> 16); |
| radeon_set_uconfig_reg(cs, R_03111C_SPI_ATTRIBUTE_RING_SIZE, |
| S_03111C_MEM_SIZE(((attr_ring_size / pdevice->rad_info.max_se) >> 16) - 1) | |
| S_03111C_BIG_PAGE(pdevice->rad_info.discardable_allows_big_page) | S_03111C_L1_POLICY(1)); |
| } |
| |
| static void |
| radv_init_graphics_state(struct radeon_cmdbuf *cs, struct radv_device *device) |
| { |
| if (device->gfx_init) { |
| struct radeon_winsys *ws = device->ws; |
| |
| ws->cs_execute_ib(cs, device->gfx_init, 0, device->gfx_init_size_dw & 0xffff, false); |
| |
| radv_cs_add_buffer(device->ws, cs, device->gfx_init); |
| } else { |
| radv_emit_graphics(device, cs); |
| } |
| } |
| |
| static void |
| radv_init_compute_state(struct radeon_cmdbuf *cs, struct radv_device *device) |
| { |
| radv_emit_compute(device, cs); |
| } |
| |
| static VkResult |
| radv_update_preamble_cs(struct radv_queue_state *queue, struct radv_device *device, |
| const struct radv_queue_ring_info *needs) |
| { |
| struct radeon_winsys *ws = device->ws; |
| struct radeon_winsys_bo *scratch_bo = queue->scratch_bo; |
| struct radeon_winsys_bo *descriptor_bo = queue->descriptor_bo; |
| struct radeon_winsys_bo *compute_scratch_bo = queue->compute_scratch_bo; |
| struct radeon_winsys_bo *esgs_ring_bo = queue->esgs_ring_bo; |
| struct radeon_winsys_bo *gsvs_ring_bo = queue->gsvs_ring_bo; |
| struct radeon_winsys_bo *tess_rings_bo = queue->tess_rings_bo; |
| struct radeon_winsys_bo *task_rings_bo = queue->task_rings_bo; |
| struct radeon_winsys_bo *mesh_scratch_ring_bo = queue->mesh_scratch_ring_bo; |
| struct radeon_winsys_bo *attr_ring_bo = queue->attr_ring_bo; |
| struct radeon_winsys_bo *gds_bo = queue->gds_bo; |
| struct radeon_winsys_bo *gds_oa_bo = queue->gds_oa_bo; |
| struct radeon_cmdbuf *dest_cs[3] = {0}; |
| const uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING; |
| VkResult result = VK_SUCCESS; |
| |
| const bool add_sample_positions = !queue->ring_info.sample_positions && needs->sample_positions; |
| const uint32_t scratch_size = needs->scratch_size_per_wave * needs->scratch_waves; |
| const uint32_t queue_scratch_size = queue->ring_info.scratch_size_per_wave * queue->ring_info.scratch_waves; |
| |
| if (scratch_size > queue_scratch_size) { |
| result = ws->buffer_create(ws, scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, |
| &scratch_bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| radv_rmv_log_command_buffer_bo_create(device, scratch_bo, 0, 0, scratch_size); |
| } |
| |
| const uint32_t compute_scratch_size = needs->compute_scratch_size_per_wave * needs->compute_scratch_waves; |
| const uint32_t compute_queue_scratch_size = |
| queue->ring_info.compute_scratch_size_per_wave * queue->ring_info.compute_scratch_waves; |
| if (compute_scratch_size > compute_queue_scratch_size) { |
| result = ws->buffer_create(ws, compute_scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags, |
| RADV_BO_PRIORITY_SCRATCH, 0, &compute_scratch_bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| radv_rmv_log_command_buffer_bo_create(device, compute_scratch_bo, 0, 0, compute_scratch_size); |
| } |
| |
| if (needs->esgs_ring_size > queue->ring_info.esgs_ring_size) { |
| result = ws->buffer_create(ws, needs->esgs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags, |
| RADV_BO_PRIORITY_SCRATCH, 0, &esgs_ring_bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| radv_rmv_log_command_buffer_bo_create(device, esgs_ring_bo, 0, 0, needs->esgs_ring_size); |
| } |
| |
| if (needs->gsvs_ring_size > queue->ring_info.gsvs_ring_size) { |
| result = ws->buffer_create(ws, needs->gsvs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags, |
| RADV_BO_PRIORITY_SCRATCH, 0, &gsvs_ring_bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| radv_rmv_log_command_buffer_bo_create(device, gsvs_ring_bo, 0, 0, needs->gsvs_ring_size); |
| } |
| |
| if (!queue->ring_info.tess_rings && needs->tess_rings) { |
| uint64_t tess_rings_size = |
| device->physical_device->hs.tess_offchip_ring_offset + device->physical_device->hs.tess_offchip_ring_size; |
| result = ws->buffer_create(ws, tess_rings_size, 256, RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, |
| 0, &tess_rings_bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| radv_rmv_log_command_buffer_bo_create(device, tess_rings_bo, 0, 0, tess_rings_size); |
| } |
| |
| if (!queue->ring_info.task_rings && needs->task_rings) { |
| assert(device->physical_device->rad_info.gfx_level >= GFX10_3); |
| |
| /* We write the control buffer from the CPU, so need to grant CPU access to the BO. |
| * The draw ring needs to be zero-initialized otherwise the ready bits will be incorrect. |
| */ |
| uint32_t task_rings_bo_flags = |
| RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_ZERO_VRAM; |
| |
| result = ws->buffer_create(ws, device->physical_device->task_info.bo_size_bytes, 256, RADEON_DOMAIN_VRAM, |
| task_rings_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, &task_rings_bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| radv_rmv_log_command_buffer_bo_create(device, task_rings_bo, 0, 0, |
| device->physical_device->task_info.bo_size_bytes); |
| |
| result = radv_initialise_task_control_buffer(device, task_rings_bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| } |
| |
| if (!queue->ring_info.mesh_scratch_ring && needs->mesh_scratch_ring) { |
| assert(device->physical_device->rad_info.gfx_level >= GFX10_3); |
| result = ws->buffer_create(ws, RADV_MESH_SCRATCH_NUM_ENTRIES * RADV_MESH_SCRATCH_ENTRY_BYTES, 256, |
| RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, &mesh_scratch_ring_bo); |
| |
| if (result != VK_SUCCESS) |
| goto fail; |
| radv_rmv_log_command_buffer_bo_create(device, mesh_scratch_ring_bo, 0, 0, |
| RADV_MESH_SCRATCH_NUM_ENTRIES * RADV_MESH_SCRATCH_ENTRY_BYTES); |
| } |
| |
| if (needs->attr_ring_size > queue->ring_info.attr_ring_size) { |
| assert(device->physical_device->rad_info.gfx_level >= GFX11); |
| result = ws->buffer_create(ws, needs->attr_ring_size, 2 * 1024 * 1024 /* 2MiB */, RADEON_DOMAIN_VRAM, |
| RADEON_FLAG_32BIT | RADEON_FLAG_DISCARDABLE | ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, |
| 0, &attr_ring_bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| radv_rmv_log_command_buffer_bo_create(device, attr_ring_bo, 0, 0, needs->attr_ring_size); |
| } |
| |
| if (!queue->ring_info.gds && needs->gds) { |
| assert(device->physical_device->rad_info.gfx_level >= GFX10); |
| |
| /* 4 streamout GDS counters. |
| * We need 256B (64 dw) of GDS, otherwise streamout hangs. |
| */ |
| result = ws->buffer_create(ws, 256, 4, RADEON_DOMAIN_GDS, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, &gds_bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| |
| /* Add the GDS BO to our global BO list to prevent the kernel to emit a GDS switch and reset |
| * the state when a compute queue is used. |
| */ |
| result = device->ws->buffer_make_resident(ws, gds_bo, true); |
| if (result != VK_SUCCESS) |
| goto fail; |
| } |
| |
| if (!queue->ring_info.gds_oa && needs->gds_oa) { |
| assert(device->physical_device->rad_info.gfx_level >= GFX10); |
| |
| result = ws->buffer_create(ws, 1, 1, RADEON_DOMAIN_OA, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, &gds_oa_bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| |
| /* Add the GDS OA BO to our global BO list to prevent the kernel to emit a GDS switch and |
| * reset the state when a compute queue is used. |
| */ |
| result = device->ws->buffer_make_resident(ws, gds_oa_bo, true); |
| if (result != VK_SUCCESS) |
| goto fail; |
| } |
| |
| /* Re-initialize the descriptor BO when any ring BOs changed. |
| * |
| * Additionally, make sure to create the descriptor BO for the compute queue |
| * when it uses the task shader rings. The task rings BO is shared between the |
| * GFX and compute queues and already initialized here. |
| */ |
| if ((queue->qf == RADV_QUEUE_COMPUTE && !descriptor_bo && task_rings_bo) || scratch_bo != queue->scratch_bo || |
| esgs_ring_bo != queue->esgs_ring_bo || gsvs_ring_bo != queue->gsvs_ring_bo || |
| tess_rings_bo != queue->tess_rings_bo || task_rings_bo != queue->task_rings_bo || |
| mesh_scratch_ring_bo != queue->mesh_scratch_ring_bo || attr_ring_bo != queue->attr_ring_bo || |
| add_sample_positions) { |
| const uint32_t size = 304; |
| |
| result = ws->buffer_create(ws, size, 4096, RADEON_DOMAIN_VRAM, |
| RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY, |
| RADV_BO_PRIORITY_DESCRIPTOR, 0, &descriptor_bo); |
| if (result != VK_SUCCESS) |
| goto fail; |
| } |
| |
| if (descriptor_bo != queue->descriptor_bo) { |
| uint32_t *map = (uint32_t *)radv_buffer_map(ws, descriptor_bo); |
| if (!map) { |
| result = VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| goto fail; |
| } |
| |
| radv_fill_shader_rings(device, map, scratch_bo, needs->esgs_ring_size, esgs_ring_bo, needs->gsvs_ring_size, |
| gsvs_ring_bo, tess_rings_bo, task_rings_bo, mesh_scratch_ring_bo, needs->attr_ring_size, |
| attr_ring_bo); |
| |
| ws->buffer_unmap(ws, descriptor_bo, false); |
| } |
| |
| for (int i = 0; i < 3; ++i) { |
| enum rgp_flush_bits sqtt_flush_bits = 0; |
| struct radeon_cmdbuf *cs = NULL; |
| cs = ws->cs_create(ws, radv_queue_family_to_ring(device->physical_device, queue->qf), false); |
| if (!cs) { |
| result = VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| goto fail; |
| } |
| |
| radeon_check_space(ws, cs, 512); |
| dest_cs[i] = cs; |
| |
| if (scratch_bo) |
| radv_cs_add_buffer(ws, cs, scratch_bo); |
| |
| /* Emit initial configuration. */ |
| switch (queue->qf) { |
| case RADV_QUEUE_GENERAL: |
| if (queue->uses_shadow_regs) |
| radv_emit_shadow_regs_preamble(cs, device, queue); |
| radv_init_graphics_state(cs, device); |
| |
| if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || task_rings_bo) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); |
| |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0)); |
| } |
| |
| radv_emit_gs_ring_sizes(device, cs, esgs_ring_bo, needs->esgs_ring_size, gsvs_ring_bo, needs->gsvs_ring_size); |
| radv_emit_tess_factor_ring(device, cs, tess_rings_bo); |
| radv_emit_task_rings(device, cs, task_rings_bo, false); |
| radv_emit_attribute_ring(device, cs, attr_ring_bo, needs->attr_ring_size); |
| radv_emit_graphics_shader_pointers(device, cs, descriptor_bo); |
| radv_emit_compute_scratch(device, cs, needs->compute_scratch_size_per_wave, needs->compute_scratch_waves, |
| compute_scratch_bo); |
| radv_emit_graphics_scratch(device, cs, needs->scratch_size_per_wave, needs->scratch_waves, scratch_bo); |
| break; |
| case RADV_QUEUE_COMPUTE: |
| radv_init_compute_state(cs, device); |
| |
| if (task_rings_bo) { |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4)); |
| } |
| |
| radv_emit_task_rings(device, cs, task_rings_bo, true); |
| radv_emit_compute_shader_pointers(device, cs, descriptor_bo); |
| radv_emit_compute_scratch(device, cs, needs->compute_scratch_size_per_wave, needs->compute_scratch_waves, |
| compute_scratch_bo); |
| break; |
| default: |
| break; |
| } |
| |
| if (i < 2) { |
| /* The two initial preambles have a cache flush at the beginning. */ |
| const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level; |
| enum radv_cmd_flush_bits flush_bits = RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE | |
| RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2 | |
| RADV_CMD_FLAG_START_PIPELINE_STATS; |
| |
| if (i == 0) { |
| /* The full flush preamble should also wait for previous shader work to finish. */ |
| flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH; |
| if (queue->qf == RADV_QUEUE_GENERAL) |
| flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH; |
| } |
| |
| radv_cs_emit_cache_flush(ws, cs, gfx_level, NULL, 0, queue->qf, flush_bits, &sqtt_flush_bits, 0); |
| } |
| |
| result = ws->cs_finalize(cs); |
| if (result != VK_SUCCESS) |
| goto fail; |
| } |
| |
| if (queue->initial_full_flush_preamble_cs) |
| ws->cs_destroy(queue->initial_full_flush_preamble_cs); |
| |
| if (queue->initial_preamble_cs) |
| ws->cs_destroy(queue->initial_preamble_cs); |
| |
| if (queue->continue_preamble_cs) |
| ws->cs_destroy(queue->continue_preamble_cs); |
| |
| queue->initial_full_flush_preamble_cs = dest_cs[0]; |
| queue->initial_preamble_cs = dest_cs[1]; |
| queue->continue_preamble_cs = dest_cs[2]; |
| |
| if (scratch_bo != queue->scratch_bo) { |
| if (queue->scratch_bo) { |
| ws->buffer_destroy(ws, queue->scratch_bo); |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->scratch_bo); |
| } |
| queue->scratch_bo = scratch_bo; |
| } |
| |
| if (compute_scratch_bo != queue->compute_scratch_bo) { |
| if (queue->compute_scratch_bo) { |
| ws->buffer_destroy(ws, queue->compute_scratch_bo); |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->compute_scratch_bo); |
| } |
| queue->compute_scratch_bo = compute_scratch_bo; |
| } |
| |
| if (esgs_ring_bo != queue->esgs_ring_bo) { |
| if (queue->esgs_ring_bo) { |
| ws->buffer_destroy(ws, queue->esgs_ring_bo); |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->esgs_ring_bo); |
| } |
| queue->esgs_ring_bo = esgs_ring_bo; |
| } |
| |
| if (gsvs_ring_bo != queue->gsvs_ring_bo) { |
| if (queue->gsvs_ring_bo) { |
| ws->buffer_destroy(ws, queue->gsvs_ring_bo); |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->gsvs_ring_bo); |
| } |
| queue->gsvs_ring_bo = gsvs_ring_bo; |
| } |
| |
| if (descriptor_bo != queue->descriptor_bo) { |
| if (queue->descriptor_bo) |
| ws->buffer_destroy(ws, queue->descriptor_bo); |
| queue->descriptor_bo = descriptor_bo; |
| } |
| |
| queue->tess_rings_bo = tess_rings_bo; |
| queue->task_rings_bo = task_rings_bo; |
| queue->mesh_scratch_ring_bo = mesh_scratch_ring_bo; |
| queue->attr_ring_bo = attr_ring_bo; |
| queue->gds_bo = gds_bo; |
| queue->gds_oa_bo = gds_oa_bo; |
| queue->ring_info = *needs; |
| return VK_SUCCESS; |
| fail: |
| for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i) |
| if (dest_cs[i]) |
| ws->cs_destroy(dest_cs[i]); |
| if (descriptor_bo && descriptor_bo != queue->descriptor_bo) |
| ws->buffer_destroy(ws, descriptor_bo); |
| if (scratch_bo && scratch_bo != queue->scratch_bo) |
| ws->buffer_destroy(ws, scratch_bo); |
| if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo) |
| ws->buffer_destroy(ws, compute_scratch_bo); |
| if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo) |
| ws->buffer_destroy(ws, esgs_ring_bo); |
| if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo) |
| ws->buffer_destroy(ws, gsvs_ring_bo); |
| if (tess_rings_bo && tess_rings_bo != queue->tess_rings_bo) |
| ws->buffer_destroy(ws, tess_rings_bo); |
| if (task_rings_bo && task_rings_bo != queue->task_rings_bo) |
| ws->buffer_destroy(ws, task_rings_bo); |
| if (attr_ring_bo && attr_ring_bo != queue->attr_ring_bo) |
| ws->buffer_destroy(ws, attr_ring_bo); |
| if (gds_bo && gds_bo != queue->gds_bo) { |
| ws->buffer_make_resident(ws, queue->gds_bo, false); |
| ws->buffer_destroy(ws, gds_bo); |
| } |
| if (gds_oa_bo && gds_oa_bo != queue->gds_oa_bo) { |
| ws->buffer_make_resident(ws, queue->gds_oa_bo, false); |
| ws->buffer_destroy(ws, gds_oa_bo); |
| } |
| |
| return vk_error(queue, result); |
| } |
| |
| static VkResult |
| radv_update_preambles(struct radv_queue_state *queue, struct radv_device *device, |
| struct vk_command_buffer *const *cmd_buffers, uint32_t cmd_buffer_count, bool *use_perf_counters, |
| bool *has_follower) |
| { |
| bool has_indirect_pipeline_binds = false; |
| |
| if (queue->qf != RADV_QUEUE_GENERAL && queue->qf != RADV_QUEUE_COMPUTE) { |
| for (uint32_t j = 0; j < cmd_buffer_count; j++) { |
| struct radv_cmd_buffer *cmd_buffer = container_of(cmd_buffers[j], struct radv_cmd_buffer, vk); |
| |
| *has_follower |= !!cmd_buffer->gang.cs; |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| /* Figure out the needs of the current submission. |
| * Start by copying the queue's current info. |
| * This is done because we only allow two possible behaviours for these buffers: |
| * - Grow when the newly needed amount is larger than what we had |
| * - Allocate the max size and reuse it, but don't free it until the queue is destroyed |
| */ |
| struct radv_queue_ring_info needs = queue->ring_info; |
| *use_perf_counters = false; |
| *has_follower = false; |
| |
| for (uint32_t j = 0; j < cmd_buffer_count; j++) { |
| struct radv_cmd_buffer *cmd_buffer = container_of(cmd_buffers[j], struct radv_cmd_buffer, vk); |
| |
| needs.scratch_size_per_wave = MAX2(needs.scratch_size_per_wave, cmd_buffer->scratch_size_per_wave_needed); |
| needs.scratch_waves = MAX2(needs.scratch_waves, cmd_buffer->scratch_waves_wanted); |
| needs.compute_scratch_size_per_wave = |
| MAX2(needs.compute_scratch_size_per_wave, cmd_buffer->compute_scratch_size_per_wave_needed); |
| needs.compute_scratch_waves = MAX2(needs.compute_scratch_waves, cmd_buffer->compute_scratch_waves_wanted); |
| needs.esgs_ring_size = MAX2(needs.esgs_ring_size, cmd_buffer->esgs_ring_size_needed); |
| needs.gsvs_ring_size = MAX2(needs.gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed); |
| needs.tess_rings |= cmd_buffer->tess_rings_needed; |
| needs.task_rings |= cmd_buffer->task_rings_needed; |
| needs.mesh_scratch_ring |= cmd_buffer->mesh_scratch_ring_needed; |
| needs.gds |= cmd_buffer->gds_needed; |
| needs.gds_oa |= cmd_buffer->gds_oa_needed; |
| needs.sample_positions |= cmd_buffer->sample_positions_needed; |
| *use_perf_counters |= cmd_buffer->state.uses_perf_counters; |
| *has_follower |= !!cmd_buffer->gang.cs; |
| |
| has_indirect_pipeline_binds |= cmd_buffer->has_indirect_pipeline_binds; |
| } |
| |
| if (has_indirect_pipeline_binds) { |
| /* Use the maximum possible scratch size for indirect compute pipelines with DGC. */ |
| simple_mtx_lock(&device->compute_scratch_mtx); |
| needs.compute_scratch_size_per_wave = MAX2(needs.compute_scratch_waves, device->compute_scratch_size_per_wave); |
| needs.compute_scratch_waves = MAX2(needs.compute_scratch_waves, device->compute_scratch_waves); |
| simple_mtx_unlock(&device->compute_scratch_mtx); |
| } |
| |
| /* Sanitize scratch size information. */ |
| needs.scratch_waves = |
| needs.scratch_size_per_wave ? MIN2(needs.scratch_waves, UINT32_MAX / needs.scratch_size_per_wave) : 0; |
| needs.compute_scratch_waves = |
| needs.compute_scratch_size_per_wave |
| ? MIN2(needs.compute_scratch_waves, UINT32_MAX / needs.compute_scratch_size_per_wave) |
| : 0; |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11 && queue->qf == RADV_QUEUE_GENERAL) { |
| needs.attr_ring_size = |
| device->physical_device->rad_info.attribute_ring_size_per_se * device->physical_device->rad_info.max_se; |
| } |
| |
| /* Return early if we already match these needs. |
| * Note that it's not possible for any of the needed values to be less |
| * than what the queue already had, because we only ever increase the allocated size. |
| */ |
| if (queue->initial_full_flush_preamble_cs && queue->ring_info.scratch_size_per_wave == needs.scratch_size_per_wave && |
| queue->ring_info.scratch_waves == needs.scratch_waves && |
| queue->ring_info.compute_scratch_size_per_wave == needs.compute_scratch_size_per_wave && |
| queue->ring_info.compute_scratch_waves == needs.compute_scratch_waves && |
| queue->ring_info.esgs_ring_size == needs.esgs_ring_size && |
| queue->ring_info.gsvs_ring_size == needs.gsvs_ring_size && queue->ring_info.tess_rings == needs.tess_rings && |
| queue->ring_info.task_rings == needs.task_rings && |
| queue->ring_info.mesh_scratch_ring == needs.mesh_scratch_ring && |
| queue->ring_info.attr_ring_size == needs.attr_ring_size && queue->ring_info.gds == needs.gds && |
| queue->ring_info.gds_oa == needs.gds_oa && queue->ring_info.sample_positions == needs.sample_positions) |
| return VK_SUCCESS; |
| |
| return radv_update_preamble_cs(queue, device, &needs); |
| } |
| |
| static VkResult |
| radv_create_gang_wait_preambles_postambles(struct radv_queue *queue) |
| { |
| if (queue->gang_sem_bo) |
| return VK_SUCCESS; |
| |
| VkResult r = VK_SUCCESS; |
| struct radv_device *device = queue->device; |
| struct radeon_winsys *ws = device->ws; |
| const enum amd_ip_type leader_ip = radv_queue_family_to_ring(device->physical_device, queue->state.qf); |
| struct radeon_winsys_bo *gang_sem_bo = NULL; |
| |
| /* Gang semaphores BO. |
| * DWORD 0: used in preambles, gang leader writes, gang members wait. |
| * DWORD 1: used in postambles, gang leader waits, gang members write. |
| */ |
| r = ws->buffer_create(ws, 8, 4, RADEON_DOMAIN_VRAM, RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_ZERO_VRAM, |
| RADV_BO_PRIORITY_SCRATCH, 0, &gang_sem_bo); |
| if (r != VK_SUCCESS) |
| return r; |
| |
| struct radeon_cmdbuf *leader_pre_cs = ws->cs_create(ws, leader_ip, false); |
| struct radeon_cmdbuf *leader_post_cs = ws->cs_create(ws, leader_ip, false); |
| struct radeon_cmdbuf *ace_pre_cs = ws->cs_create(ws, AMD_IP_COMPUTE, false); |
| struct radeon_cmdbuf *ace_post_cs = ws->cs_create(ws, AMD_IP_COMPUTE, false); |
| |
| if (!leader_pre_cs || !leader_post_cs || !ace_pre_cs || !ace_post_cs) { |
| r = VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| goto fail; |
| } |
| |
| radeon_check_space(ws, leader_pre_cs, 256); |
| radeon_check_space(ws, leader_post_cs, 256); |
| radeon_check_space(ws, ace_pre_cs, 256); |
| radeon_check_space(ws, ace_post_cs, 256); |
| |
| radv_cs_add_buffer(ws, leader_pre_cs, gang_sem_bo); |
| radv_cs_add_buffer(ws, leader_post_cs, gang_sem_bo); |
| radv_cs_add_buffer(ws, ace_pre_cs, gang_sem_bo); |
| radv_cs_add_buffer(ws, ace_post_cs, gang_sem_bo); |
| |
| const uint64_t ace_wait_va = radv_buffer_get_va(gang_sem_bo); |
| const uint64_t leader_wait_va = ace_wait_va + 4; |
| const uint32_t zero = 0; |
| const uint32_t one = 1; |
| |
| /* Preambles for gang submission. |
| * Make gang members wait until the gang leader starts. |
| * Userspace is required to emit this wait to make sure it behaves correctly |
| * in a multi-process environment, because task shader dispatches are not |
| * meant to be executed on multiple compute engines at the same time. |
| */ |
| radv_cp_wait_mem(ace_pre_cs, RADV_QUEUE_COMPUTE, WAIT_REG_MEM_GREATER_OR_EQUAL, ace_wait_va, 1, 0xffffffff); |
| radv_cs_write_data(device, ace_pre_cs, RADV_QUEUE_COMPUTE, V_370_ME, ace_wait_va, 1, &zero, false); |
| radv_cs_write_data(device, leader_pre_cs, queue->state.qf, V_370_ME, ace_wait_va, 1, &one, false); |
| |
| /* Create postambles for gang submission. |
| * This ensures that the gang leader waits for the whole gang, |
| * which is necessary because the kernel signals the userspace fence |
| * as soon as the gang leader is done, which may lead to bugs because the |
| * same command buffers could be submitted again while still being executed. |
| */ |
| radv_cp_wait_mem(leader_post_cs, queue->state.qf, WAIT_REG_MEM_GREATER_OR_EQUAL, leader_wait_va, 1, 0xffffffff); |
| radv_cs_write_data(device, leader_post_cs, queue->state.qf, V_370_ME, leader_wait_va, 1, &zero, false); |
| radv_cs_emit_write_event_eop(ace_post_cs, device->physical_device->rad_info.gfx_level, RADV_QUEUE_COMPUTE, |
| V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, |
| leader_wait_va, 1, 0); |
| |
| r = ws->cs_finalize(leader_pre_cs); |
| if (r != VK_SUCCESS) |
| goto fail; |
| r = ws->cs_finalize(leader_post_cs); |
| if (r != VK_SUCCESS) |
| goto fail; |
| r = ws->cs_finalize(ace_pre_cs); |
| if (r != VK_SUCCESS) |
| goto fail; |
| r = ws->cs_finalize(ace_post_cs); |
| if (r != VK_SUCCESS) |
| goto fail; |
| |
| queue->gang_sem_bo = gang_sem_bo; |
| queue->state.gang_wait_preamble_cs = leader_pre_cs; |
| queue->state.gang_wait_postamble_cs = leader_post_cs; |
| queue->follower_state->gang_wait_preamble_cs = ace_pre_cs; |
| queue->follower_state->gang_wait_postamble_cs = ace_post_cs; |
| |
| return VK_SUCCESS; |
| |
| fail: |
| if (leader_pre_cs) |
| ws->cs_destroy(leader_pre_cs); |
| if (leader_post_cs) |
| ws->cs_destroy(leader_post_cs); |
| if (ace_pre_cs) |
| ws->cs_destroy(ace_pre_cs); |
| if (ace_post_cs) |
| ws->cs_destroy(ace_post_cs); |
| if (gang_sem_bo) |
| ws->buffer_destroy(ws, gang_sem_bo); |
| |
| return r; |
| } |
| |
| static bool |
| radv_queue_init_follower_state(struct radv_queue *queue) |
| { |
| if (queue->follower_state) |
| return true; |
| |
| queue->follower_state = calloc(1, sizeof(struct radv_queue_state)); |
| if (!queue->follower_state) |
| return false; |
| |
| queue->follower_state->qf = RADV_QUEUE_COMPUTE; |
| return true; |
| } |
| |
| static VkResult |
| radv_update_gang_preambles(struct radv_queue *queue) |
| { |
| if (!radv_queue_init_follower_state(queue)) |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| |
| VkResult r = VK_SUCCESS; |
| |
| /* Copy task rings state. |
| * Task shaders that are submitted on the ACE queue need to share |
| * their ring buffers with the mesh shaders on the GFX queue. |
| */ |
| queue->follower_state->ring_info.task_rings = queue->state.ring_info.task_rings; |
| queue->follower_state->task_rings_bo = queue->state.task_rings_bo; |
| |
| /* Copy some needed states from the parent queue state. |
| * These can only increase so it's okay to copy them as-is without checking. |
| * Note, task shaders use the scratch size from their graphics pipeline. |
| */ |
| struct radv_queue_ring_info needs = queue->follower_state->ring_info; |
| needs.compute_scratch_size_per_wave = queue->state.ring_info.scratch_size_per_wave; |
| needs.compute_scratch_waves = queue->state.ring_info.scratch_waves; |
| needs.task_rings = queue->state.ring_info.task_rings; |
| |
| r = radv_update_preamble_cs(queue->follower_state, queue->device, &needs); |
| if (r != VK_SUCCESS) |
| return r; |
| |
| r = radv_create_gang_wait_preambles_postambles(queue); |
| if (r != VK_SUCCESS) |
| return r; |
| |
| return VK_SUCCESS; |
| } |
| |
| static struct radeon_cmdbuf * |
| radv_create_perf_counter_lock_cs(struct radv_device *device, unsigned pass, bool unlock) |
| { |
| struct radeon_cmdbuf **cs_ref = &device->perf_counter_lock_cs[pass * 2 + (unlock ? 1 : 0)]; |
| struct radeon_cmdbuf *cs; |
| |
| if (*cs_ref) |
| return *cs_ref; |
| |
| cs = device->ws->cs_create(device->ws, AMD_IP_GFX, false); |
| if (!cs) |
| return NULL; |
| |
| ASSERTED unsigned cdw = radeon_check_space(device->ws, cs, 21); |
| |
| radv_cs_add_buffer(device->ws, cs, device->perf_counter_bo); |
| |
| if (!unlock) { |
| uint64_t mutex_va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_LOCK_OFFSET; |
| radeon_emit(cs, PKT3(PKT3_ATOMIC_MEM, 7, 0)); |
| radeon_emit(cs, ATOMIC_OP(TC_OP_ATOMIC_CMPSWAP_32) | ATOMIC_COMMAND(ATOMIC_COMMAND_LOOP)); |
| radeon_emit(cs, mutex_va); /* addr lo */ |
| radeon_emit(cs, mutex_va >> 32); /* addr hi */ |
| radeon_emit(cs, 1); /* data lo */ |
| radeon_emit(cs, 0); /* data hi */ |
| radeon_emit(cs, 0); /* compare data lo */ |
| radeon_emit(cs, 0); /* compare data hi */ |
| radeon_emit(cs, 10); /* loop interval */ |
| } |
| |
| uint64_t va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_PASS_OFFSET; |
| uint64_t unset_va = va + (unlock ? 8 * pass : 0); |
| uint64_t set_va = va + (unlock ? 0 : 8 * pass); |
| |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_COUNT_SEL | |
| COPY_DATA_WR_CONFIRM); |
| radeon_emit(cs, 0); /* immediate */ |
| radeon_emit(cs, 0); |
| radeon_emit(cs, unset_va); |
| radeon_emit(cs, unset_va >> 32); |
| |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_COUNT_SEL | |
| COPY_DATA_WR_CONFIRM); |
| radeon_emit(cs, 1); /* immediate */ |
| radeon_emit(cs, 0); |
| radeon_emit(cs, set_va); |
| radeon_emit(cs, set_va >> 32); |
| |
| if (unlock) { |
| uint64_t mutex_va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_LOCK_OFFSET; |
| |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_COUNT_SEL | |
| COPY_DATA_WR_CONFIRM); |
| radeon_emit(cs, 0); /* immediate */ |
| radeon_emit(cs, 0); |
| radeon_emit(cs, mutex_va); |
| radeon_emit(cs, mutex_va >> 32); |
| } |
| |
| assert(cs->cdw <= cdw); |
| |
| VkResult result = device->ws->cs_finalize(cs); |
| if (result != VK_SUCCESS) { |
| device->ws->cs_destroy(cs); |
| return NULL; |
| } |
| |
| /* All the casts are to avoid MSVC errors around pointer truncation in a non-taken |
| * alternative. |
| */ |
| if (p_atomic_cmpxchg((uintptr_t *)cs_ref, 0, (uintptr_t)cs) != 0) { |
| device->ws->cs_destroy(cs); |
| } |
| |
| return *cs_ref; |
| } |
| |
| static void |
| radv_get_shader_upload_sync_wait(struct radv_device *device, uint64_t shader_upload_seq, |
| struct vk_sync_wait *out_sync_wait) |
| { |
| struct vk_semaphore *semaphore = vk_semaphore_from_handle(device->shader_upload_sem); |
| struct vk_sync *sync = vk_semaphore_get_active_sync(semaphore); |
| *out_sync_wait = (struct vk_sync_wait){ |
| .sync = sync, |
| .wait_value = shader_upload_seq, |
| .stage_mask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, |
| }; |
| } |
| |
| static VkResult |
| radv_queue_submit_normal(struct radv_queue *queue, struct vk_queue_submit *submission) |
| { |
| struct radeon_winsys_ctx *ctx = queue->hw_ctx; |
| bool use_ace = false; |
| bool use_perf_counters = false; |
| VkResult result; |
| uint64_t shader_upload_seq = 0; |
| uint32_t wait_count = submission->wait_count; |
| struct vk_sync_wait *waits = submission->waits; |
| |
| result = radv_update_preambles(&queue->state, queue->device, submission->command_buffers, |
| submission->command_buffer_count, &use_perf_counters, &use_ace); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| if (use_ace) { |
| result = radv_update_gang_preambles(queue); |
| if (result != VK_SUCCESS) |
| return result; |
| } |
| |
| const unsigned cmd_buffer_count = submission->command_buffer_count; |
| const unsigned max_cs_submission = radv_device_fault_detection_enabled(queue->device) ? 1 : cmd_buffer_count; |
| const unsigned cs_array_size = (use_ace ? 2 : 1) * MIN2(max_cs_submission, cmd_buffer_count); |
| |
| struct radeon_cmdbuf **cs_array = malloc(sizeof(struct radeon_cmdbuf *) * cs_array_size); |
| if (!cs_array) |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| |
| if (radv_device_fault_detection_enabled(queue->device)) |
| simple_mtx_lock(&queue->device->trace_mtx); |
| |
| for (uint32_t j = 0; j < submission->command_buffer_count; j++) { |
| struct radv_cmd_buffer *cmd_buffer = (struct radv_cmd_buffer *)submission->command_buffers[j]; |
| shader_upload_seq = MAX2(shader_upload_seq, cmd_buffer->shader_upload_seq); |
| } |
| |
| if (shader_upload_seq > queue->last_shader_upload_seq) { |
| /* Patch the wait array to add waiting for referenced shaders to upload. */ |
| struct vk_sync_wait *new_waits = malloc(sizeof(struct vk_sync_wait) * (wait_count + 1)); |
| if (!new_waits) { |
| result = VK_ERROR_OUT_OF_HOST_MEMORY; |
| goto fail; |
| } |
| |
| memcpy(new_waits, submission->waits, sizeof(struct vk_sync_wait) * submission->wait_count); |
| radv_get_shader_upload_sync_wait(queue->device, shader_upload_seq, &new_waits[submission->wait_count]); |
| |
| waits = new_waits; |
| wait_count += 1; |
| } |
| |
| /* For fences on the same queue/vm amdgpu doesn't wait till all processing is finished |
| * before starting the next cmdbuffer, so we need to do it here. |
| */ |
| const bool need_wait = wait_count > 0; |
| unsigned num_initial_preambles = 0; |
| unsigned num_continue_preambles = 0; |
| unsigned num_postambles = 0; |
| struct radeon_cmdbuf *initial_preambles[5] = {0}; |
| struct radeon_cmdbuf *continue_preambles[5] = {0}; |
| struct radeon_cmdbuf *postambles[3] = {0}; |
| |
| if (queue->state.qf == RADV_QUEUE_GENERAL || queue->state.qf == RADV_QUEUE_COMPUTE) { |
| initial_preambles[num_initial_preambles++] = |
| need_wait ? queue->state.initial_full_flush_preamble_cs : queue->state.initial_preamble_cs; |
| |
| continue_preambles[num_continue_preambles++] = queue->state.continue_preamble_cs; |
| |
| if (use_perf_counters) { |
| /* RADV only supports perf counters on the GFX queue currently. */ |
| assert(queue->state.qf == RADV_QUEUE_GENERAL); |
| |
| /* Create the lock/unlock CS. */ |
| struct radeon_cmdbuf *perf_ctr_lock_cs = |
| radv_create_perf_counter_lock_cs(queue->device, submission->perf_pass_index, false); |
| struct radeon_cmdbuf *perf_ctr_unlock_cs = |
| radv_create_perf_counter_lock_cs(queue->device, submission->perf_pass_index, true); |
| |
| if (!perf_ctr_lock_cs || !perf_ctr_unlock_cs) { |
| result = VK_ERROR_OUT_OF_HOST_MEMORY; |
| goto fail; |
| } |
| |
| initial_preambles[num_initial_preambles++] = perf_ctr_lock_cs; |
| continue_preambles[num_continue_preambles++] = perf_ctr_lock_cs; |
| postambles[num_postambles++] = perf_ctr_unlock_cs; |
| } |
| } |
| |
| const unsigned num_1q_initial_preambles = num_initial_preambles; |
| const unsigned num_1q_continue_preambles = num_continue_preambles; |
| const unsigned num_1q_postambles = num_postambles; |
| |
| if (use_ace) { |
| initial_preambles[num_initial_preambles++] = queue->state.gang_wait_preamble_cs; |
| initial_preambles[num_initial_preambles++] = queue->follower_state->gang_wait_preamble_cs; |
| initial_preambles[num_initial_preambles++] = |
| need_wait ? queue->follower_state->initial_full_flush_preamble_cs : queue->follower_state->initial_preamble_cs; |
| |
| continue_preambles[num_continue_preambles++] = queue->state.gang_wait_preamble_cs; |
| continue_preambles[num_continue_preambles++] = queue->follower_state->gang_wait_preamble_cs; |
| continue_preambles[num_continue_preambles++] = queue->follower_state->continue_preamble_cs; |
| |
| postambles[num_postambles++] = queue->follower_state->gang_wait_postamble_cs; |
| postambles[num_postambles++] = queue->state.gang_wait_postamble_cs; |
| } |
| |
| struct radv_winsys_submit_info submit = { |
| .ip_type = radv_queue_ring(queue), |
| .queue_index = queue->vk.index_in_family, |
| .cs_array = cs_array, |
| .cs_count = 0, |
| .initial_preamble_count = num_1q_initial_preambles, |
| .continue_preamble_count = num_1q_continue_preambles, |
| .postamble_count = num_1q_postambles, |
| .initial_preamble_cs = initial_preambles, |
| .continue_preamble_cs = continue_preambles, |
| .postamble_cs = postambles, |
| .uses_shadow_regs = queue->state.uses_shadow_regs, |
| }; |
| |
| for (uint32_t j = 0, advance; j < cmd_buffer_count; j += advance) { |
| advance = MIN2(max_cs_submission, cmd_buffer_count - j); |
| const bool last_submit = j + advance == cmd_buffer_count; |
| bool submit_ace = false; |
| unsigned num_submitted_cs = 0; |
| |
| if (radv_device_fault_detection_enabled(queue->device)) |
| *queue->device->trace_id_ptr = 0; |
| |
| struct radeon_cmdbuf *chainable = NULL; |
| struct radeon_cmdbuf *chainable_ace = NULL; |
| |
| /* Add CS from submitted command buffers. */ |
| for (unsigned c = 0; c < advance; ++c) { |
| struct radv_cmd_buffer *cmd_buffer = (struct radv_cmd_buffer *)submission->command_buffers[j + c]; |
| assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); |
| const bool can_chain_next = !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT); |
| |
| /* Follower needs to be before the gang leader because the last CS must match the queue's IP type. */ |
| if (cmd_buffer->gang.cs) { |
| queue->device->ws->cs_unchain(cmd_buffer->gang.cs); |
| if (!chainable_ace || !queue->device->ws->cs_chain(chainable_ace, cmd_buffer->gang.cs, false)) { |
| cs_array[num_submitted_cs++] = cmd_buffer->gang.cs; |
| |
| /* Prevent chaining the gang leader when the follower couldn't be chained. |
| * Otherwise, they would be in the wrong order. |
| */ |
| chainable = NULL; |
| } |
| |
| chainable_ace = can_chain_next ? cmd_buffer->gang.cs : NULL; |
| submit_ace = true; |
| } |
| |
| queue->device->ws->cs_unchain(cmd_buffer->cs); |
| if (!chainable || !queue->device->ws->cs_chain(chainable, cmd_buffer->cs, queue->state.uses_shadow_regs)) { |
| /* don't submit empty command buffers to the kernel. */ |
| if ((radv_queue_ring(queue) != AMD_IP_VCN_ENC && radv_queue_ring(queue) != AMD_IP_UVD) || |
| cmd_buffer->cs->cdw != 0) |
| cs_array[num_submitted_cs++] = cmd_buffer->cs; |
| } |
| |
| chainable = can_chain_next ? cmd_buffer->cs : NULL; |
| } |
| |
| submit.cs_count = num_submitted_cs; |
| submit.initial_preamble_count = submit_ace ? num_initial_preambles : num_1q_initial_preambles; |
| submit.continue_preamble_count = submit_ace ? num_continue_preambles : num_1q_continue_preambles; |
| submit.postamble_count = submit_ace ? num_postambles : num_1q_postambles; |
| |
| result = queue->device->ws->cs_submit(ctx, &submit, j == 0 ? wait_count : 0, waits, |
| last_submit ? submission->signal_count : 0, submission->signals); |
| |
| if (result != VK_SUCCESS) |
| goto fail; |
| |
| if (radv_device_fault_detection_enabled(queue->device)) { |
| radv_check_gpu_hangs(queue, &submit); |
| } |
| |
| if (queue->device->tma_bo) { |
| radv_check_trap_handler(queue); |
| } |
| |
| initial_preambles[0] = queue->state.initial_preamble_cs; |
| initial_preambles[1] = !use_ace ? NULL : queue->follower_state->initial_preamble_cs; |
| } |
| |
| queue->last_shader_upload_seq = MAX2(queue->last_shader_upload_seq, shader_upload_seq); |
| |
| radv_dump_printf_data(queue->device, stdout); |
| |
| fail: |
| free(cs_array); |
| if (waits != submission->waits) |
| free(waits); |
| if (radv_device_fault_detection_enabled(queue->device)) |
| simple_mtx_unlock(&queue->device->trace_mtx); |
| |
| return result; |
| } |
| |
| static void |
| radv_report_gpuvm_fault(struct radv_device *device) |
| { |
| struct radv_winsys_gpuvm_fault_info fault_info = {0}; |
| |
| if (!radv_vm_fault_occurred(device, &fault_info)) |
| return; |
| |
| fprintf(stderr, "radv: GPUVM fault detected at address 0x%08" PRIx64 ".\n", fault_info.addr); |
| ac_print_gpuvm_fault_status(stderr, device->physical_device->rad_info.gfx_level, fault_info.status); |
| } |
| |
| static VkResult |
| radv_queue_sparse_submit(struct vk_queue *vqueue, struct vk_queue_submit *submission) |
| { |
| struct radv_queue *queue = (struct radv_queue *)vqueue; |
| struct radv_device *device = queue->device; |
| VkResult result; |
| |
| result = radv_queue_submit_bind_sparse_memory(device, submission); |
| if (result != VK_SUCCESS) |
| goto fail; |
| |
| /* We do a CPU wait here, in part to avoid more winsys mechanisms. In the likely kernel explicit |
| * sync mechanism, we'd need to do a CPU wait anyway. Haven't seen this be a perf issue yet, but |
| * we have to make sure the queue always has its submission thread enabled. */ |
| result = vk_sync_wait_many(&device->vk, submission->wait_count, submission->waits, 0, UINT64_MAX); |
| if (result != VK_SUCCESS) |
| goto fail; |
| |
| /* Ignore all the commandbuffers. They're necessarily empty anyway. */ |
| |
| for (unsigned i = 0; i < submission->signal_count; ++i) { |
| result = vk_sync_signal(&device->vk, submission->signals[i].sync, submission->signals[i].signal_value); |
| if (result != VK_SUCCESS) |
| goto fail; |
| } |
| |
| fail: |
| if (result != VK_SUCCESS) { |
| /* When something bad happened during the submission, such as |
| * an out of memory issue, it might be hard to recover from |
| * this inconsistent state. To avoid this sort of problem, we |
| * assume that we are in a really bad situation and return |
| * VK_ERROR_DEVICE_LOST to ensure the clients do not attempt |
| * to submit the same job again to this device. |
| */ |
| radv_report_gpuvm_fault(queue->device); |
| result = vk_device_set_lost(&queue->device->vk, "vkQueueSubmit() failed"); |
| } |
| return result; |
| } |
| |
| static VkResult |
| radv_queue_submit(struct vk_queue *vqueue, struct vk_queue_submit *submission) |
| { |
| struct radv_queue *queue = (struct radv_queue *)vqueue; |
| VkResult result; |
| |
| if (!radv_sparse_queue_enabled(queue->device->physical_device)) { |
| result = radv_queue_submit_bind_sparse_memory(queue->device, submission); |
| if (result != VK_SUCCESS) |
| goto fail; |
| } else { |
| assert(!submission->buffer_bind_count && !submission->image_bind_count && !submission->image_opaque_bind_count); |
| } |
| |
| if (!submission->command_buffer_count && !submission->wait_count && !submission->signal_count) |
| return VK_SUCCESS; |
| |
| if (!submission->command_buffer_count) { |
| result = radv_queue_submit_empty(queue, submission); |
| } else { |
| result = radv_queue_submit_normal(queue, submission); |
| } |
| |
| fail: |
| if (result != VK_SUCCESS) { |
| /* When something bad happened during the submission, such as |
| * an out of memory issue, it might be hard to recover from |
| * this inconsistent state. To avoid this sort of problem, we |
| * assume that we are in a really bad situation and return |
| * VK_ERROR_DEVICE_LOST to ensure the clients do not attempt |
| * to submit the same job again to this device. |
| */ |
| radv_report_gpuvm_fault(queue->device); |
| result = vk_device_set_lost(&queue->device->vk, "vkQueueSubmit() failed"); |
| } |
| return result; |
| } |
| |
| bool |
| radv_queue_internal_submit(struct radv_queue *queue, struct radeon_cmdbuf *cs) |
| { |
| struct radeon_winsys_ctx *ctx = queue->hw_ctx; |
| struct radv_winsys_submit_info submit = { |
| .ip_type = radv_queue_ring(queue), |
| .queue_index = queue->vk.index_in_family, |
| .cs_array = &cs, |
| .cs_count = 1, |
| }; |
| |
| VkResult result = queue->device->ws->cs_submit(ctx, &submit, 0, NULL, 0, NULL); |
| if (result != VK_SUCCESS) |
| return false; |
| |
| return true; |
| } |
| |
| int |
| radv_queue_init(struct radv_device *device, struct radv_queue *queue, int idx, |
| const VkDeviceQueueCreateInfo *create_info, |
| const VkDeviceQueueGlobalPriorityCreateInfoKHR *global_priority) |
| { |
| queue->device = device; |
| queue->priority = radv_get_queue_global_priority(global_priority); |
| queue->hw_ctx = device->hw_ctx[queue->priority]; |
| queue->state.qf = vk_queue_to_radv(device->physical_device, create_info->queueFamilyIndex); |
| queue->gang_sem_bo = NULL; |
| |
| VkResult result = vk_queue_init(&queue->vk, &device->vk, create_info, idx); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| queue->state.uses_shadow_regs = device->uses_shadow_regs && queue->state.qf == RADV_QUEUE_GENERAL; |
| if (queue->state.uses_shadow_regs) { |
| result = radv_create_shadow_regs_preamble(device, &queue->state); |
| if (result != VK_SUCCESS) |
| goto fail; |
| result = radv_init_shadowed_regs_buffer_state(device, queue); |
| if (result != VK_SUCCESS) |
| goto fail; |
| } |
| |
| if (queue->state.qf == RADV_QUEUE_SPARSE) { |
| queue->vk.driver_submit = radv_queue_sparse_submit; |
| vk_queue_enable_submit_thread(&queue->vk); |
| } else { |
| queue->vk.driver_submit = radv_queue_submit; |
| } |
| return VK_SUCCESS; |
| fail: |
| vk_queue_finish(&queue->vk); |
| return result; |
| } |
| |
| static void |
| radv_queue_state_finish(struct radv_queue_state *queue, struct radv_device *device) |
| { |
| radv_destroy_shadow_regs_preamble(queue, device->ws); |
| if (queue->initial_full_flush_preamble_cs) |
| device->ws->cs_destroy(queue->initial_full_flush_preamble_cs); |
| if (queue->initial_preamble_cs) |
| device->ws->cs_destroy(queue->initial_preamble_cs); |
| if (queue->continue_preamble_cs) |
| device->ws->cs_destroy(queue->continue_preamble_cs); |
| if (queue->gang_wait_preamble_cs) |
| device->ws->cs_destroy(queue->gang_wait_preamble_cs); |
| if (queue->gang_wait_postamble_cs) |
| device->ws->cs_destroy(queue->gang_wait_postamble_cs); |
| if (queue->descriptor_bo) |
| device->ws->buffer_destroy(device->ws, queue->descriptor_bo); |
| if (queue->scratch_bo) { |
| device->ws->buffer_destroy(device->ws, queue->scratch_bo); |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->scratch_bo); |
| } |
| if (queue->esgs_ring_bo) { |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->esgs_ring_bo); |
| device->ws->buffer_destroy(device->ws, queue->esgs_ring_bo); |
| } |
| if (queue->gsvs_ring_bo) { |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->gsvs_ring_bo); |
| device->ws->buffer_destroy(device->ws, queue->gsvs_ring_bo); |
| } |
| if (queue->tess_rings_bo) { |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->tess_rings_bo); |
| device->ws->buffer_destroy(device->ws, queue->tess_rings_bo); |
| } |
| if (queue->task_rings_bo) { |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->task_rings_bo); |
| device->ws->buffer_destroy(device->ws, queue->task_rings_bo); |
| } |
| if (queue->mesh_scratch_ring_bo) { |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->mesh_scratch_ring_bo); |
| device->ws->buffer_destroy(device->ws, queue->mesh_scratch_ring_bo); |
| } |
| if (queue->attr_ring_bo) { |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->attr_ring_bo); |
| device->ws->buffer_destroy(device->ws, queue->attr_ring_bo); |
| } |
| if (queue->gds_bo) { |
| device->ws->buffer_make_resident(device->ws, queue->gds_bo, false); |
| device->ws->buffer_destroy(device->ws, queue->gds_bo); |
| } |
| if (queue->gds_oa_bo) { |
| device->ws->buffer_make_resident(device->ws, queue->gds_oa_bo, false); |
| device->ws->buffer_destroy(device->ws, queue->gds_oa_bo); |
| } |
| if (queue->compute_scratch_bo) { |
| radv_rmv_log_command_buffer_bo_destroy(device, queue->compute_scratch_bo); |
| device->ws->buffer_destroy(device->ws, queue->compute_scratch_bo); |
| } |
| } |
| |
| void |
| radv_queue_finish(struct radv_queue *queue) |
| { |
| if (queue->follower_state) { |
| /* Prevent double free */ |
| queue->follower_state->task_rings_bo = NULL; |
| |
| /* Clean up the internal ACE queue state. */ |
| radv_queue_state_finish(queue->follower_state, queue->device); |
| free(queue->follower_state); |
| } |
| |
| if (queue->gang_sem_bo) |
| queue->device->ws->buffer_destroy(queue->device->ws, queue->gang_sem_bo); |
| |
| radv_queue_state_finish(&queue->state, queue->device); |
| vk_queue_finish(&queue->vk); |
| } |