| /* |
| * Copyright © 2008, 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /** |
| * \file list.h |
| * \brief Doubly-linked list abstract container type. |
| * |
| * Each doubly-linked list has a sentinel head and tail node. These nodes |
| * contain no data. The head sentinel can be identified by its \c prev |
| * pointer being \c NULL. The tail sentinel can be identified by its |
| * \c next pointer being \c NULL. |
| * |
| * A list is empty if either the head sentinel's \c next pointer points to the |
| * tail sentinel or the tail sentinel's \c prev poiner points to the head |
| * sentinel. |
| * |
| * Instead of tracking two separate \c node structures and a \c list structure |
| * that points to them, the sentinel nodes are in a single structure. Noting |
| * that each sentinel node always has one \c NULL pointer, the \c NULL |
| * pointers occupy the same memory location. In the \c list structure |
| * contains a the following: |
| * |
| * - A \c head pointer that represents the \c next pointer of the |
| * head sentinel node. |
| * - A \c tail pointer that represents the \c prev pointer of the head |
| * sentinel node and the \c next pointer of the tail sentinel node. This |
| * pointer is \b always \c NULL. |
| * - A \c tail_prev pointer that represents the \c prev pointer of the |
| * tail sentinel node. |
| * |
| * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL, |
| * the list is empty. |
| * |
| * Do note that this means that the list nodes will contain pointers into the |
| * list structure itself and as a result you may not \c realloc() an \c |
| * exec_list or any structure in which an \c exec_list is embedded. |
| * |
| * To anyone familiar with "exec lists" on the Amiga, this structure should |
| * be immediately recognizable. See the following link for the original Amiga |
| * operating system documentation on the subject. |
| * |
| * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html |
| * |
| * \author Ian Romanick <ian.d.romanick@intel.com> |
| */ |
| |
| #pragma once |
| #ifndef LIST_CONTAINER_H |
| #define LIST_CONTAINER_H |
| |
| #ifndef __cplusplus |
| #include <stddef.h> |
| #endif |
| #include <assert.h> |
| |
| #include "util/ralloc.h" |
| |
| struct exec_node { |
| struct exec_node *next; |
| struct exec_node *prev; |
| |
| #ifdef __cplusplus |
| DECLARE_RALLOC_CXX_OPERATORS(exec_node) |
| |
| exec_node() : next(NULL), prev(NULL) |
| { |
| /* empty */ |
| } |
| |
| const exec_node *get_next() const; |
| exec_node *get_next(); |
| |
| const exec_node *get_prev() const; |
| exec_node *get_prev(); |
| |
| void remove(); |
| |
| /** |
| * Link a node with itself |
| * |
| * This creates a sort of degenerate list that is occasionally useful. |
| */ |
| void self_link(); |
| |
| /** |
| * Insert a node in the list after the current node |
| */ |
| void insert_after(exec_node *after); |
| /** |
| * Insert a node in the list before the current node |
| */ |
| void insert_before(exec_node *before); |
| |
| /** |
| * Insert another list in the list before the current node |
| */ |
| void insert_before(struct exec_list *before); |
| |
| /** |
| * Replace the current node with the given node. |
| */ |
| void replace_with(exec_node *replacement); |
| |
| /** |
| * Is this the sentinel at the tail of the list? |
| */ |
| bool is_tail_sentinel() const; |
| |
| /** |
| * Is this the sentinel at the head of the list? |
| */ |
| bool is_head_sentinel() const; |
| #endif |
| }; |
| |
| static inline void |
| exec_node_init(struct exec_node *n) |
| { |
| n->next = NULL; |
| n->prev = NULL; |
| } |
| |
| static inline const struct exec_node * |
| exec_node_get_next_const(const struct exec_node *n) |
| { |
| return n->next; |
| } |
| |
| static inline struct exec_node * |
| exec_node_get_next(struct exec_node *n) |
| { |
| return n->next; |
| } |
| |
| static inline const struct exec_node * |
| exec_node_get_prev_const(const struct exec_node *n) |
| { |
| return n->prev; |
| } |
| |
| static inline struct exec_node * |
| exec_node_get_prev(struct exec_node *n) |
| { |
| return n->prev; |
| } |
| |
| static inline void |
| exec_node_remove(struct exec_node *n) |
| { |
| n->next->prev = n->prev; |
| n->prev->next = n->next; |
| n->next = NULL; |
| n->prev = NULL; |
| } |
| |
| static inline void |
| exec_node_self_link(struct exec_node *n) |
| { |
| n->next = n; |
| n->prev = n; |
| } |
| |
| static inline void |
| exec_node_insert_after(struct exec_node *n, struct exec_node *after) |
| { |
| after->next = n->next; |
| after->prev = n; |
| |
| n->next->prev = after; |
| n->next = after; |
| } |
| |
| static inline void |
| exec_node_insert_node_before(struct exec_node *n, struct exec_node *before) |
| { |
| before->next = n; |
| before->prev = n->prev; |
| |
| n->prev->next = before; |
| n->prev = before; |
| } |
| |
| static inline void |
| exec_node_replace_with(struct exec_node *n, struct exec_node *replacement) |
| { |
| replacement->prev = n->prev; |
| replacement->next = n->next; |
| |
| n->prev->next = replacement; |
| n->next->prev = replacement; |
| } |
| |
| static inline bool |
| exec_node_is_tail_sentinel(const struct exec_node *n) |
| { |
| return n->next == NULL; |
| } |
| |
| static inline bool |
| exec_node_is_head_sentinel(const struct exec_node *n) |
| { |
| return n->prev == NULL; |
| } |
| |
| #ifdef __cplusplus |
| inline const exec_node *exec_node::get_next() const |
| { |
| return exec_node_get_next_const(this); |
| } |
| |
| inline exec_node *exec_node::get_next() |
| { |
| return exec_node_get_next(this); |
| } |
| |
| inline const exec_node *exec_node::get_prev() const |
| { |
| return exec_node_get_prev_const(this); |
| } |
| |
| inline exec_node *exec_node::get_prev() |
| { |
| return exec_node_get_prev(this); |
| } |
| |
| inline void exec_node::remove() |
| { |
| exec_node_remove(this); |
| } |
| |
| inline void exec_node::self_link() |
| { |
| exec_node_self_link(this); |
| } |
| |
| inline void exec_node::insert_after(exec_node *after) |
| { |
| exec_node_insert_after(this, after); |
| } |
| |
| inline void exec_node::insert_before(exec_node *before) |
| { |
| exec_node_insert_node_before(this, before); |
| } |
| |
| inline void exec_node::replace_with(exec_node *replacement) |
| { |
| exec_node_replace_with(this, replacement); |
| } |
| |
| inline bool exec_node::is_tail_sentinel() const |
| { |
| return exec_node_is_tail_sentinel(this); |
| } |
| |
| inline bool exec_node::is_head_sentinel() const |
| { |
| return exec_node_is_head_sentinel(this); |
| } |
| #endif |
| |
| #ifdef __cplusplus |
| /* This macro will not work correctly if `t' uses virtual inheritance. If you |
| * are using virtual inheritance, you deserve a slow and painful death. Enjoy! |
| */ |
| #define exec_list_offsetof(t, f, p) \ |
| (((char *) &((t *) p)->f) - ((char *) p)) |
| #else |
| #define exec_list_offsetof(t, f, p) offsetof(t, f) |
| #endif |
| |
| /** |
| * Get a pointer to the structure containing an exec_node |
| * |
| * Given a pointer to an \c exec_node embedded in a structure, get a pointer to |
| * the containing structure. |
| * |
| * \param type Base type of the structure containing the node |
| * \param node Pointer to the \c exec_node |
| * \param field Name of the field in \c type that is the embedded \c exec_node |
| */ |
| #define exec_node_data(type, node, field) \ |
| ((type *) (((char *) node) - exec_list_offsetof(type, field, node))) |
| |
| #ifdef __cplusplus |
| struct exec_node; |
| #endif |
| |
| struct exec_list { |
| struct exec_node *head; |
| struct exec_node *tail; |
| struct exec_node *tail_pred; |
| |
| #ifdef __cplusplus |
| DECLARE_RALLOC_CXX_OPERATORS(exec_list) |
| |
| exec_list() |
| { |
| make_empty(); |
| } |
| |
| void make_empty(); |
| |
| bool is_empty() const; |
| |
| const exec_node *get_head() const; |
| exec_node *get_head(); |
| |
| const exec_node *get_tail() const; |
| exec_node *get_tail(); |
| |
| unsigned length() const; |
| |
| void push_head(exec_node *n); |
| void push_tail(exec_node *n); |
| void push_degenerate_list_at_head(exec_node *n); |
| |
| /** |
| * Remove the first node from a list and return it |
| * |
| * \return |
| * The first node in the list or \c NULL if the list is empty. |
| * |
| * \sa exec_list::get_head |
| */ |
| exec_node *pop_head(); |
| |
| /** |
| * Move all of the nodes from this list to the target list |
| */ |
| void move_nodes_to(exec_list *target); |
| |
| /** |
| * Append all nodes from the source list to the end of the target list |
| */ |
| void append_list(exec_list *source); |
| |
| /** |
| * Prepend all nodes from the source list to the beginning of the target |
| * list |
| */ |
| void prepend_list(exec_list *source); |
| #endif |
| }; |
| |
| static inline void |
| exec_list_make_empty(struct exec_list *list) |
| { |
| list->head = (struct exec_node *) & list->tail; |
| list->tail = NULL; |
| list->tail_pred = (struct exec_node *) & list->head; |
| } |
| |
| static inline bool |
| exec_list_is_empty(const struct exec_list *list) |
| { |
| /* There are three ways to test whether a list is empty or not. |
| * |
| * - Check to see if the \c head points to the \c tail. |
| * - Check to see if the \c tail_pred points to the \c head. |
| * - Check to see if the \c head is the sentinel node by test whether its |
| * \c next pointer is \c NULL. |
| * |
| * The first two methods tend to generate better code on modern systems |
| * because they save a pointer dereference. |
| */ |
| return list->head == (struct exec_node *) &list->tail; |
| } |
| |
| static inline const struct exec_node * |
| exec_list_get_head_const(const struct exec_list *list) |
| { |
| return !exec_list_is_empty(list) ? list->head : NULL; |
| } |
| |
| static inline struct exec_node * |
| exec_list_get_head(struct exec_list *list) |
| { |
| return !exec_list_is_empty(list) ? list->head : NULL; |
| } |
| |
| static inline const struct exec_node * |
| exec_list_get_tail_const(const struct exec_list *list) |
| { |
| return !exec_list_is_empty(list) ? list->tail_pred : NULL; |
| } |
| |
| static inline struct exec_node * |
| exec_list_get_tail(struct exec_list *list) |
| { |
| return !exec_list_is_empty(list) ? list->tail_pred : NULL; |
| } |
| |
| static inline unsigned |
| exec_list_length(const struct exec_list *list) |
| { |
| unsigned size = 0; |
| struct exec_node *node; |
| |
| for (node = list->head; node->next != NULL; node = node->next) { |
| size++; |
| } |
| |
| return size; |
| } |
| |
| static inline void |
| exec_list_push_head(struct exec_list *list, struct exec_node *n) |
| { |
| n->next = list->head; |
| n->prev = (struct exec_node *) &list->head; |
| |
| n->next->prev = n; |
| list->head = n; |
| } |
| |
| static inline void |
| exec_list_push_tail(struct exec_list *list, struct exec_node *n) |
| { |
| n->next = (struct exec_node *) &list->tail; |
| n->prev = list->tail_pred; |
| |
| n->prev->next = n; |
| list->tail_pred = n; |
| } |
| |
| static inline void |
| exec_list_push_degenerate_list_at_head(struct exec_list *list, struct exec_node *n) |
| { |
| assert(n->prev->next == n); |
| |
| n->prev->next = list->head; |
| list->head->prev = n->prev; |
| n->prev = (struct exec_node *) &list->head; |
| list->head = n; |
| } |
| |
| static inline struct exec_node * |
| exec_list_pop_head(struct exec_list *list) |
| { |
| struct exec_node *const n = exec_list_get_head(list); |
| if (n != NULL) |
| exec_node_remove(n); |
| |
| return n; |
| } |
| |
| static inline void |
| exec_list_move_nodes_to(struct exec_list *list, struct exec_list *target) |
| { |
| if (exec_list_is_empty(list)) { |
| exec_list_make_empty(target); |
| } else { |
| target->head = list->head; |
| target->tail = NULL; |
| target->tail_pred = list->tail_pred; |
| |
| target->head->prev = (struct exec_node *) &target->head; |
| target->tail_pred->next = (struct exec_node *) &target->tail; |
| |
| exec_list_make_empty(list); |
| } |
| } |
| |
| static inline void |
| exec_list_append(struct exec_list *list, struct exec_list *source) |
| { |
| if (exec_list_is_empty(source)) |
| return; |
| |
| /* Link the first node of the source with the last node of the target list. |
| */ |
| list->tail_pred->next = source->head; |
| source->head->prev = list->tail_pred; |
| |
| /* Make the tail of the source list be the tail of the target list. |
| */ |
| list->tail_pred = source->tail_pred; |
| list->tail_pred->next = (struct exec_node *) &list->tail; |
| |
| /* Make the source list empty for good measure. |
| */ |
| exec_list_make_empty(source); |
| } |
| |
| static inline void |
| exec_list_prepend(struct exec_list *list, struct exec_list *source) |
| { |
| exec_list_append(source, list); |
| exec_list_move_nodes_to(source, list); |
| } |
| |
| static inline void |
| exec_node_insert_list_before(struct exec_node *n, struct exec_list *before) |
| { |
| if (exec_list_is_empty(before)) |
| return; |
| |
| before->tail_pred->next = n; |
| before->head->prev = n->prev; |
| |
| n->prev->next = before->head; |
| n->prev = before->tail_pred; |
| |
| exec_list_make_empty(before); |
| } |
| |
| static inline void |
| exec_list_validate(const struct exec_list *list) |
| { |
| const struct exec_node *node; |
| |
| assert(list->head->prev == (const struct exec_node *) &list->head); |
| assert(list->tail == NULL); |
| assert(list->tail_pred->next == (const struct exec_node *) &list->tail); |
| |
| /* We could try to use one of the interators below for this but they all |
| * either require C++ or assume the exec_node is embedded in a structure |
| * which is not the case for this function. |
| */ |
| for (node = list->head; node->next != NULL; node = node->next) { |
| assert(node->next->prev == node); |
| assert(node->prev->next == node); |
| } |
| } |
| |
| #ifdef __cplusplus |
| inline void exec_list::make_empty() |
| { |
| exec_list_make_empty(this); |
| } |
| |
| inline bool exec_list::is_empty() const |
| { |
| return exec_list_is_empty(this); |
| } |
| |
| inline const exec_node *exec_list::get_head() const |
| { |
| return exec_list_get_head_const(this); |
| } |
| |
| inline exec_node *exec_list::get_head() |
| { |
| return exec_list_get_head(this); |
| } |
| |
| inline const exec_node *exec_list::get_tail() const |
| { |
| return exec_list_get_tail_const(this); |
| } |
| |
| inline exec_node *exec_list::get_tail() |
| { |
| return exec_list_get_tail(this); |
| } |
| |
| inline unsigned exec_list::length() const |
| { |
| return exec_list_length(this); |
| } |
| |
| inline void exec_list::push_head(exec_node *n) |
| { |
| exec_list_push_head(this, n); |
| } |
| |
| inline void exec_list::push_tail(exec_node *n) |
| { |
| exec_list_push_tail(this, n); |
| } |
| |
| inline void exec_list::push_degenerate_list_at_head(exec_node *n) |
| { |
| exec_list_push_degenerate_list_at_head(this, n); |
| } |
| |
| inline exec_node *exec_list::pop_head() |
| { |
| return exec_list_pop_head(this); |
| } |
| |
| inline void exec_list::move_nodes_to(exec_list *target) |
| { |
| exec_list_move_nodes_to(this, target); |
| } |
| |
| inline void exec_list::append_list(exec_list *source) |
| { |
| exec_list_append(this, source); |
| } |
| |
| inline void exec_list::prepend_list(exec_list *source) |
| { |
| exec_list_prepend(this, source); |
| } |
| |
| inline void exec_node::insert_before(exec_list *before) |
| { |
| exec_node_insert_list_before(this, before); |
| } |
| #endif |
| |
| #define foreach_in_list(__type, __inst, __list) \ |
| for (__type *(__inst) = (__type *)(__list)->head; \ |
| !(__inst)->is_tail_sentinel(); \ |
| (__inst) = (__type *)(__inst)->next) |
| |
| #define foreach_in_list_reverse(__type, __inst, __list) \ |
| for (__type *(__inst) = (__type *)(__list)->tail_pred; \ |
| !(__inst)->is_head_sentinel(); \ |
| (__inst) = (__type *)(__inst)->prev) |
| |
| /** |
| * This version is safe even if the current node is removed. |
| */ |
| #define foreach_in_list_safe(__type, __node, __list) \ |
| for (__type *__node = (__type *)(__list)->head, \ |
| *__next = (__type *)__node->next; \ |
| __next != NULL; \ |
| __node = __next, __next = (__type *)__next->next) |
| |
| #define foreach_in_list_reverse_safe(__type, __node, __list) \ |
| for (__type *__node = (__type *)(__list)->tail_pred, \ |
| *__prev = (__type *)__node->prev; \ |
| __prev != NULL; \ |
| __node = __prev, __prev = (__type *)__prev->prev) |
| |
| #define foreach_in_list_use_after(__type, __inst, __list) \ |
| __type *(__inst); \ |
| for ((__inst) = (__type *)(__list)->head; \ |
| !(__inst)->is_tail_sentinel(); \ |
| (__inst) = (__type *)(__inst)->next) |
| /** |
| * Iterate through two lists at once. Stops at the end of the shorter list. |
| * |
| * This is safe against either current node being removed or replaced. |
| */ |
| #define foreach_two_lists(__node1, __list1, __node2, __list2) \ |
| for (struct exec_node * __node1 = (__list1)->head, \ |
| * __node2 = (__list2)->head, \ |
| * __next1 = __node1->next, \ |
| * __next2 = __node2->next \ |
| ; __next1 != NULL && __next2 != NULL \ |
| ; __node1 = __next1, \ |
| __node2 = __next2, \ |
| __next1 = __next1->next, \ |
| __next2 = __next2->next) |
| |
| #define foreach_list_typed(__type, __node, __field, __list) \ |
| for (__type * __node = \ |
| exec_node_data(__type, (__list)->head, __field); \ |
| (__node)->__field.next != NULL; \ |
| (__node) = exec_node_data(__type, (__node)->__field.next, __field)) |
| |
| #define foreach_list_typed_reverse(__type, __node, __field, __list) \ |
| for (__type * __node = \ |
| exec_node_data(__type, (__list)->tail_pred, __field); \ |
| (__node)->__field.prev != NULL; \ |
| (__node) = exec_node_data(__type, (__node)->__field.prev, __field)) |
| |
| #define foreach_list_typed_safe(__type, __node, __field, __list) \ |
| for (__type * __node = \ |
| exec_node_data(__type, (__list)->head, __field), \ |
| * __next = \ |
| exec_node_data(__type, (__node)->__field.next, __field); \ |
| (__node)->__field.next != NULL; \ |
| __node = __next, __next = \ |
| exec_node_data(__type, (__next)->__field.next, __field)) |
| |
| #define foreach_list_typed_safe_reverse(__type, __node, __field, __list) \ |
| for (__type * __node = \ |
| exec_node_data(__type, (__list)->tail_pred, __field), \ |
| * __prev = \ |
| exec_node_data(__type, (__node)->__field.prev, __field); \ |
| (__node)->__field.prev != NULL; \ |
| __node = __prev, __prev = \ |
| exec_node_data(__type, (__prev)->__field.prev, __field)) |
| |
| #endif /* LIST_CONTAINER_H */ |