blob: 911fa8922ce9c3d7dd958443157771124f523974 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "common/intel_compute_slm.h"
#include "common/intel_l3_config.h"
#include "common/intel_sample_positions.h"
#include "compiler/elk/elk_disasm.h"
#include "anv_private.h"
#include "compiler/elk/elk_nir.h"
#include "compiler/intel_nir.h"
#include "anv_nir.h"
#include "nir/nir_xfb_info.h"
#include "spirv/nir_spirv.h"
#include "vk_pipeline.h"
#include "vk_render_pass.h"
#include "vk_util.h"
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
* we can't do that yet because we don't have the ability to copy nir.
*/
static nir_shader *
anv_shader_stage_to_nir(struct anv_device *device,
VkPipelineCreateFlags2KHR pipeline_flags,
const VkPipelineShaderStageCreateInfo *stage_info,
enum elk_robustness_flags robust_flags,
void *mem_ctx)
{
const struct anv_physical_device *pdevice = device->physical;
const struct elk_compiler *compiler = pdevice->compiler;
gl_shader_stage stage = vk_to_mesa_shader_stage(stage_info->stage);
const nir_shader_compiler_options *nir_options =
compiler->nir_options[stage];
const struct spirv_to_nir_options spirv_options = {
.ubo_addr_format = anv_nir_ubo_addr_format(pdevice, robust_flags),
.ssbo_addr_format = anv_nir_ssbo_addr_format(pdevice, robust_flags),
.phys_ssbo_addr_format = nir_address_format_64bit_global,
.push_const_addr_format = nir_address_format_logical,
/* TODO: Consider changing this to an address format that has the NULL
* pointer equals to 0. That might be a better format to play nice
* with certain code / code generators.
*/
.shared_addr_format = nir_address_format_32bit_offset,
.min_ubo_alignment = ANV_UBO_ALIGNMENT,
.min_ssbo_alignment = ANV_SSBO_ALIGNMENT,
};
nir_shader *nir;
VkResult result =
vk_pipeline_shader_stage_to_nir(&device->vk, pipeline_flags, stage_info,
&spirv_options, nir_options,
mem_ctx, &nir);
if (result != VK_SUCCESS)
return NULL;
if (INTEL_DEBUG(intel_debug_flag_for_shader_stage(stage))) {
fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
gl_shader_stage_name(stage));
nir_print_shader(nir, stderr);
}
NIR_PASS(_, nir, nir_lower_io_vars_to_temporaries,
nir_shader_get_entrypoint(nir), true, false);
const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
.point_coord = true,
};
NIR_PASS(_, nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);
const nir_opt_access_options opt_access_options = {
.is_vulkan = true,
};
NIR_PASS(_, nir, nir_opt_access, &opt_access_options);
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
struct elk_nir_compiler_opts opts = {};
elk_preprocess_nir(compiler, nir, &opts);
return nir;
}
static VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
struct anv_device *device,
enum anv_pipeline_type type,
VkPipelineCreateFlags2KHR flags,
const VkAllocationCallbacks *pAllocator)
{
VkResult result;
memset(pipeline, 0, sizeof(*pipeline));
vk_object_base_init(&device->vk, &pipeline->base,
VK_OBJECT_TYPE_PIPELINE);
pipeline->device = device;
/* It's the job of the child class to provide actual backing storage for
* the batch by setting batch.start, batch.next, and batch.end.
*/
pipeline->batch.alloc = pAllocator ? pAllocator : &device->vk.alloc;
pipeline->batch.relocs = &pipeline->batch_relocs;
pipeline->batch.status = VK_SUCCESS;
result = anv_reloc_list_init(&pipeline->batch_relocs,
pipeline->batch.alloc);
if (result != VK_SUCCESS)
return result;
pipeline->mem_ctx = ralloc_context(NULL);
pipeline->type = type;
pipeline->flags = flags;
util_dynarray_init(&pipeline->executables, pipeline->mem_ctx);
return VK_SUCCESS;
}
static void
anv_pipeline_finish(struct anv_pipeline *pipeline,
struct anv_device *device,
const VkAllocationCallbacks *pAllocator)
{
anv_reloc_list_finish(&pipeline->batch_relocs,
pAllocator ? pAllocator : &device->vk.alloc);
ralloc_free(pipeline->mem_ctx);
vk_object_base_finish(&pipeline->base);
}
void anv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
if (!pipeline)
return;
switch (pipeline->type) {
case ANV_PIPELINE_GRAPHICS: {
struct anv_graphics_pipeline *gfx_pipeline =
anv_pipeline_to_graphics(pipeline);
for (unsigned s = 0; s < ARRAY_SIZE(gfx_pipeline->shaders); s++) {
if (gfx_pipeline->shaders[s])
anv_shader_bin_unref(device, gfx_pipeline->shaders[s]);
}
break;
}
case ANV_PIPELINE_COMPUTE: {
struct anv_compute_pipeline *compute_pipeline =
anv_pipeline_to_compute(pipeline);
if (compute_pipeline->cs)
anv_shader_bin_unref(device, compute_pipeline->cs);
break;
}
default:
unreachable("invalid pipeline type");
}
anv_pipeline_finish(pipeline, device, pAllocator);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
}
static void
populate_sampler_prog_key(const struct intel_device_info *devinfo,
struct elk_sampler_prog_key_data *key)
{
/* XXX: Handle texture swizzle Pre-HSW */
}
static void
populate_base_prog_key(const struct anv_device *device,
enum elk_robustness_flags robust_flags,
struct elk_base_prog_key *key)
{
key->robust_flags = robust_flags;
key->limit_trig_input_range =
device->physical->instance->limit_trig_input_range;
populate_sampler_prog_key(device->info, &key->tex);
}
static void
populate_vs_prog_key(const struct anv_device *device,
enum elk_robustness_flags robust_flags,
struct elk_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_flags, &key->base);
/* XXX: Handle vertex input work-arounds */
/* XXX: Handle sampler_prog_key */
}
static void
populate_tcs_prog_key(const struct anv_device *device,
enum elk_robustness_flags robust_flags,
unsigned input_vertices,
struct elk_tcs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_flags, &key->base);
key->input_vertices = input_vertices;
}
static void
populate_tes_prog_key(const struct anv_device *device,
enum elk_robustness_flags robust_flags,
struct elk_tes_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_flags, &key->base);
}
static void
populate_gs_prog_key(const struct anv_device *device,
bool robust_flags,
struct elk_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_flags, &key->base);
}
static void
populate_wm_prog_key(const struct anv_graphics_pipeline *pipeline,
enum elk_robustness_flags robust_flags,
const BITSET_WORD *dynamic,
const struct vk_multisample_state *ms,
const struct vk_render_pass_state *rp,
struct elk_wm_prog_key *key)
{
const struct anv_device *device = pipeline->base.device;
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_flags, &key->base);
/* We set this to 0 here and set to the actual value before we call
* elk_compile_fs.
*/
key->input_slots_valid = 0;
/* XXX Vulkan doesn't appear to specify */
key->clamp_fragment_color = false;
key->ignore_sample_mask_out = false;
assert(rp->color_attachment_count <= MAX_RTS);
/* Consider all inputs as valid until look at the NIR variables. */
key->color_outputs_valid = (1u << rp->color_attachment_count) - 1;
key->nr_color_regions = rp->color_attachment_count;
/* To reduce possible shader recompilations we would need to know if
* there is a SampleMask output variable to compute if we should emit
* code to workaround the issue that hardware disables alpha to coverage
* when there is SampleMask output.
*/
key->alpha_to_coverage = ms != NULL && ms->alpha_to_coverage_enable ?
ELK_ALWAYS : ELK_NEVER;
/* Vulkan doesn't support fixed-function alpha test */
key->alpha_test_replicate_alpha = false;
if (ms != NULL) {
/* We should probably pull this out of the shader, but it's fairly
* harmless to compute it and then let dead-code take care of it.
*/
if (ms->rasterization_samples > 1) {
key->persample_interp =
(ms->sample_shading_enable &&
(ms->min_sample_shading * ms->rasterization_samples) > 1) ?
ELK_ALWAYS : ELK_NEVER;
key->multisample_fbo = ELK_ALWAYS;
}
if (device->physical->instance->sample_mask_out_opengl_behaviour)
key->ignore_sample_mask_out = !key->multisample_fbo;
}
}
static void
populate_cs_prog_key(const struct anv_device *device,
enum elk_robustness_flags robust_flags,
struct elk_cs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_flags, &key->base);
}
struct anv_pipeline_stage {
gl_shader_stage stage;
VkPipelineCreateFlags2KHR pipeline_flags;
const VkPipelineShaderStageCreateInfo *info;
unsigned char shader_sha1[20];
union elk_any_prog_key key;
struct {
gl_shader_stage stage;
unsigned char sha1[20];
} cache_key;
nir_shader *nir;
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
struct anv_pipeline_bind_map bind_map;
union elk_any_prog_data prog_data;
uint32_t num_stats;
struct elk_compile_stats stats[3];
char *disasm[3];
VkPipelineCreationFeedback feedback;
const unsigned *code;
struct anv_shader_bin *bin;
};
static void
anv_pipeline_hash_graphics(struct anv_graphics_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *stages,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
_mesa_sha1_update(&ctx, &pipeline->view_mask,
sizeof(pipeline->view_mask));
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (stages[s].info) {
_mesa_sha1_update(&ctx, stages[s].shader_sha1,
sizeof(stages[s].shader_sha1));
_mesa_sha1_update(&ctx, &stages[s].key, elk_prog_key_size(s));
}
}
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_compute(struct anv_compute_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *stage,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
const struct anv_device *device = pipeline->base.device;
const bool rba = device->vk.enabled_features.robustBufferAccess;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
const uint8_t afs = device->physical->instance->assume_full_subgroups;
_mesa_sha1_update(&ctx, &afs, sizeof(afs));
_mesa_sha1_update(&ctx, stage->shader_sha1,
sizeof(stage->shader_sha1));
_mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
_mesa_sha1_final(&ctx, sha1_out);
}
static nir_shader *
anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
struct vk_pipeline_cache *cache,
void *mem_ctx,
struct anv_pipeline_stage *stage)
{
const struct elk_compiler *compiler =
pipeline->device->physical->compiler;
const nir_shader_compiler_options *nir_options =
compiler->nir_options[stage->stage];
nir_shader *nir;
nir = anv_device_search_for_nir(pipeline->device, cache,
nir_options,
stage->shader_sha1,
mem_ctx);
if (nir) {
assert(nir->info.stage == stage->stage);
return nir;
}
nir = anv_shader_stage_to_nir(pipeline->device,
stage->pipeline_flags, stage->info,
stage->key.base.robust_flags, mem_ctx);
if (nir) {
anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
return nir;
}
return NULL;
}
static void
shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
assert(glsl_type_is_vector_or_scalar(type));
uint32_t comp_size = glsl_type_is_boolean(type)
? 4 : glsl_get_bit_size(type) / 8;
unsigned length = glsl_get_vector_elements(type);
*size = comp_size * length,
*align = comp_size * (length == 3 ? 4 : length);
}
static void
anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
void *mem_ctx,
struct anv_pipeline_stage *stage,
struct anv_pipeline_layout *layout)
{
const struct anv_physical_device *pdevice = pipeline->device->physical;
const struct elk_compiler *compiler = pdevice->compiler;
struct elk_stage_prog_data *prog_data = &stage->prog_data.base;
nir_shader *nir = stage->nir;
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS(_, nir, nir_lower_wpos_center);
NIR_PASS(_, nir, nir_lower_input_attachments,
&(nir_input_attachment_options) {
.use_fragcoord_sysval = true,
.use_layer_id_sysval = true,
});
}
NIR_PASS(_, nir, anv_nir_lower_ycbcr_textures, layout);
if (pipeline->type == ANV_PIPELINE_GRAPHICS) {
struct anv_graphics_pipeline *gfx_pipeline =
anv_pipeline_to_graphics(pipeline);
NIR_PASS(_, nir, anv_nir_lower_multiview, gfx_pipeline->view_mask);
}
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
NIR_PASS(_, nir, elk_nir_lower_storage_image,
&(struct elk_nir_lower_storage_image_opts) {
.devinfo = compiler->devinfo,
.lower_loads = true,
.lower_stores = true,
.lower_atomics = true,
.lower_get_size = true,
});
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global,
nir_address_format_64bit_global);
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const,
nir_address_format_32bit_offset);
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
NIR_PASS(_, nir, anv_nir_apply_pipeline_layout,
pdevice, stage->key.base.robust_flags,
layout, &stage->bind_map);
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo,
anv_nir_ubo_addr_format(pdevice, stage->key.base.robust_flags));
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ssbo,
anv_nir_ssbo_addr_format(pdevice, stage->key.base.robust_flags));
/* First run copy-prop to get rid of all of the vec() that address
* calculations often create and then constant-fold so that, when we
* get to anv_nir_lower_ubo_loads, we can detect constant offsets.
*/
NIR_PASS(_, nir, nir_copy_prop);
NIR_PASS(_, nir, nir_opt_constant_folding);
NIR_PASS(_, nir, anv_nir_lower_ubo_loads);
enum nir_lower_non_uniform_access_type lower_non_uniform_access_types =
nir_lower_non_uniform_texture_access | nir_lower_non_uniform_image_access;
/* In practice, most shaders do not have non-uniform-qualified
* accesses (see
* https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17558#note_1475069)
* thus a cheaper and likely to fail check is run first.
*/
if (nir_has_non_uniform_access(nir, lower_non_uniform_access_types)) {
NIR_PASS(_, nir, nir_opt_non_uniform_access);
/* We don't support non-uniform UBOs and non-uniform SSBO access is
* handled naturally by falling back to A64 messages.
*/
NIR_PASS(_, nir, nir_lower_non_uniform_access,
&(nir_lower_non_uniform_access_options) {
.types = lower_non_uniform_access_types,
.callback = NULL,
});
}
NIR_PASS(_, nir, anv_nir_compute_push_layout,
pdevice, stage->key.base.robust_flags,
prog_data, &stage->bind_map, mem_ctx);
if (gl_shader_stage_uses_workgroup(nir->info.stage)) {
NIR_PASS(_, nir, nir_lower_vars_to_explicit_types,
nir_var_mem_shared, shared_type_info);
NIR_PASS(_, nir, nir_lower_explicit_io,
nir_var_mem_shared, nir_address_format_32bit_offset);
if (nir->info.zero_initialize_shared_memory &&
nir->info.shared_size > 0) {
/* The effective Shared Local Memory size is at least 1024 bytes and
* is always rounded to a power of two, so it is OK to align the size
* used by the shader to chunk_size -- which does simplify the logic.
*/
const unsigned chunk_size = 16;
const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
assert(shared_size <=
intel_compute_slm_calculate_size(compiler->devinfo->ver, nir->info.shared_size));
NIR_PASS(_, nir, nir_zero_initialize_shared_memory,
shared_size, chunk_size);
}
}
if (gl_shader_stage_is_compute(nir->info.stage)) {
NIR_PASS(_, nir, elk_nir_lower_cs_intrinsics, compiler->devinfo,
&stage->prog_data.cs);
}
stage->nir = nir;
}
static void
anv_pipeline_link_vs(const struct elk_compiler *compiler,
struct anv_pipeline_stage *vs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
elk_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_vs(const struct elk_compiler *compiler,
void *mem_ctx,
struct anv_graphics_pipeline *pipeline,
struct anv_pipeline_stage *vs_stage)
{
/* When using Primitive Replication for multiview, each view gets its own
* position slot.
*/
uint32_t pos_slots =
(vs_stage->nir->info.per_view_outputs & VARYING_BIT_POS) ?
MAX2(1, util_bitcount(pipeline->view_mask)) : 1;
/* Only position is allowed to be per-view */
assert(!(vs_stage->nir->info.per_view_outputs & ~VARYING_BIT_POS));
elk_compute_vue_map(compiler->devinfo,
&vs_stage->prog_data.vs.base.vue_map,
vs_stage->nir->info.outputs_written,
vs_stage->nir->info.separate_shader,
pos_slots);
vs_stage->num_stats = 1;
struct elk_compile_vs_params params = {
.base = {
.nir = vs_stage->nir,
.stats = vs_stage->stats,
.log_data = pipeline->base.device,
.mem_ctx = mem_ctx,
},
.key = &vs_stage->key.vs,
.prog_data = &vs_stage->prog_data.vs,
};
vs_stage->code = elk_compile_vs(compiler, &params);
}
static void
merge_tess_info(struct shader_info *tes_info,
const struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 ||
tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess._primitive_mode == 0 ||
tes_info->tess._primitive_mode == 0 ||
tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
}
static void
anv_pipeline_link_tcs(const struct elk_compiler *compiler,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *tes_stage)
{
assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
elk_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
nir_lower_patch_vertices(tes_stage->nir,
tcs_stage->nir->info.tess.tcs_vertices_out,
NULL);
/* Copy TCS info into the TES info */
merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
/* Whacking the key after cache lookup is a bit sketchy, but all of
* this comes from the SPIR-V, which is part of the hash used for the
* pipeline cache. So it should be safe.
*/
tcs_stage->key.tcs._tes_primitive_mode =
tes_stage->nir->info.tess._primitive_mode;
tcs_stage->key.tcs.quads_workaround =
compiler->devinfo->ver < 9 &&
tes_stage->nir->info.tess._primitive_mode == TESS_PRIMITIVE_QUADS &&
tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
}
static void
anv_pipeline_compile_tcs(const struct elk_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *prev_stage)
{
tcs_stage->key.tcs.outputs_written =
tcs_stage->nir->info.outputs_written;
tcs_stage->key.tcs.patch_outputs_written =
tcs_stage->nir->info.patch_outputs_written;
tcs_stage->num_stats = 1;
struct elk_compile_tcs_params params = {
.base = {
.nir = tcs_stage->nir,
.stats = tcs_stage->stats,
.log_data = device,
.mem_ctx = mem_ctx,
},
.key = &tcs_stage->key.tcs,
.prog_data = &tcs_stage->prog_data.tcs,
};
tcs_stage->code = elk_compile_tcs(compiler, &params);
}
static void
anv_pipeline_link_tes(const struct elk_compiler *compiler,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
elk_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_tes(const struct elk_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *tcs_stage)
{
tes_stage->key.tes.inputs_read =
tcs_stage->nir->info.outputs_written;
tes_stage->key.tes.patch_inputs_read =
tcs_stage->nir->info.patch_outputs_written;
tes_stage->num_stats = 1;
struct elk_compile_tes_params params = {
.base = {
.nir = tes_stage->nir,
.stats = tes_stage->stats,
.log_data = device,
.mem_ctx = mem_ctx,
},
.key = &tes_stage->key.tes,
.prog_data = &tes_stage->prog_data.tes,
.input_vue_map = &tcs_stage->prog_data.tcs.base.vue_map,
};
tes_stage->code = elk_compile_tes(compiler, &params);
}
static void
anv_pipeline_link_gs(const struct elk_compiler *compiler,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
elk_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_gs(const struct elk_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *prev_stage)
{
elk_compute_vue_map(compiler->devinfo,
&gs_stage->prog_data.gs.base.vue_map,
gs_stage->nir->info.outputs_written,
gs_stage->nir->info.separate_shader, 1);
gs_stage->num_stats = 1;
struct elk_compile_gs_params params = {
.base = {
.nir = gs_stage->nir,
.stats = gs_stage->stats,
.log_data = device,
.mem_ctx = mem_ctx,
},
.key = &gs_stage->key.gs,
.prog_data = &gs_stage->prog_data.gs,
};
gs_stage->code = elk_compile_gs(compiler, &params);
}
static void
anv_pipeline_link_fs(const struct elk_compiler *compiler,
struct anv_pipeline_stage *stage,
const struct vk_render_pass_state *rp)
{
/* Initially the valid outputs value is set to all possible render targets
* valid (see populate_wm_prog_key()), before we look at the shader
* variables. Here we look at the output variables of the shader an compute
* a correct number of render target outputs.
*/
stage->key.wm.color_outputs_valid = 0;
nir_foreach_shader_out_variable_safe(var, stage->nir) {
if (var->data.location < FRAG_RESULT_DATA0)
continue;
const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
const unsigned array_len =
glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
assert(rt + array_len <= MAX_RTS);
stage->key.wm.color_outputs_valid |= BITFIELD_RANGE(rt, array_len);
}
stage->key.wm.color_outputs_valid &=
(1u << rp->color_attachment_count) - 1;
stage->key.wm.nr_color_regions =
util_last_bit(stage->key.wm.color_outputs_valid);
unsigned num_rt_bindings;
struct anv_pipeline_binding rt_bindings[MAX_RTS];
if (stage->key.wm.nr_color_regions > 0) {
assert(stage->key.wm.nr_color_regions <= MAX_RTS);
for (unsigned rt = 0; rt < stage->key.wm.nr_color_regions; rt++) {
if (stage->key.wm.color_outputs_valid & BITFIELD_BIT(rt)) {
rt_bindings[rt] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = rt,
};
} else {
/* Setup a null render target */
rt_bindings[rt] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = UINT32_MAX,
};
}
}
num_rt_bindings = stage->key.wm.nr_color_regions;
} else {
/* Setup a null render target */
rt_bindings[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = UINT32_MAX,
};
num_rt_bindings = 1;
}
assert(num_rt_bindings <= MAX_RTS);
assert(stage->bind_map.surface_count == 0);
typed_memcpy(stage->bind_map.surface_to_descriptor,
rt_bindings, num_rt_bindings);
stage->bind_map.surface_count += num_rt_bindings;
}
static void
anv_pipeline_compile_fs(const struct elk_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *fs_stage,
struct anv_pipeline_stage *prev_stage)
{
/* TODO: we could set this to 0 based on the information in nir_shader, but
* we need this before we call spirv_to_nir.
*/
assert(prev_stage);
struct elk_compile_fs_params params = {
.base = {
.nir = fs_stage->nir,
.stats = fs_stage->stats,
.log_data = device,
.mem_ctx = mem_ctx,
},
.key = &fs_stage->key.wm,
.prog_data = &fs_stage->prog_data.wm,
.allow_spilling = true,
};
fs_stage->key.wm.input_slots_valid =
prev_stage->prog_data.vue.vue_map.slots_valid;
fs_stage->code = elk_compile_fs(compiler, &params);
fs_stage->num_stats = (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
(uint32_t)fs_stage->prog_data.wm.dispatch_16 +
(uint32_t)fs_stage->prog_data.wm.dispatch_32;
}
static void
anv_pipeline_add_executable(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage,
struct elk_compile_stats *stats,
uint32_t code_offset)
{
char *nir = NULL;
if (stage->nir &&
(pipeline->flags &
VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
nir = nir_shader_as_str(stage->nir, pipeline->mem_ctx);
}
char *disasm = NULL;
if (stage->code &&
(pipeline->flags &
VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
char *stream_data = NULL;
size_t stream_size = 0;
FILE *stream = open_memstream(&stream_data, &stream_size);
uint32_t push_size = 0;
for (unsigned i = 0; i < 4; i++)
push_size += stage->bind_map.push_ranges[i].length;
if (push_size > 0) {
fprintf(stream, "Push constant ranges:\n");
for (unsigned i = 0; i < 4; i++) {
if (stage->bind_map.push_ranges[i].length == 0)
continue;
fprintf(stream, " RANGE%d (%dB): ", i,
stage->bind_map.push_ranges[i].length * 32);
switch (stage->bind_map.push_ranges[i].set) {
case ANV_DESCRIPTOR_SET_NULL:
fprintf(stream, "NULL");
break;
case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
fprintf(stream, "Vulkan push constants and API params");
break;
case ANV_DESCRIPTOR_SET_DESCRIPTORS:
fprintf(stream, "Descriptor buffer for set %d (start=%dB)",
stage->bind_map.push_ranges[i].index,
stage->bind_map.push_ranges[i].start * 32);
break;
case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS:
unreachable("gl_NumWorkgroups is never pushed");
case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS:
fprintf(stream, "Inline shader constant data (start=%dB)",
stage->bind_map.push_ranges[i].start * 32);
break;
case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
unreachable("Color attachments can't be pushed");
default:
fprintf(stream, "UBO (set=%d binding=%d start=%dB)",
stage->bind_map.push_ranges[i].set,
stage->bind_map.push_ranges[i].index,
stage->bind_map.push_ranges[i].start * 32);
break;
}
fprintf(stream, "\n");
}
fprintf(stream, "\n");
}
/* Creating this is far cheaper than it looks. It's perfectly fine to
* do it for every binary.
*/
elk_disassemble_with_errors(&pipeline->device->physical->compiler->isa,
stage->code, code_offset, stream);
fclose(stream);
/* Copy it to a ralloc'd thing */
disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
memcpy(disasm, stream_data, stream_size);
disasm[stream_size] = 0;
free(stream_data);
}
const struct anv_pipeline_executable exe = {
.stage = stage->stage,
.stats = *stats,
.nir = nir,
.disasm = disasm,
};
util_dynarray_append(&pipeline->executables,
struct anv_pipeline_executable, exe);
}
static void
anv_pipeline_add_executables(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage,
struct anv_shader_bin *bin)
{
if (stage->stage == MESA_SHADER_FRAGMENT) {
/* We pull the prog data and stats out of the anv_shader_bin because
* the anv_pipeline_stage may not be fully populated if we successfully
* looked up the shader in a cache.
*/
const struct elk_wm_prog_data *wm_prog_data =
(const struct elk_wm_prog_data *)bin->prog_data;
struct elk_compile_stats *stats = bin->stats;
if (wm_prog_data->dispatch_8) {
anv_pipeline_add_executable(pipeline, stage, stats++, 0);
}
if (wm_prog_data->dispatch_16) {
anv_pipeline_add_executable(pipeline, stage, stats++,
wm_prog_data->prog_offset_16);
}
if (wm_prog_data->dispatch_32) {
anv_pipeline_add_executable(pipeline, stage, stats++,
wm_prog_data->prog_offset_32);
}
} else {
anv_pipeline_add_executable(pipeline, stage, bin->stats, 0);
}
}
static enum elk_robustness_flags
anv_device_get_robust_flags(const struct anv_device *device)
{
return device->robust_buffer_access ?
(ELK_ROBUSTNESS_UBO | ELK_ROBUSTNESS_SSBO) : 0;
}
static void
anv_graphics_pipeline_init_keys(struct anv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state,
struct anv_pipeline_stage *stages)
{
for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (!stages[s].info)
continue;
int64_t stage_start = os_time_get_nano();
vk_pipeline_hash_shader_stage(stages[s].pipeline_flags, stages[s].info,
NULL, stages[s].shader_sha1);
const struct anv_device *device = pipeline->base.device;
enum elk_robustness_flags robust_flags = anv_device_get_robust_flags(device);
switch (stages[s].stage) {
case MESA_SHADER_VERTEX:
populate_vs_prog_key(device,
robust_flags,
&stages[s].key.vs);
break;
case MESA_SHADER_TESS_CTRL:
populate_tcs_prog_key(device,
robust_flags,
state->ts->patch_control_points,
&stages[s].key.tcs);
break;
case MESA_SHADER_TESS_EVAL:
populate_tes_prog_key(device,
robust_flags,
&stages[s].key.tes);
break;
case MESA_SHADER_GEOMETRY:
populate_gs_prog_key(device,
robust_flags,
&stages[s].key.gs);
break;
case MESA_SHADER_FRAGMENT: {
populate_wm_prog_key(pipeline,
robust_flags,
state->dynamic, state->ms, state->rp,
&stages[s].key.wm);
break;
}
default:
unreachable("Invalid graphics shader stage");
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
}
assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
}
static bool
anv_graphics_pipeline_load_cached_shaders(struct anv_graphics_pipeline *pipeline,
struct vk_pipeline_cache *cache,
struct anv_pipeline_stage *stages,
VkPipelineCreationFeedback *pipeline_feedback)
{
unsigned found = 0;
unsigned cache_hits = 0;
for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (!stages[s].info)
continue;
int64_t stage_start = os_time_get_nano();
bool cache_hit;
struct anv_shader_bin *bin =
anv_device_search_for_kernel(pipeline->base.device, cache,
&stages[s].cache_key,
sizeof(stages[s].cache_key), &cache_hit);
if (bin) {
found++;
pipeline->shaders[s] = bin;
}
if (cache_hit) {
cache_hits++;
stages[s].feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
if (found == __builtin_popcount(pipeline->active_stages)) {
if (cache_hits == found) {
pipeline_feedback->flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
/* We found all our shaders in the cache. We're done. */
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (!stages[s].info)
continue;
anv_pipeline_add_executables(&pipeline->base, &stages[s],
pipeline->shaders[s]);
}
return true;
} else if (found > 0) {
/* We found some but not all of our shaders. This shouldn't happen most
* of the time but it can if we have a partially populated pipeline
* cache.
*/
assert(found < __builtin_popcount(pipeline->active_stages));
vk_perf(VK_LOG_OBJS(cache ? &cache->base :
&pipeline->base.device->vk.base),
"Found a partial pipeline in the cache. This is "
"most likely caused by an incomplete pipeline cache "
"import or export");
/* We're going to have to recompile anyway, so just throw away our
* references to the shaders in the cache. We'll get them out of the
* cache again as part of the compilation process.
*/
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
stages[s].feedback.flags = 0;
if (pipeline->shaders[s]) {
anv_shader_bin_unref(pipeline->base.device, pipeline->shaders[s]);
pipeline->shaders[s] = NULL;
}
}
}
return false;
}
static const gl_shader_stage graphics_shader_order[] = {
MESA_SHADER_VERTEX,
MESA_SHADER_TESS_CTRL,
MESA_SHADER_TESS_EVAL,
MESA_SHADER_GEOMETRY,
MESA_SHADER_FRAGMENT,
};
static VkResult
anv_graphics_pipeline_load_nir(struct anv_graphics_pipeline *pipeline,
struct vk_pipeline_cache *cache,
struct anv_pipeline_stage *stages,
void *pipeline_ctx)
{
for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].info)
continue;
int64_t stage_start = os_time_get_nano();
assert(stages[s].stage == s);
assert(pipeline->shaders[s] == NULL);
stages[s].bind_map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = stages[s].surface_to_descriptor,
.sampler_to_descriptor = stages[s].sampler_to_descriptor
};
stages[s].nir = anv_pipeline_stage_get_nir(&pipeline->base, cache,
pipeline_ctx,
&stages[s]);
if (stages[s].nir == NULL) {
return vk_error(pipeline, VK_ERROR_UNKNOWN);
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
return VK_SUCCESS;
}
static VkResult
anv_graphics_pipeline_compile(struct anv_graphics_pipeline *pipeline,
struct vk_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
const struct vk_graphics_pipeline_state *state)
{
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
VkResult result;
const VkPipelineCreateFlags2KHR pipeline_flags =
vk_graphics_pipeline_create_flags(info);
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
int64_t pipeline_start = os_time_get_nano();
const struct elk_compiler *compiler = pipeline->base.device->physical->compiler;
struct anv_pipeline_stage stages[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
for (uint32_t i = 0; i < info->stageCount; i++) {
gl_shader_stage stage = vk_to_mesa_shader_stage(info->pStages[i].stage);
stages[stage].stage = stage;
stages[stage].pipeline_flags = pipeline_flags;
stages[stage].info = &info->pStages[i];
}
anv_graphics_pipeline_init_keys(pipeline, state, stages);
unsigned char sha1[20];
anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
for (unsigned s = 0; s < ARRAY_SIZE(stages); s++) {
if (!stages[s].info)
continue;
stages[s].cache_key.stage = s;
memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
}
const bool skip_cache_lookup =
(pipeline->base.flags & VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
if (!skip_cache_lookup) {
bool found_all_shaders =
anv_graphics_pipeline_load_cached_shaders(pipeline, cache, stages,
&pipeline_feedback);
if (found_all_shaders)
goto done;
}
if (pipeline->base.flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR)
return VK_PIPELINE_COMPILE_REQUIRED;
void *pipeline_ctx = ralloc_context(NULL);
result = anv_graphics_pipeline_load_nir(pipeline, cache, stages,
pipeline_ctx);
if (result != VK_SUCCESS)
goto fail;
/* Walk backwards to link */
struct anv_pipeline_stage *next_stage = NULL;
for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].info)
continue;
switch (s) {
case MESA_SHADER_VERTEX:
anv_pipeline_link_vs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_TESS_CTRL:
anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_TESS_EVAL:
anv_pipeline_link_tes(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_GEOMETRY:
anv_pipeline_link_gs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_FRAGMENT:
anv_pipeline_link_fs(compiler, &stages[s], state->rp);
break;
default:
unreachable("Invalid graphics shader stage");
}
next_stage = &stages[s];
}
struct anv_pipeline_stage *prev_stage = NULL;
for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].info)
continue;
int64_t stage_start = os_time_get_nano();
void *stage_ctx = ralloc_context(NULL);
anv_pipeline_lower_nir(&pipeline->base, stage_ctx, &stages[s], layout);
if (prev_stage && compiler->nir_options[s]->unify_interfaces) {
prev_stage->nir->info.outputs_written |= stages[s].nir->info.inputs_read &
~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
stages[s].nir->info.inputs_read |= prev_stage->nir->info.outputs_written &
~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
prev_stage->nir->info.patch_outputs_written |= stages[s].nir->info.patch_inputs_read;
stages[s].nir->info.patch_inputs_read |= prev_stage->nir->info.patch_outputs_written;
}
ralloc_free(stage_ctx);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
prev_stage = &stages[s];
}
prev_stage = NULL;
for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].info)
continue;
int64_t stage_start = os_time_get_nano();
void *stage_ctx = ralloc_context(NULL);
switch (s) {
case MESA_SHADER_VERTEX:
anv_pipeline_compile_vs(compiler, stage_ctx, pipeline,
&stages[s]);
break;
case MESA_SHADER_TESS_CTRL:
anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
case MESA_SHADER_TESS_EVAL:
anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
case MESA_SHADER_GEOMETRY:
anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
case MESA_SHADER_FRAGMENT:
anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
default:
unreachable("Invalid graphics shader stage");
}
if (stages[s].code == NULL) {
ralloc_free(stage_ctx);
result = vk_error(pipeline->base.device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
anv_nir_validate_push_layout(&stages[s].prog_data.base,
&stages[s].bind_map);
struct anv_shader_bin *bin =
anv_device_upload_kernel(pipeline->base.device, cache, s,
&stages[s].cache_key,
sizeof(stages[s].cache_key),
stages[s].code,
stages[s].prog_data.base.program_size,
&stages[s].prog_data.base,
elk_prog_data_size(s),
stages[s].stats, stages[s].num_stats,
stages[s].nir->xfb_info,
&stages[s].bind_map);
if (!bin) {
ralloc_free(stage_ctx);
result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
anv_pipeline_add_executables(&pipeline->base, &stages[s], bin);
pipeline->shaders[s] = bin;
ralloc_free(stage_ctx);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
prev_stage = &stages[s];
}
ralloc_free(pipeline_ctx);
done:
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfo *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
uint32_t stage_count = create_feedback->pipelineStageCreationFeedbackCount;
assert(stage_count == 0 || info->stageCount == stage_count);
for (uint32_t i = 0; i < stage_count; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
}
}
return VK_SUCCESS;
fail:
ralloc_free(pipeline_ctx);
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(pipeline->base.device, pipeline->shaders[s]);
}
return result;
}
static VkResult
anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
struct vk_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info)
{
const VkPipelineShaderStageCreateInfo *sinfo = &info->stage;
assert(sinfo->stage == VK_SHADER_STAGE_COMPUTE_BIT);
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
int64_t pipeline_start = os_time_get_nano();
struct anv_device *device = pipeline->base.device;
const struct elk_compiler *compiler = device->physical->compiler;
struct anv_pipeline_stage stage = {
.stage = MESA_SHADER_COMPUTE,
.pipeline_flags = vk_compute_pipeline_create_flags(info),
.info = &info->stage,
.cache_key = {
.stage = MESA_SHADER_COMPUTE,
},
.feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
},
};
vk_pipeline_hash_shader_stage(stage.pipeline_flags, &info->stage,
NULL, stage.shader_sha1);
struct anv_shader_bin *bin = NULL;
populate_cs_prog_key(device,
anv_device_get_robust_flags(device),
&stage.key.cs);
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
const bool skip_cache_lookup =
(pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
bool cache_hit = false;
if (!skip_cache_lookup) {
bin = anv_device_search_for_kernel(device, cache,
&stage.cache_key,
sizeof(stage.cache_key),
&cache_hit);
}
if (bin == NULL &&
(info->flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT))
return VK_PIPELINE_COMPILE_REQUIRED;
void *mem_ctx = ralloc_context(NULL);
if (bin == NULL) {
int64_t stage_start = os_time_get_nano();
stage.bind_map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = stage.surface_to_descriptor,
.sampler_to_descriptor = stage.sampler_to_descriptor
};
/* Set up a binding for the gl_NumWorkGroups */
stage.bind_map.surface_count = 1;
stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
};
stage.nir = anv_pipeline_stage_get_nir(&pipeline->base, cache, mem_ctx, &stage);
if (stage.nir == NULL) {
ralloc_free(mem_ctx);
return vk_error(pipeline, VK_ERROR_UNKNOWN);
}
anv_pipeline_lower_nir(&pipeline->base, mem_ctx, &stage, layout);
unsigned local_size = stage.nir->info.workgroup_size[0] *
stage.nir->info.workgroup_size[1] *
stage.nir->info.workgroup_size[2];
/* Games don't always request full subgroups when they should,
* which can cause bugs, as they may expect bigger size of the
* subgroup than we choose for the execution.
*/
if (device->physical->instance->assume_full_subgroups &&
stage.nir->info.uses_wide_subgroup_intrinsics &&
stage.nir->info.subgroup_size == SUBGROUP_SIZE_API_CONSTANT &&
local_size &&
local_size % ELK_SUBGROUP_SIZE == 0)
stage.nir->info.subgroup_size = SUBGROUP_SIZE_FULL_SUBGROUPS;
/* If the client requests that we dispatch full subgroups but doesn't
* allow us to pick a subgroup size, we have to smash it to the API
* value of 32. Performance will likely be terrible in this case but
* there's nothing we can do about that. The client should have chosen
* a size.
*/
if (stage.nir->info.subgroup_size == SUBGROUP_SIZE_FULL_SUBGROUPS)
stage.nir->info.subgroup_size =
device->physical->instance->assume_full_subgroups != 0 ?
device->physical->instance->assume_full_subgroups : ELK_SUBGROUP_SIZE;
stage.num_stats = 1;
struct elk_compile_cs_params params = {
.base = {
.nir = stage.nir,
.stats = stage.stats,
.log_data = device,
.mem_ctx = mem_ctx,
},
.key = &stage.key.cs,
.prog_data = &stage.prog_data.cs,
};
stage.code = elk_compile_cs(compiler, &params);
if (stage.code == NULL) {
ralloc_free(mem_ctx);
return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
}
anv_nir_validate_push_layout(&stage.prog_data.base, &stage.bind_map);
if (!stage.prog_data.cs.uses_num_work_groups) {
assert(stage.bind_map.surface_to_descriptor[0].set ==
ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS);
stage.bind_map.surface_to_descriptor[0].set = ANV_DESCRIPTOR_SET_NULL;
}
const unsigned code_size = stage.prog_data.base.program_size;
bin = anv_device_upload_kernel(device, cache,
MESA_SHADER_COMPUTE,
&stage.cache_key, sizeof(stage.cache_key),
stage.code, code_size,
&stage.prog_data.base,
sizeof(stage.prog_data.cs),
stage.stats, stage.num_stats,
NULL, &stage.bind_map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
}
stage.feedback.duration = os_time_get_nano() - stage_start;
}
anv_pipeline_add_executables(&pipeline->base, &stage, bin);
ralloc_free(mem_ctx);
if (cache_hit) {
stage.feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
pipeline_feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfo *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
if (create_feedback->pipelineStageCreationFeedbackCount) {
assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
}
}
pipeline->cs = bin;
return VK_SUCCESS;
}
static VkPipelineCreateFlags2KHR
get_pipeline_flags(VkPipelineCreateFlags flags, const void *pNext)
{
const VkPipelineCreateFlags2CreateInfoKHR *flags2 =
vk_find_struct_const(pNext, PIPELINE_CREATE_FLAGS_2_CREATE_INFO_KHR);
if (flags2)
return flags2->flags;
return (VkPipelineCreateFlags2KHR)flags;
}
static VkResult
anv_compute_pipeline_create(struct anv_device *device,
struct vk_pipeline_cache *cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
struct anv_compute_pipeline *pipeline;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
result = anv_pipeline_init(&pipeline->base, device,
ANV_PIPELINE_COMPUTE,
get_pipeline_flags(pCreateInfo->flags, pCreateInfo->pNext),
pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
pipeline->batch_data, sizeof(pipeline->batch_data));
result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo);
if (result != VK_SUCCESS) {
anv_pipeline_finish(&pipeline->base, device, pAllocator);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
anv_genX(device->info, compute_pipeline_emit)(pipeline);
*pPipeline = anv_pipeline_to_handle(&pipeline->base);
return pipeline->base.batch.status;
}
VkResult anv_CreateComputePipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
VkResult result = VK_SUCCESS;
unsigned i;
for (i = 0; i < count; i++) {
const VkPipelineCreateFlags2KHR flags =
get_pipeline_flags(pCreateInfos[i].flags, pCreateInfos[i].pNext);
VkResult res = anv_compute_pipeline_create(device, pipeline_cache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (res == VK_SUCCESS)
continue;
/* Bail out on the first error != VK_PIPELINE_COMPILE_REQUIRED as it
* is not obvious what error should be report upon 2 different failures.
* */
result = res;
if (res != VK_PIPELINE_COMPILE_REQUIRED)
break;
pPipelines[i] = VK_NULL_HANDLE;
if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
break;
}
for (; i < count; i++)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
/**
* Calculate the desired L3 partitioning based on the current state of the
* pipeline. For now this simply returns the conservative defaults calculated
* by get_default_l3_weights(), but we could probably do better by gathering
* more statistics from the pipeline state (e.g. guess of expected URB usage
* and bound surfaces), or by using feed-back from performance counters.
*/
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
{
const struct intel_device_info *devinfo = pipeline->device->info;
const struct intel_l3_weights w =
intel_get_default_l3_weights(devinfo, true, needs_slm);
pipeline->l3_config = intel_get_l3_config(devinfo, w);
}
static VkResult
anv_graphics_pipeline_init(struct anv_graphics_pipeline *pipeline,
struct anv_device *device,
struct vk_pipeline_cache *cache,
const struct VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct vk_graphics_pipeline_state *state,
const VkAllocationCallbacks *alloc)
{
VkResult result;
result = anv_pipeline_init(&pipeline->base, device,
ANV_PIPELINE_GRAPHICS, pCreateInfo->flags,
alloc);
if (result != VK_SUCCESS)
return result;
anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
pipeline->batch_data, sizeof(pipeline->batch_data));
pipeline->active_stages = 0;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++)
pipeline->active_stages |= pCreateInfo->pStages[i].stage;
if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
pipeline->dynamic_state.ms.sample_locations = &pipeline->sample_locations;
vk_dynamic_graphics_state_fill(&pipeline->dynamic_state, state);
pipeline->depth_clamp_enable = state->rs->depth_clamp_enable;
pipeline->depth_clip_enable =
vk_rasterization_state_depth_clip_enable(state->rs);
pipeline->view_mask = state->rp->view_mask;
result = anv_graphics_pipeline_compile(pipeline, cache, pCreateInfo, state);
if (result != VK_SUCCESS) {
anv_pipeline_finish(&pipeline->base, device, alloc);
return result;
}
anv_pipeline_setup_l3_config(&pipeline->base, false);
const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
u_foreach_bit(a, state->vi->attributes_valid) {
if (inputs_read & BITFIELD64_BIT(VERT_ATTRIB_GENERIC0 + a))
pipeline->vb_used |= BITFIELD64_BIT(state->vi->attributes[a].binding);
}
u_foreach_bit(b, state->vi->bindings_valid) {
pipeline->vb[b].stride = state->vi->bindings[b].stride;
pipeline->vb[b].instanced = state->vi->bindings[b].input_rate ==
VK_VERTEX_INPUT_RATE_INSTANCE;
pipeline->vb[b].instance_divisor = state->vi->bindings[b].divisor;
}
pipeline->instance_multiplier = 1;
if (pipeline->view_mask)
pipeline->instance_multiplier = util_bitcount(pipeline->view_mask);
pipeline->negative_one_to_one =
state->vp != NULL && state->vp->depth_clip_negative_one_to_one;
/* Store line mode, polygon mode and rasterization samples, these are used
* for dynamic primitive topology.
*/
pipeline->polygon_mode = state->rs->polygon_mode;
pipeline->rasterization_samples =
state->ms != NULL ? state->ms->rasterization_samples : 1;
pipeline->line_mode = state->rs->line.mode;
if (pipeline->line_mode == VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT) {
if (pipeline->rasterization_samples > 1) {
pipeline->line_mode = VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT;
} else {
pipeline->line_mode = VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT;
}
}
pipeline->patch_control_points =
state->ts != NULL ? state->ts->patch_control_points : 0;
/* Store the color write masks, to be merged with color write enable if
* dynamic.
*/
if (state->cb != NULL) {
for (unsigned i = 0; i < state->cb->attachment_count; i++)
pipeline->color_comp_writes[i] = state->cb->attachments[i].write_mask;
}
return VK_SUCCESS;
}
static VkResult
anv_graphics_pipeline_create(struct anv_device *device,
struct vk_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
struct anv_graphics_pipeline *pipeline;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
struct vk_graphics_pipeline_all_state all;
struct vk_graphics_pipeline_state state = { };
result = vk_graphics_pipeline_state_fill(&device->vk, &state, pCreateInfo,
NULL /* driver_rp */,
0 /* driver_rp_flags */,
&all, NULL, 0, NULL);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
result = anv_graphics_pipeline_init(pipeline, device, cache,
pCreateInfo, &state, pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
anv_genX(device->info, graphics_pipeline_emit)(pipeline, &state);
*pPipeline = anv_pipeline_to_handle(&pipeline->base);
return pipeline->base.batch.status;
}
VkResult anv_CreateGraphicsPipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
VkResult result = VK_SUCCESS;
unsigned i;
for (i = 0; i < count; i++) {
const VkPipelineCreateFlags2KHR flags =
get_pipeline_flags(pCreateInfos[i].flags, pCreateInfos[i].pNext);
VkResult res = anv_graphics_pipeline_create(device,
pipeline_cache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (res == VK_SUCCESS)
continue;
/* Bail out on the first error != VK_PIPELINE_COMPILE_REQUIRED as it
* is not obvious what error should be report upon 2 different failures.
* */
result = res;
if (res != VK_PIPELINE_COMPILE_REQUIRED)
break;
pPipelines[i] = VK_NULL_HANDLE;
if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
break;
}
for (; i < count; i++)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
VkResult anv_GetPipelineExecutablePropertiesKHR(
VkDevice device,
const VkPipelineInfoKHR* pPipelineInfo,
uint32_t* pExecutableCount,
VkPipelineExecutablePropertiesKHR* pProperties)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutablePropertiesKHR, out,
pProperties, pExecutableCount);
util_dynarray_foreach (&pipeline->executables, struct anv_pipeline_executable, exe) {
vk_outarray_append_typed(VkPipelineExecutablePropertiesKHR, &out, props) {
gl_shader_stage stage = exe->stage;
props->stages = mesa_to_vk_shader_stage(stage);
unsigned simd_width = exe->stats.dispatch_width;
if (stage == MESA_SHADER_FRAGMENT) {
VK_PRINT_STR(props->name, "%s%d %s",
simd_width ? "SIMD" : "vec",
simd_width ? simd_width : 4,
_mesa_shader_stage_to_string(stage));
} else {
VK_COPY_STR(props->name, _mesa_shader_stage_to_string(stage));
}
VK_PRINT_STR(props->description, "%s%d %s shader",
simd_width ? "SIMD" : "vec",
simd_width ? simd_width : 4,
_mesa_shader_stage_to_string(stage));
/* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
* wants a subgroup size of 1.
*/
props->subgroupSize = MAX2(simd_width, 1);
}
}
return vk_outarray_status(&out);
}
static const struct anv_pipeline_executable *
anv_pipeline_get_executable(struct anv_pipeline *pipeline, uint32_t index)
{
assert(index < util_dynarray_num_elements(&pipeline->executables,
struct anv_pipeline_executable));
return util_dynarray_element(
&pipeline->executables, struct anv_pipeline_executable, index);
}
VkResult anv_GetPipelineExecutableStatisticsKHR(
VkDevice device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pStatisticCount,
VkPipelineExecutableStatisticKHR* pStatistics)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableStatisticKHR, out,
pStatistics, pStatisticCount);
const struct anv_pipeline_executable *exe =
anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
const struct elk_stage_prog_data *prog_data;
switch (pipeline->type) {
case ANV_PIPELINE_GRAPHICS: {
prog_data = anv_pipeline_to_graphics(pipeline)->shaders[exe->stage]->prog_data;
break;
}
case ANV_PIPELINE_COMPUTE: {
prog_data = anv_pipeline_to_compute(pipeline)->cs->prog_data;
break;
}
default:
unreachable("invalid pipeline type");
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Instruction Count");
VK_COPY_STR(stat->description,
"Number of GEN instructions in the final generated "
"shader executable.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.instructions;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "SEND Count");
VK_COPY_STR(stat->description,
"Number of instructions in the final generated shader "
"executable which access external units such as the "
"constant cache or the sampler.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.sends;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Loop Count");
VK_COPY_STR(stat->description,
"Number of loops (not unrolled) in the final generated "
"shader executable.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.loops;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Cycle Count");
VK_COPY_STR(stat->description,
"Estimate of the number of EU cycles required to execute "
"the final generated executable. This is an estimate only "
"and may vary greatly from actual run-time performance.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.cycles;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Spill Count");
VK_COPY_STR(stat->description,
"Number of scratch spill operations. This gives a rough "
"estimate of the cost incurred due to spilling temporary "
"values to memory. If this is non-zero, you may want to "
"adjust your shader to reduce register pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.spills;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Fill Count");
VK_COPY_STR(stat->description,
"Number of scratch fill operations. This gives a rough "
"estimate of the cost incurred due to spilling temporary "
"values to memory. If this is non-zero, you may want to "
"adjust your shader to reduce register pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.fills;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Scratch Memory Size");
VK_COPY_STR(stat->description,
"Number of bytes of scratch memory required by the "
"generated shader executable. If this is non-zero, you "
"may want to adjust your shader to reduce register "
"pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = prog_data->total_scratch;
}
if (gl_shader_stage_uses_workgroup(exe->stage)) {
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Workgroup Memory Size");
VK_COPY_STR(stat->description,
"Number of bytes of workgroup shared memory used by this "
"shader including any padding.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = prog_data->total_shared;
}
}
return vk_outarray_status(&out);
}
static bool
write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
const char *data)
{
ir->isText = VK_TRUE;
size_t data_len = strlen(data) + 1;
if (ir->pData == NULL) {
ir->dataSize = data_len;
return true;
}
strncpy(ir->pData, data, ir->dataSize);
if (ir->dataSize < data_len)
return false;
ir->dataSize = data_len;
return true;
}
VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
VkDevice device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pInternalRepresentationCount,
VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableInternalRepresentationKHR, out,
pInternalRepresentations, pInternalRepresentationCount);
bool incomplete_text = false;
const struct anv_pipeline_executable *exe =
anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
if (exe->nir) {
vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
VK_COPY_STR(ir->name, "Final NIR");
VK_COPY_STR(ir->description,
"Final NIR before going into the back-end compiler");
if (!write_ir_text(ir, exe->nir))
incomplete_text = true;
}
}
if (exe->disasm) {
vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
VK_COPY_STR(ir->name, "GEN Assembly");
VK_COPY_STR(ir->description,
"Final GEN assembly for the generated shader binary");
if (!write_ir_text(ir, exe->disasm))
incomplete_text = true;
}
}
return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
}