blob: 82e56079e40ce9a86a5d9b57c72037ca26e2f2dd [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "common/intel_compute_slm.h"
#include "common/intel_l3_config.h"
#include "common/intel_sample_positions.h"
#include "compiler/brw_disasm.h"
#include "anv_private.h"
#include "compiler/brw_nir.h"
#include "compiler/brw_nir_rt.h"
#include "compiler/intel_nir.h"
#include "anv_nir.h"
#include "nir/nir_xfb_info.h"
#include "spirv/nir_spirv.h"
#include "vk_nir_convert_ycbcr.h"
#include "vk_nir.h"
#include "vk_pipeline.h"
#include "vk_render_pass.h"
#include "vk_util.h"
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
* we can't do that yet because we don't have the ability to copy nir.
*/
static nir_shader *
anv_shader_stage_to_nir(struct anv_device *device,
VkPipelineCreateFlags2KHR pipeline_flags,
const VkPipelineShaderStageCreateInfo *stage_info,
enum brw_robustness_flags robust_flags,
void *mem_ctx)
{
const struct anv_physical_device *pdevice = device->physical;
const struct brw_compiler *compiler = pdevice->compiler;
gl_shader_stage stage = vk_to_mesa_shader_stage(stage_info->stage);
const nir_shader_compiler_options *nir_options =
compiler->nir_options[stage];
const struct spirv_to_nir_options spirv_options = {
.ubo_addr_format = anv_nir_ubo_addr_format(pdevice, robust_flags),
.ssbo_addr_format = anv_nir_ssbo_addr_format(pdevice, robust_flags),
.phys_ssbo_addr_format = nir_address_format_64bit_global,
.push_const_addr_format = nir_address_format_logical,
/* TODO: Consider changing this to an address format that has the NULL
* pointer equals to 0. That might be a better format to play nice
* with certain code / code generators.
*/
.shared_addr_format = nir_address_format_32bit_offset,
.min_ubo_alignment = ANV_UBO_ALIGNMENT,
.min_ssbo_alignment = ANV_SSBO_ALIGNMENT,
.workarounds = {
.lower_terminate_to_discard = pdevice->instance->lower_terminate_to_discard,
},
};
nir_shader *nir;
VkResult result =
vk_pipeline_shader_stage_to_nir(&device->vk, pipeline_flags, stage_info,
&spirv_options, nir_options,
mem_ctx, &nir);
if (result != VK_SUCCESS)
return NULL;
if (INTEL_DEBUG(intel_debug_flag_for_shader_stage(stage))) {
/* src_hash is unknown at the point */
if (!intel_shader_dump_filter) {
fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
gl_shader_stage_name(stage));
nir_print_shader(nir, stderr);
}
}
NIR_PASS(_, nir, nir_lower_io_vars_to_temporaries,
nir_shader_get_entrypoint(nir), true, false);
return nir;
}
static VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
struct anv_device *device,
enum anv_pipeline_type type,
VkPipelineCreateFlags2KHR flags,
const VkAllocationCallbacks *pAllocator)
{
VkResult result;
memset(pipeline, 0, sizeof(*pipeline));
vk_object_base_init(&device->vk, &pipeline->base,
VK_OBJECT_TYPE_PIPELINE);
pipeline->device = device;
/* It's the job of the child class to provide actual backing storage for
* the batch by setting batch.start, batch.next, and batch.end.
*/
pipeline->batch.alloc = pAllocator ? pAllocator : &device->vk.alloc;
pipeline->batch.relocs = &pipeline->batch_relocs;
pipeline->batch.status = VK_SUCCESS;
const bool uses_relocs = device->physical->uses_relocs;
result = anv_reloc_list_init(&pipeline->batch_relocs,
pipeline->batch.alloc, uses_relocs);
if (result != VK_SUCCESS)
return result;
pipeline->mem_ctx = ralloc_context(NULL);
pipeline->type = type;
pipeline->flags = flags;
util_dynarray_init(&pipeline->executables, pipeline->mem_ctx);
anv_pipeline_sets_layout_init(&pipeline->layout, device,
false /* independent_sets */);
return VK_SUCCESS;
}
static void
anv_pipeline_init_layout(struct anv_pipeline *pipeline,
struct anv_pipeline_layout *pipeline_layout)
{
if (pipeline_layout) {
struct anv_pipeline_sets_layout *layout = &pipeline_layout->sets_layout;
for (uint32_t s = 0; s < layout->num_sets; s++) {
if (layout->set[s].layout == NULL)
continue;
anv_pipeline_sets_layout_add(&pipeline->layout, s,
layout->set[s].layout);
}
}
anv_pipeline_sets_layout_hash(&pipeline->layout);
assert(!pipeline_layout ||
!memcmp(pipeline->layout.sha1,
pipeline_layout->sets_layout.sha1,
sizeof(pipeline_layout->sets_layout.sha1)));
}
static void
anv_pipeline_finish(struct anv_pipeline *pipeline,
struct anv_device *device)
{
anv_pipeline_sets_layout_fini(&pipeline->layout);
anv_reloc_list_finish(&pipeline->batch_relocs);
ralloc_free(pipeline->mem_ctx);
vk_object_base_finish(&pipeline->base);
}
void anv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
if (!pipeline)
return;
ANV_RMV(resource_destroy, device, pipeline);
switch (pipeline->type) {
case ANV_PIPELINE_GRAPHICS:
case ANV_PIPELINE_GRAPHICS_LIB: {
struct anv_graphics_base_pipeline *gfx_pipeline =
anv_pipeline_to_graphics_base(pipeline);
for (unsigned s = 0; s < ARRAY_SIZE(gfx_pipeline->shaders); s++) {
if (gfx_pipeline->shaders[s])
anv_shader_bin_unref(device, gfx_pipeline->shaders[s]);
}
break;
}
case ANV_PIPELINE_COMPUTE: {
struct anv_compute_pipeline *compute_pipeline =
anv_pipeline_to_compute(pipeline);
if (compute_pipeline->cs)
anv_shader_bin_unref(device, compute_pipeline->cs);
break;
}
case ANV_PIPELINE_RAY_TRACING: {
struct anv_ray_tracing_pipeline *rt_pipeline =
anv_pipeline_to_ray_tracing(pipeline);
util_dynarray_foreach(&rt_pipeline->shaders,
struct anv_shader_bin *, shader) {
anv_shader_bin_unref(device, *shader);
}
break;
}
default:
unreachable("invalid pipeline type");
}
anv_pipeline_finish(pipeline, device);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
}
struct anv_pipeline_stage {
gl_shader_stage stage;
VkPipelineCreateFlags2KHR pipeline_flags;
struct vk_pipeline_robustness_state rstate;
/* VkComputePipelineCreateInfo, VkGraphicsPipelineCreateInfo or
* VkRayTracingPipelineCreateInfoKHR pNext field
*/
const void *pipeline_pNext;
const VkPipelineShaderStageCreateInfo *info;
unsigned char shader_sha1[20];
uint32_t source_hash;
union brw_any_prog_key key;
struct {
gl_shader_stage stage;
unsigned char sha1[20];
} cache_key;
nir_shader *nir;
struct {
nir_shader *nir;
struct anv_shader_bin *bin;
} imported;
struct anv_push_descriptor_info push_desc_info;
enum gl_subgroup_size subgroup_size_type;
enum brw_robustness_flags robust_flags;
struct anv_pipeline_bind_map bind_map;
bool uses_bt_for_push_descs;
union brw_any_prog_data prog_data;
uint32_t num_stats;
struct brw_compile_stats stats[3];
char *disasm[3];
VkPipelineCreationFeedback feedback;
uint32_t feedback_idx;
const unsigned *code;
struct anv_shader_bin *bin;
};
static void
anv_stage_allocate_bind_map_tables(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage,
void *mem_ctx)
{
struct anv_pipeline_binding *surface_bindings =
brw_shader_stage_requires_bindless_resources(stage->stage) ? NULL :
rzalloc_array(mem_ctx, struct anv_pipeline_binding, 256);
struct anv_pipeline_binding *sampler_bindings =
brw_shader_stage_requires_bindless_resources(stage->stage) ? NULL :
rzalloc_array(mem_ctx, struct anv_pipeline_binding, 256);
struct anv_pipeline_embedded_sampler_binding *embedded_sampler_bindings =
rzalloc_array(mem_ctx, struct anv_pipeline_embedded_sampler_binding,
anv_pipeline_sets_layout_embedded_sampler_count(
&pipeline->layout));
stage->bind_map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = surface_bindings,
.sampler_to_descriptor = sampler_bindings,
.embedded_sampler_to_binding = embedded_sampler_bindings,
};
}
static enum brw_robustness_flags
anv_get_robust_flags(const struct vk_pipeline_robustness_state *rstate)
{
return
((rstate->storage_buffers !=
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT) ?
BRW_ROBUSTNESS_SSBO : 0) |
((rstate->uniform_buffers !=
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT) ?
BRW_ROBUSTNESS_UBO : 0);
}
static void
populate_base_prog_key(struct anv_pipeline_stage *stage,
const struct anv_device *device,
const enum intel_vue_layout vue_layout)
{
stage->key.base.robust_flags = anv_get_robust_flags(&stage->rstate);
stage->key.base.vue_layout = vue_layout;
stage->key.base.limit_trig_input_range =
device->physical->instance->limit_trig_input_range;
}
static void
populate_vs_prog_key(struct anv_pipeline_stage *stage,
const struct anv_device *device,
const enum intel_vue_layout vue_layout)
{
memset(&stage->key, 0, sizeof(stage->key));
populate_base_prog_key(stage, device, vue_layout);
stage->key.vs.vf_component_packing =
device->physical->instance->vf_component_packing;
}
static void
populate_tcs_prog_key(struct anv_pipeline_stage *stage,
const struct anv_device *device,
unsigned input_vertices,
const enum intel_vue_layout vue_layout)
{
memset(&stage->key, 0, sizeof(stage->key));
populate_base_prog_key(stage, device, vue_layout);
stage->key.tcs.input_vertices = input_vertices;
}
static void
populate_tes_prog_key(struct anv_pipeline_stage *stage,
const struct anv_device *device,
const enum intel_vue_layout vue_layout)
{
memset(&stage->key, 0, sizeof(stage->key));
populate_base_prog_key(stage, device, vue_layout);
}
static void
populate_gs_prog_key(struct anv_pipeline_stage *stage,
const struct anv_device *device,
const enum intel_vue_layout vue_layout)
{
memset(&stage->key, 0, sizeof(stage->key));
populate_base_prog_key(stage, device, vue_layout);
}
static bool
pipeline_has_coarse_pixel(const BITSET_WORD *dynamic,
const struct vk_multisample_state *ms,
const struct vk_fragment_shading_rate_state *fsr)
{
/* The Vulkan 1.2.199 spec says:
*
* "If any of the following conditions are met, Cxy' must be set to
* {1,1}:
*
* * If Sample Shading is enabled.
* * [...]"
*
* And "sample shading" is defined as follows:
*
* "Sample shading is enabled for a graphics pipeline:
*
* * If the interface of the fragment shader entry point of the
* graphics pipeline includes an input variable decorated with
* SampleId or SamplePosition. In this case minSampleShadingFactor
* takes the value 1.0.
*
* * Else if the sampleShadingEnable member of the
* VkPipelineMultisampleStateCreateInfo structure specified when
* creating the graphics pipeline is set to VK_TRUE. In this case
* minSampleShadingFactor takes the value of
* VkPipelineMultisampleStateCreateInfo::minSampleShading.
*
* Otherwise, sample shading is considered disabled."
*
* The first bullet above is handled by the back-end compiler because those
* inputs both force per-sample dispatch. The second bullet is handled
* here. Note that this sample shading being enabled has nothing to do
* with minSampleShading.
*/
if (ms != NULL && ms->sample_shading_enable)
return false;
/* Not dynamic & pipeline has a 1x1 fragment shading rate with no
* possibility for element of the pipeline to change the value or fragment
* shading rate not specified at all.
*/
if (!BITSET_TEST(dynamic, MESA_VK_DYNAMIC_FSR) &&
(fsr == NULL ||
(fsr->fragment_size.width <= 1 &&
fsr->fragment_size.height <= 1 &&
fsr->combiner_ops[0] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR &&
fsr->combiner_ops[1] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR)))
return false;
return true;
}
static void
populate_task_prog_key(struct anv_pipeline_stage *stage,
const struct anv_device *device)
{
memset(&stage->key, 0, sizeof(stage->key));
populate_base_prog_key(stage, device, INTEL_VUE_LAYOUT_FIXED);
stage->key.base.uses_inline_push_addr = true;
}
static void
populate_mesh_prog_key(struct anv_pipeline_stage *stage,
const struct anv_device *device,
const enum intel_vue_layout vue_layout)
{
memset(&stage->key, 0, sizeof(stage->key));
populate_base_prog_key(stage, device, vue_layout);
stage->key.base.uses_inline_push_addr = true;
}
static uint32_t
rp_color_mask(const struct vk_render_pass_state *rp)
{
if (rp == NULL || !vk_render_pass_state_has_attachment_info(rp))
return ((1u << MAX_RTS) - 1);
uint32_t color_mask = 0;
for (uint32_t i = 0; i < rp->color_attachment_count; i++) {
if (rp->color_attachment_formats[i] != VK_FORMAT_UNDEFINED)
color_mask |= BITFIELD_BIT(i);
}
return color_mask;
}
static void
populate_wm_prog_key(struct anv_pipeline_stage *stage,
const struct anv_graphics_base_pipeline *pipeline,
const BITSET_WORD *dynamic,
const struct vk_multisample_state *ms,
const struct vk_rasterization_state *rs,
const struct vk_fragment_shading_rate_state *fsr,
const struct vk_render_pass_state *rp,
const enum intel_sometimes is_mesh,
const enum intel_vue_layout vue_layout)
{
const struct anv_device *device = pipeline->base.device;
memset(&stage->key, 0, sizeof(stage->key));
populate_base_prog_key(stage, device, vue_layout);
struct brw_wm_prog_key *key = &stage->key.wm;
/* We set this to 0 here and set to the actual value before we call
* brw_compile_fs.
*/
key->input_slots_valid = 0;
/* XXX Vulkan doesn't appear to specify */
key->clamp_fragment_color = false;
key->ignore_sample_mask_out = false;
assert(rp == NULL || rp->color_attachment_count <= MAX_RTS);
/* Consider all inputs as valid until look at the NIR variables. */
key->color_outputs_valid = rp_color_mask(rp);
key->nr_color_regions = util_last_bit(key->color_outputs_valid);
/* To reduce possible shader recompilations we would need to know if
* there is a SampleMask output variable to compute if we should emit
* code to workaround the issue that hardware disables alpha to coverage
* when there is SampleMask output.
*
* If the pipeline we compile the fragment shader in includes the output
* interface, then we can be sure whether alpha_coverage is enabled or not.
* If we don't have that output interface, then we have to compile the
* shader with some conditionals.
*/
if (ms != NULL) {
/* VUID-VkGraphicsPipelineCreateInfo-rasterizerDiscardEnable-00751:
*
* "If the pipeline is being created with fragment shader state,
* pMultisampleState must be a valid pointer to a valid
* VkPipelineMultisampleStateCreateInfo structure"
*
* It's also required for the fragment output interface.
*/
key->multisample_fbo =
BITSET_TEST(dynamic, MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ?
INTEL_SOMETIMES :
ms->rasterization_samples > 1 ? INTEL_ALWAYS : INTEL_NEVER;
key->persample_interp =
BITSET_TEST(dynamic, MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ?
INTEL_SOMETIMES :
(ms->sample_shading_enable &&
(ms->min_sample_shading * ms->rasterization_samples) > 1) ?
INTEL_ALWAYS : INTEL_NEVER;
key->alpha_to_coverage =
BITSET_TEST(dynamic, MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE) ?
INTEL_SOMETIMES :
(ms->alpha_to_coverage_enable ? INTEL_ALWAYS : INTEL_NEVER);
/* TODO: We should make this dynamic */
if (device->physical->instance->sample_mask_out_opengl_behaviour)
key->ignore_sample_mask_out = !key->multisample_fbo;
} else {
/* Consider all inputs as valid until we look at the NIR variables. */
key->color_outputs_valid = (1u << MAX_RTS) - 1;
key->nr_color_regions = MAX_RTS;
key->alpha_to_coverage = INTEL_SOMETIMES;
key->multisample_fbo = INTEL_SOMETIMES;
key->persample_interp = INTEL_SOMETIMES;
}
if (device->info->verx10 >= 200) {
if (rs != NULL) {
key->provoking_vertex_last =
BITSET_TEST(dynamic, MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX) ?
INTEL_SOMETIMES :
rs->provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT ?
INTEL_ALWAYS : INTEL_NEVER;
} else {
key->provoking_vertex_last = INTEL_SOMETIMES;
}
} else {
/* Pre-Xe2 we don't care about this at all, make sure it's always set to
* NEVER to avoid it influencing the push constant.
*/
key->provoking_vertex_last = INTEL_NEVER;
}
key->mesh_input = is_mesh;
/* Vulkan doesn't support fixed-function alpha test */
key->alpha_test_replicate_alpha = false;
key->coarse_pixel =
device->vk.enabled_extensions.KHR_fragment_shading_rate &&
pipeline_has_coarse_pixel(dynamic, ms, fsr);
key->null_push_constant_tbimr_workaround =
device->info->needs_null_push_constant_tbimr_workaround;
}
static void
populate_cs_prog_key(struct anv_pipeline_stage *stage,
const struct anv_device *device)
{
memset(&stage->key, 0, sizeof(stage->key));
populate_base_prog_key(stage, device, INTEL_VUE_LAYOUT_FIXED);
stage->key.base.uses_inline_push_addr = device->info->verx10 >= 125;
}
static void
populate_bs_prog_key(struct anv_pipeline_stage *stage,
const struct anv_device *device,
uint32_t ray_flags)
{
memset(&stage->key, 0, sizeof(stage->key));
populate_base_prog_key(stage, device, INTEL_VUE_LAYOUT_FIXED);
stage->key.bs.pipeline_ray_flags = ray_flags;
stage->key.bs.pipeline_ray_flags = ray_flags;
}
static void
anv_stage_write_shader_hash(struct anv_pipeline_stage *stage,
const struct anv_device *device)
{
vk_pipeline_robustness_state_fill(&device->vk,
&stage->rstate,
stage->pipeline_pNext,
stage->info->pNext);
vk_pipeline_hash_shader_stage(stage->pipeline_flags, stage->info,
&stage->rstate, stage->shader_sha1);
stage->robust_flags = anv_get_robust_flags(&stage->rstate);
/* Use lowest dword of source shader sha1 for shader hash. */
stage->source_hash = ((uint32_t*)stage->shader_sha1)[0];
}
static bool
anv_graphics_pipeline_stage_fragment_dynamic(const struct anv_pipeline_stage *stage)
{
return stage->stage == MESA_SHADER_FRAGMENT &&
brw_wm_prog_key_is_dynamic(&stage->key.wm);
}
static bool
anv_graphics_pipeline_stage_mesh_dynamic(const struct anv_pipeline_stage *stage)
{
return stage->stage == MESA_SHADER_FRAGMENT &&
stage->key.wm.mesh_input == INTEL_SOMETIMES;
}
static void
anv_pipeline_hash_common(struct mesa_sha1 *ctx,
const struct anv_pipeline *pipeline)
{
struct anv_device *device = pipeline->device;
_mesa_sha1_update(ctx, pipeline->layout.sha1, sizeof(pipeline->layout.sha1));
const bool indirect_descriptors = device->physical->indirect_descriptors;
_mesa_sha1_update(ctx, &indirect_descriptors, sizeof(indirect_descriptors));
const bool lower_terminate_to_discard =
device->physical->instance->lower_terminate_to_discard;
_mesa_sha1_update(ctx, &lower_terminate_to_discard,
sizeof(lower_terminate_to_discard));
const bool rba = device->robust_buffer_access;
_mesa_sha1_update(ctx, &rba, sizeof(rba));
const int spilling_rate = device->physical->compiler->spilling_rate;
_mesa_sha1_update(ctx, &spilling_rate, sizeof(spilling_rate));
const bool erwf = device->physical->instance->emulate_read_without_format;
_mesa_sha1_update(ctx, &erwf, sizeof(erwf));
const bool large_wg_wa =
device->physical->instance->large_workgroup_non_coherent_image_workaround;
_mesa_sha1_update(ctx, &large_wg_wa, sizeof(large_wg_wa));
}
static void
anv_pipeline_hash_graphics(struct anv_graphics_base_pipeline *pipeline,
struct anv_pipeline_stage *stages,
uint32_t view_mask,
unsigned char *sha1_out)
{
const struct anv_device *device = pipeline->base.device;
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
anv_pipeline_hash_common(&ctx, &pipeline->base);
_mesa_sha1_update(&ctx, &view_mask, sizeof(view_mask));
for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (pipeline->base.active_stages & BITFIELD_BIT(s)) {
_mesa_sha1_update(&ctx, stages[s].shader_sha1,
sizeof(stages[s].shader_sha1));
_mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
}
}
if (stages[MESA_SHADER_MESH].info || stages[MESA_SHADER_TASK].info) {
const uint8_t afs = device->physical->instance->assume_full_subgroups;
_mesa_sha1_update(&ctx, &afs, sizeof(afs));
const bool afs_shm = device->physical->instance->assume_full_subgroups_with_shared_memory;
_mesa_sha1_update(&ctx, &afs_shm, sizeof(afs_shm));
}
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_compute(struct anv_compute_pipeline *pipeline,
struct anv_pipeline_stage *stage,
unsigned char *sha1_out)
{
const struct anv_device *device = pipeline->base.device;
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
anv_pipeline_hash_common(&ctx, &pipeline->base);
const uint8_t afs = device->physical->instance->assume_full_subgroups;
_mesa_sha1_update(&ctx, &afs, sizeof(afs));
const bool afswb = device->physical->instance->assume_full_subgroups_with_barrier;
_mesa_sha1_update(&ctx, &afswb, sizeof(afswb));
const bool afs_shm = device->physical->instance->assume_full_subgroups_with_shared_memory;
_mesa_sha1_update(&ctx, &afs_shm, sizeof(afs_shm));
_mesa_sha1_update(&ctx, stage->shader_sha1,
sizeof(stage->shader_sha1));
_mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_ray_tracing_shader(struct anv_ray_tracing_pipeline *pipeline,
struct anv_pipeline_stage *stage,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
anv_pipeline_hash_common(&ctx, &pipeline->base);
_mesa_sha1_update(&ctx, stage->shader_sha1, sizeof(stage->shader_sha1));
_mesa_sha1_update(&ctx, &stage->key, sizeof(stage->key.bs));
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_ray_tracing_combined_shader(struct anv_ray_tracing_pipeline *pipeline,
struct anv_pipeline_stage *intersection,
struct anv_pipeline_stage *any_hit,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
_mesa_sha1_update(&ctx, pipeline->base.layout.sha1,
sizeof(pipeline->base.layout.sha1));
const bool rba = pipeline->base.device->robust_buffer_access;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
_mesa_sha1_update(&ctx, intersection->shader_sha1, sizeof(intersection->shader_sha1));
_mesa_sha1_update(&ctx, &intersection->key, sizeof(intersection->key.bs));
_mesa_sha1_update(&ctx, any_hit->shader_sha1, sizeof(any_hit->shader_sha1));
_mesa_sha1_update(&ctx, &any_hit->key, sizeof(any_hit->key.bs));
_mesa_sha1_final(&ctx, sha1_out);
}
static VkResult
anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
struct vk_pipeline_cache *cache,
void *mem_ctx,
struct anv_pipeline_stage *stage)
{
const struct brw_compiler *compiler =
pipeline->device->physical->compiler;
const nir_shader_compiler_options *nir_options =
compiler->nir_options[stage->stage];
stage->nir = anv_device_search_for_nir(pipeline->device, cache,
nir_options,
stage->shader_sha1,
mem_ctx);
if (stage->nir) {
assert(stage->nir->info.stage == stage->stage);
return VK_SUCCESS;
}
/* VkPipelineShaderStageCreateInfo:
*
* "If a pipeline is not found, pipeline compilation is not possible and
* the implementation must fail as specified by
* VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT."
*/
if (vk_pipeline_shader_stage_has_identifier(stage->info))
return VK_PIPELINE_COMPILE_REQUIRED;
stage->nir = anv_shader_stage_to_nir(pipeline->device,
stage->pipeline_flags, stage->info,
stage->key.base.robust_flags, mem_ctx);
if (stage->nir) {
anv_device_upload_nir(pipeline->device, cache,
stage->nir, stage->shader_sha1);
return VK_SUCCESS;
}
return vk_errorf(&pipeline->device->vk, VK_ERROR_UNKNOWN,
"Unable to load NIR");
}
static const struct vk_ycbcr_conversion_state *
lookup_ycbcr_conversion(const void *_sets_layout, uint32_t set,
uint32_t binding, uint32_t array_index)
{
const struct anv_pipeline_sets_layout *sets_layout = _sets_layout;
assert(set < MAX_SETS);
assert(binding < sets_layout->set[set].layout->binding_count);
const struct anv_descriptor_set_binding_layout *bind_layout =
&sets_layout->set[set].layout->binding[binding];
if (bind_layout->samplers == NULL)
return NULL;
array_index = MIN2(array_index, bind_layout->array_size - 1);
const struct anv_descriptor_set_layout_sampler *sampler =
&bind_layout->samplers[array_index];
return sampler->has_ycbcr_conversion ?
&sampler->ycbcr_conversion_state : NULL;
}
static void
shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
assert(glsl_type_is_vector_or_scalar(type));
uint32_t comp_size = glsl_type_is_boolean(type)
? 4 : glsl_get_bit_size(type) / 8;
unsigned length = glsl_get_vector_elements(type);
*size = comp_size * length,
*align = comp_size * (length == 3 ? 4 : length);
}
static void
anv_fixup_subgroup_size(struct anv_device *device, struct shader_info *info)
{
switch (info->stage) {
case MESA_SHADER_COMPUTE:
case MESA_SHADER_TASK:
case MESA_SHADER_MESH:
break;
default:
return;
}
unsigned local_size = info->workgroup_size[0] *
info->workgroup_size[1] *
info->workgroup_size[2];
/* Games don't always request full subgroups when they should,
* which can cause bugs, as they may expect bigger size of the
* subgroup than we choose for the execution.
*/
if (device->physical->instance->assume_full_subgroups &&
info->uses_wide_subgroup_intrinsics &&
info->subgroup_size == SUBGROUP_SIZE_API_CONSTANT &&
local_size &&
local_size % BRW_SUBGROUP_SIZE == 0)
info->subgroup_size = SUBGROUP_SIZE_FULL_SUBGROUPS;
if (device->physical->instance->assume_full_subgroups_with_barrier &&
info->stage == MESA_SHADER_COMPUTE &&
device->info->verx10 <= 125 &&
info->uses_control_barrier &&
info->subgroup_size == SUBGROUP_SIZE_VARYING &&
local_size &&
local_size % BRW_SUBGROUP_SIZE == 0)
info->subgroup_size = SUBGROUP_SIZE_FULL_SUBGROUPS;
/* Similarly, sometimes games rely on the implicit synchronization of
* the shared memory accesses, and choosing smaller subgroups than the game
* expects will cause bugs. */
if (device->physical->instance->assume_full_subgroups_with_shared_memory &&
info->shared_size > 0 &&
info->subgroup_size == SUBGROUP_SIZE_VARYING &&
local_size &&
local_size % BRW_SUBGROUP_SIZE == 0)
info->subgroup_size = SUBGROUP_SIZE_FULL_SUBGROUPS;
/* If the client requests that we dispatch full subgroups but doesn't
* allow us to pick a subgroup size, we have to smash it to the API
* value of 32. Performance will likely be terrible in this case but
* there's nothing we can do about that. The client should have chosen
* a size.
*/
if (info->subgroup_size == SUBGROUP_SIZE_FULL_SUBGROUPS)
info->subgroup_size =
device->physical->instance->assume_full_subgroups != 0 ?
device->physical->instance->assume_full_subgroups : BRW_SUBGROUP_SIZE;
/* Cooperative matrix extension requires that all invocations in a subgroup
* be active. As a result, when the application does not request a specific
* subgroup size, we must use SIMD32.
*/
if (info->stage == MESA_SHADER_COMPUTE && info->cs.has_cooperative_matrix &&
info->subgroup_size < SUBGROUP_SIZE_REQUIRE_8) {
info->subgroup_size = BRW_SUBGROUP_SIZE;
}
}
/* #define DEBUG_PRINTF_EXAMPLE 0 */
#if DEBUG_PRINTF_EXAMPLE
static bool
print_ubo_load(nir_builder *b,
nir_intrinsic_instr *intrin,
UNUSED void *cb_data)
{
if (intrin->intrinsic != nir_intrinsic_load_uniform)
return false;
b->cursor = nir_after_instr(&intrin->instr);
nir_printf_fmt(b, 64,
"uniform<= pos=%02.2fx%02.2f offset=0x%08x val=0x%08x\n",
nir_channel(b, nir_load_frag_coord(b), 0),
nir_channel(b, nir_load_frag_coord(b), 1),
intrin->src[0].ssa,
&intrin->def);
return true;
}
#endif
static bool
accept_64bit_atomic_cb(const nir_intrinsic_instr *intrin, const void *data)
{
return (intrin->intrinsic == nir_intrinsic_image_atomic ||
intrin->intrinsic == nir_intrinsic_image_atomic_swap ||
intrin->intrinsic == nir_intrinsic_image_deref_atomic ||
intrin->intrinsic == nir_intrinsic_image_deref_atomic_swap) &&
intrin->def.bit_size == 64;
}
static nir_def *
build_tcs_input_vertices(nir_builder *b, nir_instr *instr, void *data)
{
return anv_load_driver_uniform(b, 1, gfx.tcs_input_vertices);
}
static void
fixup_large_workgroup_image_coherency(nir_shader *nir)
{
nir_foreach_function_impl(impl, nir) {
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_image_deref_store ||
nir_intrinsic_image_dim(intr) != GLSL_SAMPLER_DIM_3D)
continue;
/* We have found image store access to 3D. */
nir_deref_instr *array_deref = nir_src_as_deref(intr->src[0]);
if (array_deref->deref_type != nir_deref_type_array)
continue;
nir_alu_instr *alu = nir_src_as_alu_instr(intr->src[1]);
if (!alu || !nir_op_is_vec(alu->op))
return;
/* Check if any src is from @load_local_invocation_id. */
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
nir_instr *parent = alu->src[i].src.ssa->parent_instr;
if (parent->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *parent_intr = nir_instr_as_intrinsic(parent);
if (parent_intr->intrinsic !=
nir_intrinsic_load_local_invocation_id)
continue;
/* Found a match, change image access qualifier coherent. */
nir_deref_instr *parent_deref =
nir_src_as_deref(array_deref->parent);
parent_deref->var->data.access = ACCESS_COHERENT;
return;
}
} /* instr */
} /* block */
} /* func */
}
static void
anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
void *mem_ctx,
struct anv_pipeline_stage *stage,
struct anv_pipeline_sets_layout *layout,
uint32_t view_mask,
bool use_primitive_replication)
{
const struct anv_physical_device *pdevice = pipeline->device->physical;
const struct brw_compiler *compiler = pdevice->compiler;
struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
nir_shader *nir = stage->nir;
unsigned workgroup_size = nir->info.workgroup_size[0] *
nir->info.workgroup_size[1] *
nir->info.workgroup_size[2];
/* We've noticed that a particular shader in "Last Of Us" accesses
* a 3D image using local workgroup index. Corruptions are observed
* unless the image is marked workgroup coherent.
* The shader workgroup size is 16x2x2 (64), which would fit inside
* the subgroup on other vendors (AMD). We think that is why the
* corruption is not observed there.
*/
if (pdevice->instance->large_workgroup_non_coherent_image_workaround &&
stage->stage == MESA_SHADER_COMPUTE &&
workgroup_size == 64)
fixup_large_workgroup_image_coherency(nir);
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS(_, nir, nir_lower_wpos_center);
NIR_PASS(_, nir, nir_lower_input_attachments,
&(nir_input_attachment_options) {
.use_fragcoord_sysval = true,
.use_layer_id_sysval = true,
});
}
if (gl_shader_stage_is_mesh(nir->info.stage)) {
nir_lower_compute_system_values_options options = {
.lower_workgroup_id_to_index = true,
/* nir_lower_idiv generates expensive code */
.shortcut_1d_workgroup_id = compiler->devinfo->verx10 >= 125,
};
NIR_PASS(_, nir, nir_lower_compute_system_values, &options);
}
NIR_PASS(_, nir, nir_vk_lower_ycbcr_tex, lookup_ycbcr_conversion, layout);
if (pipeline->type == ANV_PIPELINE_GRAPHICS ||
pipeline->type == ANV_PIPELINE_GRAPHICS_LIB) {
NIR_PASS(_, nir, anv_nir_lower_multiview, view_mask,
use_primitive_replication);
}
if (nir->info.stage == MESA_SHADER_COMPUTE && nir->info.cs.has_cooperative_matrix) {
anv_fixup_subgroup_size(pipeline->device, &nir->info);
NIR_PASS(_, nir, brw_nir_lower_cmat, nir->info.subgroup_size);
NIR_PASS(_, nir, nir_lower_indirect_derefs, nir_var_function_temp, 16);
}
/* The patch control points are delivered through a push constant when
* dynamic.
*/
if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
NIR_PASS(_, nir, intel_nir_lower_patch_vertices_in,
stage->key.tcs.input_vertices,
build_tcs_input_vertices, NULL);
}
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
/* Apply lowering for 64bit atomics pre-Xe2 */
const bool lower_64bit_atomics = compiler->devinfo->ver < 20;
if (lower_64bit_atomics) {
/* Ensure robustness, do this before brw_nir_lower_storage_image so that
* added image size intrinsics for bounds checkings are properly lowered
* for cube images.
*/
NIR_PASS(_, nir, nir_lower_robust_access,
accept_64bit_atomic_cb, NULL);
}
NIR_PASS(_, nir, brw_nir_lower_storage_image, compiler,
&(struct brw_nir_lower_storage_image_opts) {
/* Anv only supports Gfx9+ which has better defined typed
* read behavior.
*/
.lower_loads = true,
.lower_stores_64bit = true,
.lower_loads_without_formats =
pdevice->instance->emulate_read_without_format,
});
if (lower_64bit_atomics) {
/* Switch from image to global */
NIR_PASS(_, nir, nir_lower_image_atomics_to_global,
accept_64bit_atomic_cb, NULL);
/* Detile for global */
NIR_PASS(_, nir, brw_nir_lower_texel_address, compiler->devinfo,
pdevice->isl_dev.shader_tiling);
}
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global,
nir_address_format_64bit_global);
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const,
nir_address_format_32bit_offset);
NIR_PASS(_, nir, brw_nir_lower_ray_queries, &pdevice->info);
stage->push_desc_info.used_descriptors =
anv_nir_compute_used_push_descriptors(nir, layout);
struct anv_pipeline_push_map push_map = {};
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
NIR_PASS(_, nir, anv_nir_apply_pipeline_layout,
pdevice, stage->key.base.robust_flags,
layout->independent_sets,
layout, &stage->bind_map, &push_map, mem_ctx);
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo,
anv_nir_ubo_addr_format(pdevice, stage->key.base.robust_flags));
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ssbo,
anv_nir_ssbo_addr_format(pdevice, stage->key.base.robust_flags));
/* First run copy-prop to get rid of all of the vec() that address
* calculations often create and then constant-fold so that, when we
* get to anv_nir_lower_ubo_loads, we can detect constant offsets.
*/
bool progress;
do {
progress = false;
NIR_PASS(progress, nir, nir_opt_algebraic);
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_constant_folding);
NIR_PASS(progress, nir, nir_opt_dce);
} while (progress);
NIR_PASS(_, nir, anv_nir_lower_ubo_loads);
enum nir_lower_non_uniform_access_type lower_non_uniform_access_types =
nir_lower_non_uniform_texture_access |
nir_lower_non_uniform_image_access |
nir_lower_non_uniform_get_ssbo_size;
/* In practice, most shaders do not have non-uniform-qualified
* accesses (see
* https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17558#note_1475069)
* thus a cheaper and likely to fail check is run first.
*/
if (nir_has_non_uniform_access(nir, lower_non_uniform_access_types)) {
NIR_PASS(_, nir, nir_opt_non_uniform_access);
/* We don't support non-uniform UBOs and non-uniform SSBO access is
* handled naturally by falling back to A64 messages.
*/
NIR_PASS(_, nir, nir_lower_non_uniform_access,
&(nir_lower_non_uniform_access_options) {
.types = lower_non_uniform_access_types,
.callback = NULL,
});
NIR_PASS(_, nir, intel_nir_lower_non_uniform_resource_intel);
NIR_PASS(_, nir, intel_nir_cleanup_resource_intel);
NIR_PASS(_, nir, nir_opt_dce);
}
NIR_PASS(_, nir, anv_nir_update_resource_intel_block);
NIR_PASS(_, nir, anv_nir_compute_push_layout,
pdevice, stage->key.base.robust_flags,
anv_graphics_pipeline_stage_fragment_dynamic(stage),
anv_graphics_pipeline_stage_mesh_dynamic(stage),
prog_data, &stage->bind_map, &push_map,
pipeline->layout.type, mem_ctx);
NIR_PASS(_, nir, anv_nir_lower_resource_intel, pdevice,
pipeline->layout.type);
if (gl_shader_stage_uses_workgroup(nir->info.stage)) {
NIR_PASS(_, nir, nir_lower_vars_to_explicit_types,
nir_var_mem_shared, shared_type_info);
NIR_PASS(_, nir, nir_lower_explicit_io,
nir_var_mem_shared, nir_address_format_32bit_offset);
if (nir->info.zero_initialize_shared_memory &&
nir->info.shared_size > 0) {
/* The effective Shared Local Memory size is at least 1024 bytes and
* is always rounded to a power of two, so it is OK to align the size
* used by the shader to chunk_size -- which does simplify the logic.
*/
const unsigned chunk_size = 16;
const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
assert(shared_size <=
intel_compute_slm_calculate_size(compiler->devinfo->ver, nir->info.shared_size));
NIR_PASS(_, nir, nir_zero_initialize_shared_memory,
shared_size, chunk_size);
}
}
if (gl_shader_stage_is_compute(nir->info.stage) ||
gl_shader_stage_is_mesh(nir->info.stage)) {
NIR_PASS(_, nir, brw_nir_lower_cs_intrinsics, compiler->devinfo,
&stage->prog_data.cs);
}
stage->push_desc_info.used_set_buffer =
anv_nir_loads_push_desc_buffer(nir, layout, &stage->bind_map);
stage->push_desc_info.fully_promoted_ubo_descriptors =
anv_nir_push_desc_ubo_fully_promoted(nir, layout, &stage->bind_map);
#if DEBUG_PRINTF_EXAMPLE
if (stage->stage == MESA_SHADER_FRAGMENT) {
nir_shader_intrinsics_pass(nir, print_ubo_load,
nir_metadata_none,
NULL);
}
#endif
stage->nir = nir;
}
static void
anv_pipeline_link_vs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *vs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_vs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_graphics_base_pipeline *pipeline,
struct anv_pipeline_stage *vs_stage,
uint32_t view_mask,
char **error_str)
{
/* When using Primitive Replication for multiview, each view gets its own
* position slot.
*/
uint32_t pos_slots =
(vs_stage->nir->info.per_view_outputs & VARYING_BIT_POS) ?
MAX2(1, util_bitcount(view_mask)) : 1;
/* Only position is allowed to be per-view */
assert(!(vs_stage->nir->info.per_view_outputs & ~VARYING_BIT_POS));
brw_compute_vue_map(compiler->devinfo,
&vs_stage->prog_data.vs.base.vue_map,
vs_stage->nir->info.outputs_written,
vs_stage->key.base.vue_layout,
pos_slots);
vs_stage->num_stats = 1;
struct brw_compile_vs_params params = {
.base = {
.nir = vs_stage->nir,
.stats = vs_stage->stats,
.log_data = pipeline->base.device,
.mem_ctx = mem_ctx,
.source_hash = vs_stage->source_hash,
},
.key = &vs_stage->key.vs,
.prog_data = &vs_stage->prog_data.vs,
};
vs_stage->code = brw_compile_vs(compiler, &params);
*error_str = params.base.error_str;
}
static void
merge_tess_info(struct shader_info *tes_info,
const struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 ||
tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess._primitive_mode == 0 ||
tes_info->tess._primitive_mode == 0 ||
tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
}
static void
anv_pipeline_link_tcs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *tes_stage)
{
assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
nir_lower_patch_vertices(tes_stage->nir,
tcs_stage->nir->info.tess.tcs_vertices_out,
NULL);
/* Copy TCS info into the TES info */
merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
/* Whacking the key after cache lookup is a bit sketchy, but all of
* this comes from the SPIR-V, which is part of the hash used for the
* pipeline cache. So it should be safe.
*/
tcs_stage->key.tcs._tes_primitive_mode =
tes_stage->nir->info.tess._primitive_mode;
}
static void
anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *prev_stage,
char **error_str)
{
tcs_stage->key.tcs.outputs_written =
tcs_stage->nir->info.outputs_written;
tcs_stage->key.tcs.patch_outputs_written =
tcs_stage->nir->info.patch_outputs_written;
tcs_stage->num_stats = 1;
struct brw_compile_tcs_params params = {
.base = {
.nir = tcs_stage->nir,
.stats = tcs_stage->stats,
.log_data = device,
.mem_ctx = mem_ctx,
.source_hash = tcs_stage->source_hash,
},
.key = &tcs_stage->key.tcs,
.prog_data = &tcs_stage->prog_data.tcs,
};
tcs_stage->code = brw_compile_tcs(compiler, &params);
*error_str = params.base.error_str;
}
static void
anv_pipeline_link_tes(const struct brw_compiler *compiler,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_tes(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *tcs_stage,
char **error_str)
{
tes_stage->key.tes.inputs_read =
tcs_stage->nir->info.outputs_written;
tes_stage->key.tes.patch_inputs_read =
tcs_stage->nir->info.patch_outputs_written;
tes_stage->num_stats = 1;
struct brw_compile_tes_params params = {
.base = {
.nir = tes_stage->nir,
.stats = tes_stage->stats,
.log_data = device,
.mem_ctx = mem_ctx,
.source_hash = tes_stage->source_hash,
},
.key = &tes_stage->key.tes,
.prog_data = &tes_stage->prog_data.tes,
.input_vue_map = &tcs_stage->prog_data.tcs.base.vue_map,
};
tes_stage->code = brw_compile_tes(compiler, &params);
*error_str = params.base.error_str;
}
static void
anv_pipeline_link_gs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_gs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *prev_stage,
char **error_str)
{
brw_compute_vue_map(compiler->devinfo,
&gs_stage->prog_data.gs.base.vue_map,
gs_stage->nir->info.outputs_written,
gs_stage->key.base.vue_layout, 1);
gs_stage->num_stats = 1;
struct brw_compile_gs_params params = {
.base = {
.nir = gs_stage->nir,
.stats = gs_stage->stats,
.log_data = device,
.mem_ctx = mem_ctx,
.source_hash = gs_stage->source_hash,
},
.key = &gs_stage->key.gs,
.prog_data = &gs_stage->prog_data.gs,
};
gs_stage->code = brw_compile_gs(compiler, &params);
*error_str = params.base.error_str;
}
static void
anv_pipeline_link_task(const struct brw_compiler *compiler,
struct anv_pipeline_stage *task_stage,
struct anv_pipeline_stage *next_stage)
{
assert(next_stage);
assert(next_stage->stage == MESA_SHADER_MESH);
brw_nir_link_shaders(compiler, task_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_task(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *task_stage,
char **error_str)
{
task_stage->num_stats = 1;
struct brw_compile_task_params params = {
.base = {
.nir = task_stage->nir,
.stats = task_stage->stats,
.log_data = device,
.mem_ctx = mem_ctx,
.source_hash = task_stage->source_hash,
},
.key = &task_stage->key.task,
.prog_data = &task_stage->prog_data.task,
};
task_stage->code = brw_compile_task(compiler, &params);
*error_str = params.base.error_str;
}
static void
anv_pipeline_link_mesh(const struct brw_compiler *compiler,
struct anv_pipeline_stage *mesh_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage) {
brw_nir_link_shaders(compiler, mesh_stage->nir, next_stage->nir);
}
}
static nir_def *
mesh_load_provoking_vertex(nir_builder *b, void *data)
{
return nir_load_inline_data_intel(
b, 1, 32,
.base = ANV_INLINE_PARAM_MESH_PROVOKING_VERTEX);
}
static void
anv_pipeline_compile_mesh(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *mesh_stage,
struct anv_pipeline_stage *prev_stage,
char **error_str)
{
mesh_stage->num_stats = 1;
struct brw_compile_mesh_params params = {
.base = {
.nir = mesh_stage->nir,
.stats = mesh_stage->stats,
.log_data = device,
.mem_ctx = mem_ctx,
.source_hash = mesh_stage->source_hash,
},
.key = &mesh_stage->key.mesh,
.prog_data = &mesh_stage->prog_data.mesh,
.load_provoking_vertex = mesh_load_provoking_vertex,
};
if (prev_stage) {
assert(prev_stage->stage == MESA_SHADER_TASK);
params.tue_map = &prev_stage->prog_data.task.map;
}
mesh_stage->code = brw_compile_mesh(compiler, &params);
*error_str = params.base.error_str;
}
static void
anv_pipeline_link_fs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *stage,
const struct vk_render_pass_state *rp)
{
/* Initially the valid outputs value is set to all possible render targets
* valid (see populate_wm_prog_key()), because we're not looking at the
* shader code yet. Here we look at the output written to get a correct
* number of render target outputs.
*/
const uint64_t rt_mask =
stage->nir->info.outputs_written >> FRAG_RESULT_DATA0;
stage->key.wm.color_outputs_valid = rt_mask & rp_color_mask(rp);
stage->key.wm.nr_color_regions =
util_last_bit(stage->key.wm.color_outputs_valid);
unsigned num_rt_bindings;
struct anv_pipeline_binding rt_bindings[MAX_RTS];
if (stage->key.wm.nr_color_regions > 0) {
assert(stage->key.wm.nr_color_regions <= MAX_RTS);
for (unsigned rt = 0; rt < stage->key.wm.nr_color_regions; rt++) {
if (stage->key.wm.color_outputs_valid & BITFIELD_BIT(rt)) {
rt_bindings[rt] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = rt,
.binding = UINT32_MAX,
};
} else {
/* Setup a null render target */
rt_bindings[rt] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = ANV_COLOR_OUTPUT_UNUSED,
.binding = UINT32_MAX,
};
}
}
num_rt_bindings = stage->key.wm.nr_color_regions;
} else if (brw_nir_fs_needs_null_rt(
compiler->devinfo, stage->nir,
stage->key.wm.alpha_to_coverage != INTEL_NEVER)) {
/* Ensure the shader doesn't discard the writes */
stage->key.wm.color_outputs_valid = 0x1;
stage->key.wm.nr_color_regions = 1;
/* Setup a null render target */
rt_bindings[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = ANV_COLOR_OUTPUT_DISABLED,
.binding = UINT32_MAX,
};
num_rt_bindings = 1;
} else {
num_rt_bindings = 0;
}
assert(num_rt_bindings <= MAX_RTS);
assert(stage->bind_map.surface_count == 0);
typed_memcpy(stage->bind_map.surface_to_descriptor,
rt_bindings, num_rt_bindings);
stage->bind_map.surface_count += num_rt_bindings;
}
static void
anv_pipeline_compile_fs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *fs_stage,
struct anv_pipeline_stage *prev_stage,
struct anv_graphics_base_pipeline *pipeline,
uint32_t view_mask,
bool use_primitive_replication,
char **error_str)
{
/* When using Primitive Replication for multiview, each view gets its own
* position slot.
*/
uint32_t pos_slots = use_primitive_replication ?
MAX2(1, util_bitcount(view_mask)) : 1;
/* If we have a previous stage we can use that to deduce valid slots.
* Otherwise, rely on inputs of the input shader.
*/
if (prev_stage) {
fs_stage->key.wm.input_slots_valid =
prev_stage->prog_data.vue.vue_map.slots_valid;
} else {
struct intel_vue_map prev_vue_map;
brw_compute_vue_map(compiler->devinfo,
&prev_vue_map,
fs_stage->nir->info.inputs_read,
fs_stage->key.base.vue_layout,
pos_slots);
fs_stage->key.wm.input_slots_valid = prev_vue_map.slots_valid;
}
struct brw_compile_fs_params params = {
.base = {
.nir = fs_stage->nir,
.stats = fs_stage->stats,
.log_data = device,
.mem_ctx = mem_ctx,
.source_hash = fs_stage->source_hash,
},
.key = &fs_stage->key.wm,
.prog_data = &fs_stage->prog_data.wm,
.allow_spilling = true,
.max_polygons = UCHAR_MAX,
};
if (prev_stage && prev_stage->stage == MESA_SHADER_MESH) {
params.mue_map = &prev_stage->prog_data.mesh.map;
/* TODO(mesh): Slots valid, do we even use/rely on it? */
}
fs_stage->code = brw_compile_fs(compiler, &params);
*error_str = params.base.error_str;
fs_stage->num_stats = (uint32_t)!!fs_stage->prog_data.wm.dispatch_multi +
(uint32_t)fs_stage->prog_data.wm.dispatch_8 +
(uint32_t)fs_stage->prog_data.wm.dispatch_16 +
(uint32_t)fs_stage->prog_data.wm.dispatch_32;
assert(fs_stage->num_stats <= ARRAY_SIZE(fs_stage->stats));
for (unsigned i = 0; i < ARRAY_SIZE(fs_stage->bind_map.push_ranges); i++) {
if (fs_stage->bind_map.push_ranges[i].set == ANV_DESCRIPTOR_SET_PER_PRIM_PADDING) {
fs_stage->bind_map.push_ranges[i].length = MAX2(
fs_stage->prog_data.wm.num_per_primitive_inputs / 2,
fs_stage->bind_map.push_ranges[i].length);
break;
}
}
}
static void
anv_pipeline_add_executable(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage,
struct brw_compile_stats *stats,
uint32_t code_offset)
{
char *nir = NULL;
if (stage->nir &&
(pipeline->flags &
VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
nir = nir_shader_as_str(stage->nir, pipeline->mem_ctx);
}
char *disasm = NULL;
if (stage->code &&
(pipeline->flags &
VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
char *stream_data = NULL;
size_t stream_size = 0;
FILE *stream = open_memstream(&stream_data, &stream_size);
uint32_t push_size = 0;
for (unsigned i = 0; i < 4; i++)
push_size += stage->bind_map.push_ranges[i].length;
if (push_size > 0) {
fprintf(stream, "Push constant ranges:\n");
for (unsigned i = 0; i < 4; i++) {
if (stage->bind_map.push_ranges[i].length == 0)
continue;
fprintf(stream, " RANGE%d (%dB): ", i,
stage->bind_map.push_ranges[i].length * 32);
switch (stage->bind_map.push_ranges[i].set) {
case ANV_DESCRIPTOR_SET_NULL:
fprintf(stream, "NULL");
break;
case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
fprintf(stream, "Vulkan push constants and API params");
break;
case ANV_DESCRIPTOR_SET_DESCRIPTORS_BUFFER:
fprintf(stream, "Descriptor buffer (desc buffer) for set %d (start=%dB)",
stage->bind_map.push_ranges[i].index,
stage->bind_map.push_ranges[i].start * 32);
break;
case ANV_DESCRIPTOR_SET_DESCRIPTORS:
fprintf(stream, "Descriptor buffer for set %d (start=%dB)",
stage->bind_map.push_ranges[i].index,
stage->bind_map.push_ranges[i].start * 32);
break;
case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
unreachable("Color attachments can't be pushed");
default:
fprintf(stream, "UBO (set=%d binding=%d start=%dB)",
stage->bind_map.push_ranges[i].set,
stage->bind_map.push_ranges[i].index,
stage->bind_map.push_ranges[i].start * 32);
break;
}
fprintf(stream, "\n");
}
fprintf(stream, "\n");
}
/* Creating this is far cheaper than it looks. It's perfectly fine to
* do it for every binary.
*/
brw_disassemble_with_errors(&pipeline->device->physical->compiler->isa,
stage->code, code_offset,
&stage->bin->kernel.offset, stream);
fclose(stream);
/* Copy it to a ralloc'd thing */
disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
memcpy(disasm, stream_data, stream_size);
disasm[stream_size] = 0;
free(stream_data);
}
if (INTEL_DEBUG(DEBUG_SHADERS_LINENO) && stage->code) {
if (!intel_shader_dump_filter ||
(intel_shader_dump_filter && intel_shader_dump_filter == stage->source_hash)) {
brw_disassemble_with_lineno(&pipeline->device->physical->compiler->isa,
stage->stage, (int)stats->dispatch_width,
stage->source_hash, stage->code, code_offset,
stage->bin->kernel.offset, stderr);
}
}
const struct anv_pipeline_executable exe = {
.stage = stage->stage,
.stats = *stats,
.nir = nir,
.disasm = disasm,
};
util_dynarray_append(&pipeline->executables,
struct anv_pipeline_executable, exe);
}
static void
anv_pipeline_add_executables(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage)
{
if (stage->stage == MESA_SHADER_FRAGMENT) {
/* We pull the prog data and stats out of the anv_shader_bin because
* the anv_pipeline_stage may not be fully populated if we successfully
* looked up the shader in a cache.
*/
const struct brw_wm_prog_data *wm_prog_data =
(const struct brw_wm_prog_data *)stage->bin->prog_data;
struct brw_compile_stats *stats = stage->bin->stats;
if (wm_prog_data->dispatch_8 ||
wm_prog_data->dispatch_multi) {
anv_pipeline_add_executable(pipeline, stage, stats++, 0);
}
if (wm_prog_data->dispatch_16) {
anv_pipeline_add_executable(pipeline, stage, stats++,
wm_prog_data->prog_offset_16);
}
if (wm_prog_data->dispatch_32) {
anv_pipeline_add_executable(pipeline, stage, stats++,
wm_prog_data->prog_offset_32);
}
} else {
anv_pipeline_add_executable(pipeline, stage, stage->bin->stats, 0);
}
}
static void
anv_pipeline_account_shader(struct anv_pipeline *pipeline,
struct anv_shader_bin *shader)
{
pipeline->scratch_size = MAX2(pipeline->scratch_size,
shader->prog_data->total_scratch);
pipeline->ray_queries = MAX2(pipeline->ray_queries,
shader->prog_data->ray_queries);
if (shader->push_desc_info.used_set_buffer) {
pipeline->use_push_descriptor_buffer |=
mesa_to_vk_shader_stage(shader->stage);
}
if (shader->push_desc_info.used_descriptors &
~shader->push_desc_info.fully_promoted_ubo_descriptors)
pipeline->use_push_descriptor |= mesa_to_vk_shader_stage(shader->stage);
}
/* This function return true if a shader should not be looked at because of
* fast linking. Instead we should use the shader binaries provided by
* libraries.
*/
static bool
anv_graphics_pipeline_skip_shader_compile(struct anv_graphics_base_pipeline *pipeline,
struct anv_pipeline_stage *stages,
bool link_optimize,
gl_shader_stage stage)
{
/* Always skip non active stages */
if (!anv_pipeline_base_has_stage(pipeline, stage))
return true;
/* When link optimizing, consider all stages */
if (link_optimize)
return false;
/* Otherwise check if the stage was specified through
* VkGraphicsPipelineCreateInfo
*/
assert(stages[stage].info != NULL || stages[stage].imported.bin != NULL);
return stages[stage].info == NULL;
}
static void
anv_graphics_pipeline_init_keys(struct anv_graphics_base_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state,
struct anv_pipeline_stage *stages)
{
struct anv_device *device = pipeline->base.device;
enum intel_vue_layout vue_layout;
if ((pipeline->base.flags & VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT) ||
!device->vk.enabled_extensions.EXT_graphics_pipeline_library) {
vue_layout = INTEL_VUE_LAYOUT_FIXED;
} else {
vue_layout =
(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB &&
device->vk.enabled_extensions.EXT_mesh_shader) ?
INTEL_VUE_LAYOUT_SEPARATE_MESH : INTEL_VUE_LAYOUT_SEPARATE;
}
for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (!anv_pipeline_base_has_stage(pipeline, s))
continue;
int64_t stage_start = os_time_get_nano();
const struct anv_device *device = pipeline->base.device;
switch (stages[s].stage) {
case MESA_SHADER_VERTEX:
populate_vs_prog_key(&stages[s], device, vue_layout);
break;
case MESA_SHADER_TESS_CTRL:
populate_tcs_prog_key(&stages[s],
device,
BITSET_TEST(state->dynamic,
MESA_VK_DYNAMIC_TS_PATCH_CONTROL_POINTS) ?
0 : state->ts->patch_control_points,
vue_layout);
break;
case MESA_SHADER_TESS_EVAL:
populate_tes_prog_key(&stages[s], device, vue_layout);
break;
case MESA_SHADER_GEOMETRY:
populate_gs_prog_key(&stages[s], device, vue_layout);
break;
case MESA_SHADER_FRAGMENT: {
/* Assume rasterization enabled in any of the following case :
*
* - We're a pipeline library without pre-rasterization information
*
* - Rasterization is not disabled in the non dynamic state
*
* - Rasterization disable is dynamic
*/
const bool raster_enabled =
state->rs == NULL ||
!state->rs->rasterizer_discard_enable ||
BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_RS_RASTERIZER_DISCARD_ENABLE);
enum intel_sometimes is_mesh = INTEL_NEVER;
if (device->vk.enabled_extensions.EXT_mesh_shader) {
if (anv_pipeline_base_has_stage(pipeline, MESA_SHADER_VERTEX))
is_mesh = INTEL_NEVER;
else if (anv_pipeline_base_has_stage(pipeline, MESA_SHADER_MESH))
is_mesh = INTEL_ALWAYS;
else {
assert(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB);
is_mesh = INTEL_SOMETIMES;
}
}
populate_wm_prog_key(&stages[s],
pipeline,
state->dynamic,
raster_enabled ? state->ms : NULL,
raster_enabled ? state->rs : NULL,
state->fsr, state->rp, is_mesh,
vue_layout);
break;
}
case MESA_SHADER_TASK:
populate_task_prog_key(&stages[s], device);
break;
case MESA_SHADER_MESH: {
populate_mesh_prog_key(&stages[s], device, vue_layout);
break;
}
default:
unreachable("Invalid graphics shader stage");
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
}
}
static void
anv_graphics_lib_retain_shaders(struct anv_graphics_base_pipeline *pipeline,
struct anv_pipeline_stage *stages,
bool will_compile)
{
/* There isn't much point in retaining NIR shaders on final pipelines. */
assert(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB);
struct anv_graphics_lib_pipeline *lib = (struct anv_graphics_lib_pipeline *) pipeline;
for (int s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (!anv_pipeline_base_has_stage(pipeline, s))
continue;
memcpy(lib->retained_shaders[s].shader_sha1, stages[s].shader_sha1,
sizeof(stages[s].shader_sha1));
lib->retained_shaders[s].subgroup_size_type = stages[s].subgroup_size_type;
nir_shader *nir = stages[s].nir != NULL ? stages[s].nir : stages[s].imported.nir;
assert(nir != NULL);
if (!will_compile) {
lib->retained_shaders[s].nir = nir;
} else {
lib->retained_shaders[s].nir =
nir_shader_clone(pipeline->base.mem_ctx, nir);
}
}
}
static bool
anv_graphics_pipeline_load_cached_shaders(struct anv_graphics_base_pipeline *pipeline,
struct vk_pipeline_cache *cache,
struct anv_pipeline_stage *stages,
bool link_optimize,
VkPipelineCreationFeedback *pipeline_feedback)
{
struct anv_device *device = pipeline->base.device;
unsigned cache_hits = 0, found = 0, imported = 0;
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (!anv_pipeline_base_has_stage(pipeline, s))
continue;
int64_t stage_start = os_time_get_nano();
bool cache_hit;
stages[s].bin =
anv_device_search_for_kernel(device, cache, &stages[s].cache_key,
sizeof(stages[s].cache_key), &cache_hit);
if (stages[s].bin) {
found++;
pipeline->shaders[s] = stages[s].bin;
}
if (cache_hit) {
cache_hits++;
stages[s].feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
/* When not link optimizing, lookup the missing shader in the imported
* libraries.
*/
if (!link_optimize) {
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (!anv_pipeline_base_has_stage(pipeline, s))
continue;
if (pipeline->shaders[s] != NULL)
continue;
if (stages[s].imported.bin == NULL)
continue;
stages[s].bin = stages[s].imported.bin;
pipeline->shaders[s] = anv_shader_bin_ref(stages[s].imported.bin);
imported++;
}
}
if ((found + imported) == __builtin_popcount(pipeline->base.active_stages)) {
if (cache_hits == found && found != 0) {
pipeline_feedback->flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
/* We found all our shaders in the cache. We're done. */
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (pipeline->shaders[s] == NULL)
continue;
/* Only add the executables when we're not importing or doing link
* optimizations. The imported executables are added earlier. Link
* optimization can produce different binaries.
*/
if (stages[s].imported.bin == NULL || link_optimize)
anv_pipeline_add_executables(&pipeline->base, &stages[s]);
}
return true;
} else if (found > 0) {
/* We found some but not all of our shaders. This shouldn't happen most
* of the time but it can if we have a partially populated pipeline
* cache.
*/
assert(found < __builtin_popcount(pipeline->base.active_stages));
/* With GPL, this might well happen if the app does an optimized
* link.
*/
if (!pipeline->base.device->vk.enabled_extensions.EXT_graphics_pipeline_library) {
vk_perf(VK_LOG_OBJS(cache ? &cache->base :
&pipeline->base.device->vk.base),
"Found a partial pipeline in the cache. This is "
"most likely caused by an incomplete pipeline cache "
"import or export");
}
/* We're going to have to recompile anyway, so just throw away our
* references to the shaders in the cache. We'll get them out of the
* cache again as part of the compilation process.
*/
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
stages[s].feedback.flags = 0;
if (pipeline->shaders[s]) {
anv_shader_bin_unref(device, pipeline->shaders[s]);
pipeline->shaders[s] = NULL;
}
}
}
return false;
}
static const gl_shader_stage graphics_shader_order[] = {
MESA_SHADER_VERTEX,
MESA_SHADER_TESS_CTRL,
MESA_SHADER_TESS_EVAL,
MESA_SHADER_GEOMETRY,
MESA_SHADER_TASK,
MESA_SHADER_MESH,
MESA_SHADER_FRAGMENT,
};
/* This function loads NIR only for stages specified in
* VkGraphicsPipelineCreateInfo::pStages[]
*/
static VkResult
anv_graphics_pipeline_load_nir(struct anv_graphics_base_pipeline *pipeline,
struct vk_pipeline_cache *cache,
struct anv_pipeline_stage *stages,
void *mem_ctx,
bool need_clone)
{
for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (!anv_pipeline_base_has_stage(pipeline, s))
continue;
int64_t stage_start = os_time_get_nano();
assert(stages[s].stage == s);
/* Only use the create NIR from the pStages[] element if we don't have
* an imported library for the same stage.
*/
if (stages[s].imported.bin == NULL) {
VkResult result = anv_pipeline_stage_get_nir(&pipeline->base, cache,
mem_ctx, &stages[s]);
if (result != VK_SUCCESS)
return result;
} else {
stages[s].nir = need_clone ?
nir_shader_clone(mem_ctx, stages[s].imported.nir) :
stages[s].imported.nir;
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
return VK_SUCCESS;
}
static void
anv_pipeline_nir_preprocess(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage)
{
struct anv_device *device = pipeline->device;
const struct brw_compiler *compiler = device->physical->compiler;
const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
.point_coord = true,
};
NIR_PASS(_, stage->nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);
const nir_opt_access_options opt_access_options = {
.is_vulkan = true,
};
NIR_PASS(_, stage->nir, nir_opt_access, &opt_access_options);
/* Use a separate-shader linking model for pipeline libraries, we do cross
* stage linking otherwise.
*/
stage->nir->info.separate_shader =
stage->key.base.vue_layout != INTEL_VUE_LAYOUT_FIXED;
struct brw_nir_compiler_opts opts = {
.softfp64 = device->fp64_nir,
/* Assume robustness with EXT_pipeline_robustness because this can be
* turned on/off per pipeline and we have no visibility on this here.
*/
.robust_image_access = device->vk.enabled_features.robustImageAccess ||
device->vk.enabled_features.robustImageAccess2 ||
device->vk.enabled_extensions.EXT_pipeline_robustness,
.input_vertices = stage->nir->info.stage == MESA_SHADER_TESS_CTRL ?
stage->key.tcs.input_vertices : 0,
};
brw_preprocess_nir(compiler, stage->nir, &opts);
NIR_PASS(_, stage->nir, nir_opt_barrier_modes);
NIR_PASS(_, stage->nir, nir_opt_acquire_release_barriers,
SCOPE_QUEUE_FAMILY);
nir_shader_gather_info(stage->nir, nir_shader_get_entrypoint(stage->nir));
}
static void
anv_fill_pipeline_creation_feedback(const struct anv_graphics_base_pipeline *pipeline,
VkPipelineCreationFeedback *pipeline_feedback,
const VkGraphicsPipelineCreateInfo *info,
struct anv_pipeline_stage *stages)
{
const VkPipelineCreationFeedbackCreateInfo *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = *pipeline_feedback;
/* VkPipelineCreationFeedbackCreateInfo:
*
* "An implementation must set or clear the
* VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT in
* VkPipelineCreationFeedback::flags for pPipelineCreationFeedback
* and every element of pPipelineStageCreationFeedbacks."
*
*/
for (uint32_t i = 0; i < create_feedback->pipelineStageCreationFeedbackCount; i++) {
create_feedback->pPipelineStageCreationFeedbacks[i].flags &=
~VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
}
/* This part is not really specified in the Vulkan spec at the moment.
* We're kind of guessing what the CTS wants. We might need to update
* when https://gitlab.khronos.org/vulkan/vulkan/-/issues/3115 is
* clarified.
*/
for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (!anv_pipeline_base_has_stage(pipeline, s))
continue;
if (stages[s].feedback_idx < create_feedback->pipelineStageCreationFeedbackCount) {
create_feedback->pPipelineStageCreationFeedbacks[
stages[s].feedback_idx] = stages[s].feedback;
}
}
}
}
static uint32_t
anv_graphics_pipeline_imported_shader_count(struct anv_pipeline_stage *stages)
{
uint32_t count = 0;
for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (stages[s].imported.bin != NULL)
count++;
}
return count;
}
static VkResult
anv_graphics_pipeline_compile(struct anv_graphics_base_pipeline *pipeline,
struct anv_pipeline_stage *stages,
struct vk_pipeline_cache *cache,
VkPipelineCreationFeedback *pipeline_feedback,
const VkGraphicsPipelineCreateInfo *info,
const struct vk_graphics_pipeline_state *state)
{
int64_t pipeline_start = os_time_get_nano();
struct anv_device *device = pipeline->base.device;
const struct intel_device_info *devinfo = device->info;
const struct brw_compiler *compiler = device->physical->compiler;
/* Setup the shaders given in this VkGraphicsPipelineCreateInfo::pStages[].
* Other shaders imported from libraries should have been added by
* anv_graphics_pipeline_import_lib().
*/
uint32_t shader_count = anv_graphics_pipeline_imported_shader_count(stages);
for (uint32_t i = 0; i < info->stageCount; i++) {
gl_shader_stage stage = vk_to_mesa_shader_stage(info->pStages[i].stage);
/* If a pipeline library is loaded in this stage, we should ignore the
* pStages[] entry of the same stage.
*/
if (stages[stage].imported.bin != NULL)
continue;
stages[stage].stage = stage;
stages[stage].pipeline_flags = pipeline->base.flags;
stages[stage].pipeline_pNext = info->pNext;
stages[stage].info = &info->pStages[i];
stages[stage].feedback_idx = shader_count++;
anv_stage_write_shader_hash(&stages[stage], device);
}
/* Prepare shader keys for all shaders in pipeline->base.active_stages
* (this includes libraries) before generating the hash for cache look up.
*
* We're doing this because the spec states that :
*
* "When an implementation is looking up a pipeline in a pipeline cache,
* if that pipeline is being created using linked libraries,
* implementations should always return an equivalent pipeline created
* with VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT if available,
* whether or not that bit was specified."
*
* So even if the application does not request link optimization, we have
* to do our cache lookup with the entire set of shader sha1s so that we
* can find what would be the best optimized pipeline in the case as if we
* had compiled all the shaders together and known the full graphics state.
*/
anv_graphics_pipeline_init_keys(pipeline, state, stages);
uint32_t view_mask = state->rp ? state->rp->view_mask : 0;
unsigned char sha1[20];
anv_pipeline_hash_graphics(pipeline, stages, view_mask, sha1);
for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (!anv_pipeline_base_has_stage(pipeline, s))
continue;
stages[s].cache_key.stage = s;
memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
}
const bool retain_shaders =
pipeline->base.flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT;
const bool link_optimize =
pipeline->base.flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT;
VkResult result = VK_SUCCESS;
const bool skip_cache_lookup =
(pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
if (!skip_cache_lookup) {
bool found_all_shaders =
anv_graphics_pipeline_load_cached_shaders(pipeline, cache, stages,
link_optimize,
pipeline_feedback);
if (found_all_shaders) {
/* If we need to retain shaders, we need to also load from the NIR
* cache.
*/
if (pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB && retain_shaders) {
result = anv_graphics_pipeline_load_nir(pipeline, cache,
stages,
pipeline->base.mem_ctx,
false /* need_clone */);
if (result != VK_SUCCESS) {
vk_perf(VK_LOG_OBJS(cache ? &cache->base :
&pipeline->base.device->vk.base),
"Found all ISA shaders in the cache but not all NIR shaders.");
} else {
anv_graphics_lib_retain_shaders(pipeline, stages, false /* will_compile */);
}
}
if (result == VK_SUCCESS)
goto done;
for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (!anv_pipeline_base_has_stage(pipeline, s))
continue;
if (stages[s].nir) {
ralloc_free(stages[s].nir);
stages[s].nir = NULL;
}
assert(pipeline->shaders[s] != NULL);
anv_shader_bin_unref(device, pipeline->shaders[s]);
pipeline->shaders[s] = NULL;
}
}
}
if (pipeline->base.flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR)
return VK_PIPELINE_COMPILE_REQUIRED;
void *tmp_ctx = ralloc_context(NULL);
result = anv_graphics_pipeline_load_nir(pipeline, cache, stages,
tmp_ctx, link_optimize /* need_clone */);
if (result != VK_SUCCESS)
goto fail;
/* Retain shaders now if asked, this only applies to libraries */
if (pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB && retain_shaders)
anv_graphics_lib_retain_shaders(pipeline, stages, true /* will_compile */);
/* The following steps will be executed for shaders we need to compile :
*
* - specified through VkGraphicsPipelineCreateInfo::pStages[]
*
* - or compiled from libraries with retained shaders (libraries
* compiled with CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT) if the
* pipeline has the CREATE_LINK_TIME_OPTIMIZATION_BIT flag.
*/
/* Preprocess all NIR shaders. */
for (int s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
link_optimize, s))
continue;
anv_stage_allocate_bind_map_tables(&pipeline->base, &stages[s], tmp_ctx);
anv_pipeline_nir_preprocess(&pipeline->base, &stages[s]);
}
/* Walk backwards to link */
struct anv_pipeline_stage *next_stage = NULL;
for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
gl_shader_stage s = graphics_shader_order[i];
if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
link_optimize, s))
continue;
struct anv_pipeline_stage *stage = &stages[s];
switch (s) {
case MESA_SHADER_VERTEX:
anv_pipeline_link_vs(compiler, stage, next_stage);
break;
case MESA_SHADER_TESS_CTRL:
anv_pipeline_link_tcs(compiler, stage, next_stage);
break;
case MESA_SHADER_TESS_EVAL:
anv_pipeline_link_tes(compiler, stage, next_stage);
break;
case MESA_SHADER_GEOMETRY:
anv_pipeline_link_gs(compiler, stage, next_stage);
break;
case MESA_SHADER_TASK:
anv_pipeline_link_task(compiler, stage, next_stage);
break;
case MESA_SHADER_MESH:
anv_pipeline_link_mesh(compiler, stage, next_stage);
break;
case MESA_SHADER_FRAGMENT:
anv_pipeline_link_fs(compiler, stage, state->rp);
break;
default:
unreachable("Invalid graphics shader stage");
}
next_stage = stage;
}
bool use_primitive_replication = false;
if (devinfo->ver >= 12 && view_mask != 0) {
/* For some pipelines HW Primitive Replication can be used instead of
* instancing to implement Multiview. This depend on how viewIndex is
* used in all the active shaders, so this check can't be done per
* individual shaders.
*/
nir_shader *shaders[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
for (unsigned s = 0; s < ARRAY_SIZE(shaders); s++)
shaders[s] = stages[s].nir;
use_primitive_replication =
anv_check_for_primitive_replication(device,
pipeline->base.active_stages,
shaders, view_mask);
}
struct anv_pipeline_stage *prev_stage = NULL;
for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
gl_shader_stage s = graphics_shader_order[i];
if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
link_optimize, s))
continue;
struct anv_pipeline_stage *stage = &stages[s];
int64_t stage_start = os_time_get_nano();
anv_pipeline_lower_nir(&pipeline->base, tmp_ctx, stage,
&pipeline->base.layout, view_mask,
use_primitive_replication);
struct shader_info *cur_info = &stage->nir->info;
if (prev_stage && compiler->nir_options[s]->unify_interfaces) {
struct shader_info *prev_info = &prev_stage->nir->info;
prev_info->outputs_written |= cur_info->inputs_read &
~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
cur_info->inputs_read |= prev_info->outputs_written &
~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
prev_info->patch_outputs_written |= cur_info->patch_inputs_read;
cur_info->patch_inputs_read |= prev_info->patch_outputs_written;
}
anv_fixup_subgroup_size(device, cur_info);
stage->feedback.duration += os_time_get_nano() - stage_start;
prev_stage = stage;
}
/* In the case the platform can write the primitive variable shading rate
* and KHR_fragment_shading_rate is enabled :
* - there can be a fragment shader but we don't have it yet
* - the fragment shader needs fragment shading rate
*
* figure out the last geometry stage that should write the primitive
* shading rate, and ensure it is marked as used there. The backend will
* write a default value if the shader doesn't actually write it.
*
* We iterate backwards in the stage and stop on the first shader that can
* set the value.
*
* Don't apply this to MESH stages, as this is a per primitive thing.
*/
if (devinfo->has_coarse_pixel_primitive_and_cb &&
device->vk.enabled_extensions.KHR_fragment_shading_rate &&
pipeline_has_coarse_pixel(state->dynamic, state->ms, state->fsr) &&
(!stages[MESA_SHADER_FRAGMENT].info ||
stages[MESA_SHADER_FRAGMENT].key.wm.coarse_pixel) &&
stages[MESA_SHADER_MESH].nir == NULL) {
struct anv_pipeline_stage *last_psr = NULL;
for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
gl_shader_stage s =
graphics_shader_order[ARRAY_SIZE(graphics_shader_order) - i - 1];
if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
link_optimize, s) ||
!gl_shader_stage_can_set_fragment_shading_rate(s))
continue;
last_psr = &stages[s];
break;
}
/* Only set primitive shading rate if there is a pre-rasterization
* shader in this pipeline/pipeline-library.
*/
if (last_psr)
last_psr->nir->info.outputs_written |= VARYING_BIT_PRIMITIVE_SHADING_RATE;
}
prev_stage = NULL;
for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
gl_shader_stage s = graphics_shader_order[i];
struct anv_pipeline_stage *stage = &stages[s];
if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages, link_optimize, s))
continue;
int64_t stage_start = os_time_get_nano();
void *stage_ctx = ralloc_context(NULL);
char *error_str = NULL;
switch (s) {
case MESA_SHADER_VERTEX:
anv_pipeline_compile_vs(compiler, stage_ctx, pipeline,
stage, view_mask, &error_str);
break;
case MESA_SHADER_TESS_CTRL:
anv_pipeline_compile_tcs(compiler, stage_ctx, device,
stage, prev_stage, &error_str);
break;
case MESA_SHADER_TESS_EVAL:
anv_pipeline_compile_tes(compiler, stage_ctx, device,
stage, prev_stage, &error_str);
break;
case MESA_SHADER_GEOMETRY:
anv_pipeline_compile_gs(compiler, stage_ctx, device,
stage, prev_stage, &error_str);
break;
case MESA_SHADER_TASK:
anv_pipeline_compile_task(compiler, stage_ctx, device,
stage, &error_str);
break;
case MESA_SHADER_MESH:
anv_pipeline_compile_mesh(compiler, stage_ctx, device,
stage, prev_stage, &error_str);
break;
case MESA_SHADER_FRAGMENT:
anv_pipeline_compile_fs(compiler, stage_ctx, device,
stage, prev_stage, pipeline,
view_mask, use_primitive_replication,
&error_str);
break;
default:
unreachable("Invalid graphics shader stage");
}
if (stage->code == NULL) {
if (error_str)
result = vk_errorf(pipeline, VK_ERROR_UNKNOWN, "%s", error_str);
else
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
ralloc_free(stage_ctx);
goto fail;
}
anv_nir_validate_push_layout(device->physical, &stage->prog_data.base,
&stage->bind_map);
struct anv_shader_upload_params upload_params = {
.stage = s,
.key_data = &stage->cache_key,
.key_size = sizeof(stage->cache_key),
.kernel_data = stage->code,
.kernel_size = stage->prog_data.base.program_size,
.prog_data = &stage->prog_data.base,
.prog_data_size = brw_prog_data_size(s),
.stats = stage->stats,
.num_stats = stage->num_stats,
.xfb_info = stage->nir->xfb_info,
.bind_map = &stage->bind_map,
.push_desc_info = &stage->push_desc_info,
};
stage->bin =
anv_device_upload_kernel(device, cache, &upload_params);
if (!stage->bin) {
ralloc_free(stage_ctx);
result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
anv_pipeline_add_executables(&pipeline->base, stage);
pipeline->shaders[s] = stage->bin;
ralloc_free(stage_ctx);
stage->feedback.duration += os_time_get_nano() - stage_start;
prev_stage = stage;
}
/* Finally add the imported shaders that were not compiled as part of this
* step.
*/
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (!anv_pipeline_base_has_stage(pipeline, s))
continue;
if (pipeline->shaders[s] != NULL)
continue;
/* We should have recompiled everything with link optimization. */
assert(!link_optimize);
struct anv_pipeline_stage *stage = &stages[s];
pipeline->shaders[s] = anv_shader_bin_ref(stage->imported.bin);
}
ralloc_free(tmp_ctx);
done:
/* Write the feedback index into the pipeline */
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (!anv_pipeline_base_has_stage(pipeline, s))
continue;
struct anv_pipeline_stage *stage = &stages[s];
pipeline->feedback_index[s] = stage->feedback_idx;
pipeline->robust_flags[s] = stage->robust_flags;
anv_pipeline_account_shader(&pipeline->base, pipeline->shaders[s]);
}
pipeline_feedback->duration = os_time_get_nano() - pipeline_start;
return VK_SUCCESS;
fail:
ralloc_free(tmp_ctx);
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(device, pipeline->shaders[s]);
}
return result;
}
static VkResult
anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
struct vk_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info)
{
ASSERTED const VkPipelineShaderStageCreateInfo *sinfo = &info->stage;
assert(sinfo->stage == VK_SHADER_STAGE_COMPUTE_BIT);
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
int64_t pipeline_start = os_time_get_nano();
struct anv_device *device = pipeline->base.device;
const struct brw_compiler *compiler = device->physical->compiler;
struct anv_pipeline_stage stage = {
.stage = MESA_SHADER_COMPUTE,
.info = &info->stage,
.pipeline_flags = pipeline->base.flags,
.pipeline_pNext = info->pNext,
.cache_key = {
.stage = MESA_SHADER_COMPUTE,
},
.feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
},
};
anv_stage_write_shader_hash(&stage, device);
populate_cs_prog_key(&stage, device);
const bool skip_cache_lookup =
(pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
anv_pipeline_hash_compute(pipeline, &stage, stage.cache_key.sha1);
bool cache_hit = false;
if (!skip_cache_lookup) {
stage.bin = anv_device_search_for_kernel(device, cache,
&stage.cache_key,
sizeof(stage.cache_key),
&cache_hit);
}
if (stage.bin == NULL &&
(pipeline->base.flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT))
return VK_PIPELINE_COMPILE_REQUIRED;
void *mem_ctx = ralloc_context(NULL);
if (stage.bin == NULL) {
int64_t stage_start = os_time_get_nano();
anv_stage_allocate_bind_map_tables(&pipeline->base, &stage, mem_ctx);
VkResult result = anv_pipeline_stage_get_nir(&pipeline->base, cache,
mem_ctx, &stage);
if (result != VK_SUCCESS) {
ralloc_free(mem_ctx);
return result;
}
anv_pipeline_nir_preprocess(&pipeline->base, &stage);
anv_pipeline_lower_nir(&pipeline->base, mem_ctx, &stage,
&pipeline->base.layout, 0 /* view_mask */,
false /* use_primitive_replication */);
anv_fixup_subgroup_size(device, &stage.nir->info);
stage.num_stats = 1;
struct brw_compile_cs_params params = {
.base = {
.nir = stage.nir,
.stats = stage.stats,
.log_data = device,
.mem_ctx = mem_ctx,
.source_hash = stage.source_hash,
},
.key = &stage.key.cs,
.prog_data = &stage.prog_data.cs,
};
stage.code = brw_compile_cs(compiler, &params);
if (stage.code == NULL) {
VkResult result;
if (params.base.error_str)
result = vk_errorf(pipeline, VK_ERROR_UNKNOWN, "%s", params.base.error_str);
else
result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
ralloc_free(mem_ctx);
return result;
}
anv_nir_validate_push_layout(device->physical, &stage.prog_data.base,
&stage.bind_map);
struct anv_shader_upload_params upload_params = {
.stage = MESA_SHADER_COMPUTE,
.key_data = &stage.cache_key,
.key_size = sizeof(stage.cache_key),
.kernel_data = stage.code,
.kernel_size = stage.prog_data.base.program_size,
.prog_data = &stage.prog_data.base,
.prog_data_size = sizeof(stage.prog_data.cs),
.stats = stage.stats,
.num_stats = stage.num_stats,
.bind_map = &stage.bind_map,
.push_desc_info = &stage.push_desc_info,
};
stage.bin = anv_device_upload_kernel(device, cache, &upload_params);
if (!stage.bin) {
ralloc_free(mem_ctx);
return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
}
stage.feedback.duration = os_time_get_nano() - stage_start;
}
anv_pipeline_account_shader(&pipeline->base, stage.bin);
anv_pipeline_add_executables(&pipeline->base, &stage);
ralloc_free(mem_ctx);
if (cache_hit) {
stage.feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
pipeline_feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfo *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
if (create_feedback->pipelineStageCreationFeedbackCount) {
assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
}
}
pipeline->cs = stage.bin;
return VK_SUCCESS;
}
static VkResult
anv_compute_pipeline_create(struct anv_device *device,
struct vk_pipeline_cache *cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
struct anv_compute_pipeline *pipeline;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
result = anv_pipeline_init(&pipeline->base, device,
ANV_PIPELINE_COMPUTE,
vk_compute_pipeline_create_flags(pCreateInfo),
pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
anv_pipeline_init_layout(&pipeline->base, pipeline_layout);
pipeline->base.active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
pipeline->batch_data, sizeof(pipeline->batch_data));
result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo);
if (result != VK_SUCCESS) {
anv_pipeline_finish(&pipeline->base, device);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
anv_genX(device->info, compute_pipeline_emit)(pipeline);
ANV_RMV(compute_pipeline_create, device, pipeline, false);
*pPipeline = anv_pipeline_to_handle(&pipeline->base);
return pipeline->base.batch.status;
}
VkResult anv_CreateComputePipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
VkResult result = VK_SUCCESS;
unsigned i;
for (i = 0; i < count; i++) {
const VkPipelineCreateFlags2KHR flags =
vk_compute_pipeline_create_flags(&pCreateInfos[i]);
VkResult res = anv_compute_pipeline_create(device, pipeline_cache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (res != VK_SUCCESS) {
result = res;
if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
break;
pPipelines[i] = VK_NULL_HANDLE;
}
}
for (; i < count; i++)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
/**
* Calculate the desired L3 partitioning based on the current state of the
* pipeline. For now this simply returns the conservative defaults calculated
* by get_default_l3_weights(), but we could probably do better by gathering
* more statistics from the pipeline state (e.g. guess of expected URB usage
* and bound surfaces), or by using feed-back from performance counters.
*/
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
{
const struct intel_device_info *devinfo = pipeline->device->info;
const struct intel_l3_weights w =
intel_get_default_l3_weights(devinfo, true, needs_slm);
pipeline->l3_config = intel_get_l3_config(devinfo, w);
}
static uint32_t
get_vs_input_elements(const struct brw_vs_prog_data *vs_prog_data)
{
/* Pull inputs_read out of the VS prog data */
const uint64_t inputs_read = vs_prog_data->inputs_read;
const uint64_t double_inputs_read =
vs_prog_data->double_inputs_read & inputs_read;
assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
return __builtin_popcount(elements) -
__builtin_popcount(elements_double) / 2;
}
static void
anv_graphics_pipeline_emit(struct anv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
pipeline->view_mask = state->rp->view_mask;
anv_pipeline_setup_l3_config(&pipeline->base.base, false);
if (anv_pipeline_is_primitive(pipeline)) {
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
/* The total number of vertex elements we need to program. We might need
* a couple more to implement some of the draw parameters.
*/
pipeline->svgs_count =
(vs_prog_data->uses_vertexid ||
vs_prog_data->uses_instanceid ||
vs_prog_data->uses_firstvertex ||
vs_prog_data->uses_baseinstance) + vs_prog_data->uses_drawid;
pipeline->vs_input_elements = get_vs_input_elements(vs_prog_data);
pipeline->vertex_input_elems =
(BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_VI) ?
0 : pipeline->vs_input_elements) + pipeline->svgs_count;
/* Our implementation of VK_KHR_multiview uses instancing to draw the
* different views when primitive replication cannot be used. If the
* client asks for instancing, we need to multiply by the client's
* instance count at draw time and instance divisor in the vertex
* bindings by the number of views ensure that we repeat the client's
* per-instance data once for each view.
*/
const bool uses_primitive_replication =
anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map.num_pos_slots > 1;
pipeline->instance_multiplier = 1;
if (pipeline->view_mask && !uses_primitive_replication)
pipeline->instance_multiplier = util_bitcount(pipeline->view_mask);
pipeline->vs_source_hash = vs_prog_data->base.base.source_hash;
pipeline->fs_source_hash = wm_prog_data ? wm_prog_data->base.source_hash : 0;
} else {
assert(anv_pipeline_is_mesh(pipeline));
/* TODO(mesh): Mesh vs. Multiview with Instancing. */
}
if (pipeline->base.shaders[MESA_SHADER_FRAGMENT] && state->ms) {
pipeline->sample_shading_enable = state->ms->sample_shading_enable;
pipeline->min_sample_shading = state->ms->min_sample_shading;
}
/* Mark all color output as unused by default */
memset(pipeline->color_output_mapping,
ANV_COLOR_OUTPUT_UNUSED,
sizeof(pipeline->color_output_mapping));
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
/* Count the number of color attachments in the binding table */
const struct anv_pipeline_bind_map *bind_map =
&pipeline->base.shaders[MESA_SHADER_FRAGMENT]->bind_map;
if (state->cal != NULL) {
/* Build a map of fragment color output to attachment */
uint8_t rt_to_att[MAX_RTS];
memset(rt_to_att, ANV_COLOR_OUTPUT_DISABLED, MAX_RTS);
for (uint32_t i = 0; i < MAX_RTS; i++) {
if (state->cal->color_map[i] != MESA_VK_ATTACHMENT_UNUSED)
rt_to_att[state->cal->color_map[i]] = i;
}
/* For each fragment shader output if not unused apply the remapping
* to pipeline->color_output_mapping
*/
unsigned i;
for (i = 0; i < MIN2(bind_map->surface_count, MAX_RTS); i++) {
if (bind_map->surface_to_descriptor[i].set !=
ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
break;
uint32_t index = bind_map->surface_to_descriptor[i].index;
if (index >= MAX_RTS) {
assert(index <= 0xff);
pipeline->color_output_mapping[i] = index;
} else {
pipeline->color_output_mapping[i] = rt_to_att[i];
}
}
pipeline->num_color_outputs = i;
}
}
const struct anv_device *device = pipeline->base.base.device;
const struct intel_device_info *devinfo = device->info;
anv_genX(devinfo, graphics_pipeline_emit)(pipeline, state);
}
static void
anv_graphics_pipeline_import_layout(struct anv_graphics_base_pipeline *pipeline,
struct anv_pipeline_sets_layout *layout)
{
pipeline->base.layout.independent_sets |= layout->independent_sets;
for (uint32_t s = 0; s < layout->num_sets; s++) {
if (layout->set[s].layout == NULL)
continue;
anv_pipeline_sets_layout_add(&pipeline->base.layout, s,
layout->set[s].layout);
}
}
static void
anv_graphics_pipeline_import_lib(struct anv_graphics_base_pipeline *pipeline,
bool link_optimize,
bool retain_shaders,
struct anv_pipeline_stage *stages,
struct anv_graphics_lib_pipeline *lib)
{
struct anv_pipeline_sets_layout *lib_layout =
&lib->base.base.layout;
anv_graphics_pipeline_import_layout(pipeline, lib_layout);
/* We can't have shaders specified twice through libraries. */
assert((pipeline->base.active_stages & lib->base.base.active_stages) == 0);
/* VK_EXT_graphics_pipeline_library:
*
* "To perform link time optimizations,
* VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT must
* be specified on all pipeline libraries that are being linked
* together. Implementations should retain any additional information
* needed to perform optimizations at the final link step when this bit
* is present."
*/
assert(!link_optimize || lib->retain_shaders);
pipeline->base.active_stages |= lib->base.base.active_stages;
uint32_t shader_count = anv_graphics_pipeline_imported_shader_count(stages);
for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.shaders); s++) {
if (lib->base.shaders[s] == NULL)
continue;
stages[s].stage = s;
stages[s].pipeline_flags = pipeline->base.flags;
stages[s].feedback_idx = shader_count + lib->base.feedback_index[s];
stages[s].robust_flags = lib->base.robust_flags[s];
/* Always import the shader sha1, this will be used for cache lookup. */
memcpy(stages[s].shader_sha1, lib->retained_shaders[s].shader_sha1,
sizeof(stages[s].shader_sha1));
stages[s].source_hash = lib->base.shaders[s]->prog_data->source_hash;
stages[s].subgroup_size_type = lib->retained_shaders[s].subgroup_size_type;
stages[s].imported.nir = lib->retained_shaders[s].nir;
stages[s].imported.bin = lib->base.shaders[s];
}
/* When not link optimizing, import the executables (shader descriptions
* for VK_KHR_pipeline_executable_properties). With link optimization there
* is a chance it'll produce different binaries, so we'll add the optimized
* version later.
*/
if (!link_optimize) {
util_dynarray_foreach(&lib->base.base.executables,
struct anv_pipeline_executable, exe) {
util_dynarray_append(&pipeline->base.executables,
struct anv_pipeline_executable, *exe);
}
}
}
static void
anv_graphics_lib_validate_shaders(struct anv_graphics_lib_pipeline *lib,
bool retained_shaders)
{
for (uint32_t s = 0; s < ARRAY_SIZE(lib->retained_shaders); s++) {
if (anv_pipeline_base_has_stage(&lib->base, s)) {
assert(!retained_shaders || lib->retained_shaders[s].nir != NULL);
assert(lib->base.shaders[s] != NULL);
}
}
}
static VkResult
anv_graphics_lib_pipeline_create(struct anv_device *device,
struct vk_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
struct anv_pipeline_stage stages[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
int64_t pipeline_start = os_time_get_nano();
struct anv_graphics_lib_pipeline *pipeline;
VkResult result;
const VkPipelineCreateFlags2KHR flags =
vk_graphics_pipeline_create_flags(pCreateInfo);
assert(flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR);
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext,
PIPELINE_LIBRARY_CREATE_INFO_KHR);
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
result = anv_pipeline_init(&pipeline->base.base, device,
ANV_PIPELINE_GRAPHICS_LIB, flags,
pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pipeline);
if (result == VK_PIPELINE_COMPILE_REQUIRED)
*pPipeline = VK_NULL_HANDLE;
return result;
}
/* Capture the retain state before we compile/load any shader. */
pipeline->retain_shaders =
(flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT) != 0;
/* If we have libraries, import them first. */
if (libs_info) {
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
ANV_FROM_HANDLE(anv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct anv_graphics_lib_pipeline *gfx_pipeline_lib =
anv_pipeline_to_graphics_lib(pipeline_lib);
vk_graphics_pipeline_state_merge(&pipeline->state, &gfx_pipeline_lib->state);
anv_graphics_pipeline_import_lib(&pipeline->base,
false /* link_optimize */,
pipeline->retain_shaders,
stages, gfx_pipeline_lib);
}
}
result = vk_graphics_pipeline_state_fill(&device->vk,
&pipeline->state, pCreateInfo,
NULL /* driver_rp */,
0 /* driver_rp_flags */,
&pipeline->all_state, NULL, 0, NULL);
if (result != VK_SUCCESS) {
anv_pipeline_finish(&pipeline->base.base, device);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
pipeline->base.base.active_stages = pipeline->state.shader_stages;
/* After we've imported all the libraries' layouts, import the pipeline
* layout and hash the whole lot.
*/
ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
if (pipeline_layout != NULL) {
anv_graphics_pipeline_import_layout(&pipeline->base,
&pipeline_layout->sets_layout);
}
anv_pipeline_sets_layout_hash(&pipeline->base.base.layout);
/* Compile shaders. We can skip this if there are no active stage in that
* pipeline.
*/
if (pipeline->base.base.active_stages != 0) {
result = anv_graphics_pipeline_compile(&pipeline->base, stages,
cache, &pipeline_feedback,
pCreateInfo, &pipeline->state);
if (result != VK_SUCCESS) {
anv_pipeline_finish(&pipeline->base.base, device);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
anv_fill_pipeline_creation_feedback(&pipeline->base, &pipeline_feedback,
pCreateInfo, stages);
anv_graphics_lib_validate_shaders(
pipeline,
flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT);
*pPipeline = anv_pipeline_to_handle(&pipeline->base.base);
return VK_SUCCESS;
}
static VkResult
anv_graphics_pipeline_create(struct anv_device *device,
struct vk_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
struct anv_pipeline_stage stages[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
int64_t pipeline_start = os_time_get_nano();
struct anv_graphics_pipeline *pipeline;
VkResult result;
const VkPipelineCreateFlags2KHR flags =
vk_graphics_pipeline_create_flags(pCreateInfo);
assert((flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) == 0);
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext,
PIPELINE_LIBRARY_CREATE_INFO_KHR);
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
/* Initialize some information required by shaders */
result = anv_pipeline_init(&pipeline->base.base, device,
ANV_PIPELINE_GRAPHICS, flags,
pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
const bool link_optimize =
(flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
struct vk_graphics_pipeline_all_state all;
struct vk_graphics_pipeline_state state = { };
/* If we have libraries, import them first. */
if (libs_info) {
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
ANV_FROM_HANDLE(anv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct anv_graphics_lib_pipeline *gfx_pipeline_lib =
anv_pipeline_to_graphics_lib(pipeline_lib);
/* If we have link time optimization, all libraries must be created
* with
* VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT.
*/
assert(!link_optimize || gfx_pipeline_lib->retain_shaders);
vk_graphics_pipeline_state_merge(&state, &gfx_pipeline_lib->state);
anv_graphics_pipeline_import_lib(&pipeline->base,
link_optimize,
false,
stages,
gfx_pipeline_lib);
}
}
result = vk_graphics_pipeline_state_fill(&device->vk, &state, pCreateInfo,
NULL /* driver_rp */,
0 /* driver_rp_flags */,
&all, NULL, 0, NULL);
if (result != VK_SUCCESS) {
anv_pipeline_finish(&pipeline->base.base, device);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
pipeline->dynamic_state.vi = &pipeline->vertex_input;
pipeline->dynamic_state.ms.sample_locations = &pipeline->base.sample_locations;
vk_dynamic_graphics_state_fill(&pipeline->dynamic_state, &state);
pipeline->base.base.active_stages = state.shader_stages;
/* Sanity check on the shaders */
assert(pipeline->base.base.active_stages & VK_SHADER_STAGE_VERTEX_BIT ||
pipeline->base.base.active_stages & VK_SHADER_STAGE_MESH_BIT_EXT);
if (anv_pipeline_is_mesh(pipeline)) {
assert(device->physical->vk.supported_extensions.EXT_mesh_shader);
}
/* After we've imported all the libraries' layouts, import the pipeline
* layout and hash the whole lot.
*/
ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
if (pipeline_layout != NULL) {
anv_graphics_pipeline_import_layout(&pipeline->base,
&pipeline_layout->sets_layout);
}
anv_pipeline_sets_layout_hash(&pipeline->base.base.layout);
/* Compile shaders, all required information should be have been copied in
* the previous step. We can skip this if there are no active stage in that
* pipeline.
*/
result = anv_graphics_pipeline_compile(&pipeline->base, stages,
cache, &pipeline_feedback,
pCreateInfo, &state);
if (result != VK_SUCCESS) {
anv_pipeline_finish(&pipeline->base.base, device);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
/* Prepare a batch for the commands and emit all the non dynamic ones.
*/
anv_batch_set_storage(&pipeline->base.base.batch, ANV_NULL_ADDRESS,
pipeline->batch_data, sizeof(pipeline->batch_data));
if (pipeline->base.base.active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
pipeline->base.base.active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
if (anv_pipeline_is_mesh(pipeline))
assert(device->physical->vk.supported_extensions.EXT_mesh_shader);
anv_graphics_pipeline_emit(pipeline, &state);
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
anv_fill_pipeline_creation_feedback(&pipeline->base, &pipeline_feedback,
pCreateInfo, stages);
ANV_RMV(graphics_pipeline_create, device, pipeline, false);
*pPipeline = anv_pipeline_to_handle(&pipeline->base.base);
return pipeline->base.base.batch.status;
}
VkResult anv_CreateGraphicsPipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
VkResult result = VK_SUCCESS;
unsigned i;
for (i = 0; i < count; i++) {
assert(pCreateInfos[i].sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
const VkPipelineCreateFlags2KHR flags =
vk_graphics_pipeline_create_flags(&pCreateInfos[i]);
VkResult res;
if (flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) {
res = anv_graphics_lib_pipeline_create(device, pipeline_cache,
&pCreateInfos[i],
pAllocator,
&pPipelines[i]);
} else {
res = anv_graphics_pipeline_create(device,
pipeline_cache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
}
if (res != VK_SUCCESS) {
result = res;
if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
break;
pPipelines[i] = VK_NULL_HANDLE;
}
}
for (; i < count; i++)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
static bool
should_remat_cb(nir_instr *instr, void *data)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
return nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_resource_intel;
}
static VkResult
compile_upload_rt_shader(struct anv_ray_tracing_pipeline *pipeline,
struct vk_pipeline_cache *cache,
nir_shader *nir,
struct anv_pipeline_stage *stage,
void *mem_ctx)
{
const struct brw_compiler *compiler =
pipeline->base.device->physical->compiler;
const struct intel_device_info *devinfo = compiler->devinfo;
struct brw_nir_lower_shader_calls_state lowering_state = {
.devinfo = devinfo,
.key = &stage->key.bs,
};
nir_shader **resume_shaders = NULL;
uint32_t num_resume_shaders = 0;
if (nir->info.stage != MESA_SHADER_COMPUTE) {
const nir_lower_shader_calls_options opts = {
.address_format = nir_address_format_64bit_global,
.stack_alignment = BRW_BTD_STACK_ALIGN,
.localized_loads = true,
.vectorizer_callback = brw_nir_should_vectorize_mem,
.vectorizer_data = NULL,
.should_remat_callback = should_remat_cb,
};
NIR_PASS(_, nir, brw_nir_lower_rt_intrinsics_pre_trace);
NIR_PASS(_, nir, nir_lower_shader_calls, &opts,
&resume_shaders, &num_resume_shaders, mem_ctx);
NIR_PASS(_, nir, brw_nir_lower_shader_calls, &lowering_state);
NIR_PASS(_, nir, brw_nir_lower_rt_intrinsics, &stage->key.base, devinfo);
}
for (unsigned i = 0; i < num_resume_shaders; i++) {
NIR_PASS(_,resume_shaders[i], brw_nir_lower_shader_calls, &lowering_state);
NIR_PASS(_, resume_shaders[i], brw_nir_lower_rt_intrinsics, &stage->key.base, devinfo);
}
struct brw_compile_bs_params params = {
.base = {
.nir = nir,
.stats = stage->stats,
.log_data = pipeline->base.device,
.mem_ctx = mem_ctx,
.source_hash = stage->source_hash,
},
.key = &stage->key.bs,
.prog_data = &stage->prog_data.bs,
.num_resume_shaders = num_resume_shaders,
.resume_shaders = resume_shaders,
};
stage->code = brw_compile_bs(compiler, &params);
if (stage->code == NULL) {
VkResult result;
if (params.base.error_str)
result = vk_errorf(pipeline, VK_ERROR_UNKNOWN, "%s", params.base.error_str);
else
result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
return result;
}
struct anv_shader_upload_params upload_params = {
.stage = stage->stage,
.key_data = &stage->cache_key,
.key_size = sizeof(stage->cache_key),
.kernel_data = stage->code,
.kernel_size = stage->prog_data.base.program_size,
.prog_data = &stage->prog_data.base,
.prog_data_size = brw_prog_data_size(stage->stage),
.stats = stage->stats,
.num_stats = 1,
.bind_map = &stage->bind_map,
.push_desc_info = &stage->push_desc_info,
};
stage->bin =
anv_device_upload_kernel(pipeline->base.device, cache, &upload_params);
if (stage->bin == NULL)
return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
anv_pipeline_add_executables(&pipeline->base, stage);
return VK_SUCCESS;
}
static bool
is_rt_stack_size_dynamic(const VkRayTracingPipelineCreateInfoKHR *info)
{
if (info->pDynamicState == NULL)
return false;
for (unsigned i = 0; i < info->pDynamicState->dynamicStateCount; i++) {
if (info->pDynamicState->pDynamicStates[i] ==
VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR)
return true;
}
return false;
}
static void
anv_pipeline_compute_ray_tracing_stacks(struct anv_ray_tracing_pipeline *pipeline,
const VkRayTracingPipelineCreateInfoKHR *info,
uint32_t *stack_max)
{
if (is_rt_stack_size_dynamic(info)) {
pipeline->stack_size = 0; /* 0 means dynamic */
} else {
/* From the Vulkan spec:
*
* "If the stack size is not set explicitly, the stack size for a
* pipeline is:
*
* rayGenStackMax +
* min(1, maxPipelineRayRecursionDepth) ×
* max(closestHitStackMax, missStackMax,
* intersectionStackMax + anyHitStackMax) +
* max(0, maxPipelineRayRecursionDepth-1) ×
* max(closestHitStackMax, missStackMax) +
* 2 × callableStackMax"
*/
pipeline->stack_size =
stack_max[MESA_SHADER_RAYGEN] +
MIN2(1, info->maxPipelineRayRecursionDepth) *
MAX4(stack_max[MESA_SHADER_CLOSEST_HIT],
stack_max[MESA_SHADER_MISS],
stack_max[MESA_SHADER_INTERSECTION],
stack_max[MESA_SHADER_ANY_HIT]) +
MAX2(0, (int)info->maxPipelineRayRecursionDepth - 1) *
MAX2(stack_max[MESA_SHADER_CLOSEST_HIT],
stack_max[MESA_SHADER_MISS]) +
2 * stack_max[MESA_SHADER_CALLABLE];
/* This is an extremely unlikely case but we need to set it to some
* non-zero value so that we don't accidentally think it's dynamic.
* Our minimum stack size is 2KB anyway so we could set to any small
* value we like.
*/
if (pipeline->stack_size == 0)
pipeline->stack_size = 1;
}
}
static enum brw_rt_ray_flags
anv_pipeline_get_pipeline_ray_flags(VkPipelineCreateFlags2KHR flags)
{
uint32_t ray_flags = 0;
const bool rt_skip_triangles =
flags & VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR;
const bool rt_skip_aabbs =
flags & VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_AABBS_BIT_KHR;
assert(!(rt_skip_triangles && rt_skip_aabbs));
if (rt_skip_triangles)
ray_flags |= BRW_RT_RAY_FLAG_SKIP_TRIANGLES;
else if (rt_skip_aabbs)
ray_flags |= BRW_RT_RAY_FLAG_SKIP_AABBS;
return ray_flags;
}
static struct anv_pipeline_stage *
anv_pipeline_init_ray_tracing_stages(struct anv_ray_tracing_pipeline *pipeline,
const VkRayTracingPipelineCreateInfoKHR *info,
void *tmp_pipeline_ctx)
{
struct anv_device *device = pipeline->base.device;
/* Create enough stage entries for all shader modules plus potential
* combinaisons in the groups.
*/
struct anv_pipeline_stage *stages =
rzalloc_array(tmp_pipeline_ctx, struct anv_pipeline_stage, info->stageCount);
enum brw_rt_ray_flags ray_flags =
anv_pipeline_get_pipeline_ray_flags(pipeline->base.flags);
for (uint32_t i = 0; i < info->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
if (vk_pipeline_shader_stage_is_null(sinfo))
continue;
int64_t stage_start = os_time_get_nano();
stages[i] = (struct anv_pipeline_stage) {
.stage = vk_to_mesa_shader_stage(sinfo->stage),
.pipeline_flags = pipeline->base.flags,
.pipeline_pNext = info->pNext,
.info = sinfo,
.cache_key = {
.stage = vk_to_mesa_shader_stage(sinfo->stage),
},
.feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
},
};
anv_stage_allocate_bind_map_tables(&pipeline->base, &stages[i],
tmp_pipeline_ctx);
pipeline->base.active_stages |= sinfo->stage;
anv_stage_write_shader_hash(&stages[i], device);
populate_bs_prog_key(&stages[i],
pipeline->base.device,
ray_flags);
if (stages[i].stage != MESA_SHADER_INTERSECTION) {
anv_pipeline_hash_ray_tracing_shader(pipeline, &stages[i],
stages[i].cache_key.sha1);
}
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
for (uint32_t i = 0; i < info->groupCount; i++) {
const VkRayTracingShaderGroupCreateInfoKHR *ginfo = &info->pGroups[i];
if (ginfo->type != VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR)
continue;
int64_t stage_start = os_time_get_nano();
uint32_t intersection_idx = ginfo->intersectionShader;
assert(intersection_idx < info->stageCount);
uint32_t any_hit_idx = ginfo->anyHitShader;
if (any_hit_idx != VK_SHADER_UNUSED_KHR) {
assert(any_hit_idx < info->stageCount);
anv_pipeline_hash_ray_tracing_combined_shader(pipeline,
&stages[intersection_idx],
&stages[any_hit_idx],
stages[intersection_idx].cache_key.sha1);
} else {
anv_pipeline_hash_ray_tracing_shader(pipeline,
&stages[intersection_idx],
stages[intersection_idx].cache_key.sha1);
}
stages[intersection_idx].feedback.duration += os_time_get_nano() - stage_start;
}
return stages;
}
static bool
anv_ray_tracing_pipeline_load_cached_shaders(struct anv_ray_tracing_pipeline *pipeline,
struct vk_pipeline_cache *cache,
const VkRayTracingPipelineCreateInfoKHR *info,
struct anv_pipeline_stage *stages,
VkPipelineCreationFeedback *pipeline_feedback)
{
uint32_t shaders = 0, found = 0, cache_hits = 0;
for (uint32_t i = 0; i < info->stageCount; i++) {
if (stages[i].info == NULL)
continue;
shaders++;
int64_t stage_start = os_time_get_nano();
bool cache_hit;
stages[i].bin = anv_device_search_for_kernel(pipeline->base.device, cache,
&stages[i].cache_key,
sizeof(stages[i].cache_key),
&cache_hit);
if (cache_hit) {
cache_hits++;
stages[i].feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
if (stages[i].bin != NULL) {
found++;
anv_pipeline_add_executables(&pipeline->base, &stages[i]);
}
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
if (cache_hits == shaders) {
pipeline_feedback->flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
return found == shaders;
}
static VkResult
anv_pipeline_compile_ray_tracing(struct anv_ray_tracing_pipeline *pipeline,
void *tmp_pipeline_ctx,
struct anv_pipeline_stage *stages,
struct vk_pipeline_cache *cache,
const VkRayTracingPipelineCreateInfoKHR *info)
{
const struct intel_device_info *devinfo = pipeline->base.device->info;
VkResult result;
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
int64_t pipeline_start = os_time_get_nano();
const bool skip_cache_lookup =
(pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
if (!skip_cache_lookup &&
anv_ray_tracing_pipeline_load_cached_shaders(pipeline, cache, info, stages,
&pipeline_feedback)) {
goto done;
}
if (pipeline->base.flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR)
return VK_PIPELINE_COMPILE_REQUIRED;
for (uint32_t i = 0; i < info->stageCount; i++) {
if (stages[i].info == NULL)
continue;
/* Intersection and any-hit need to fetch the nir always,
* so that they can be handled correctly below in the group section.
* For the other stages, if we found them in the cache, skip this part.
*/
if (!(stages[i].stage == MESA_SHADER_INTERSECTION ||
stages[i].stage == MESA_SHADER_ANY_HIT) &&
stages[i].bin != NULL)
continue;
int64_t stage_start = os_time_get_nano();
VkResult result = anv_pipeline_stage_get_nir(&pipeline->base, cache,
tmp_pipeline_ctx,
&stages[i]);
if (result != VK_SUCCESS)
return result;
anv_pipeline_nir_preprocess(&pipeline->base, &stages[i]);
anv_pipeline_lower_nir(&pipeline->base, tmp_pipeline_ctx, &stages[i],
&pipeline->base.layout, 0 /* view_mask */,
false /* use_primitive_replication */);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
for (uint32_t i = 0; i < info->stageCount; i++) {
if (stages[i].info == NULL)
continue;
/* Shader found in cache already. */
if (stages[i].bin != NULL)
continue;
/* We handle intersection shaders as part of the group */
if (stages[i].stage == MESA_SHADER_INTERSECTION)
continue;
int64_t stage_start = os_time_get_nano();
void *tmp_stage_ctx = ralloc_context(tmp_pipeline_ctx);
nir_shader *nir = nir_shader_clone(tmp_stage_ctx, stages[i].nir);
switch (stages[i].stage) {
case MESA_SHADER_RAYGEN:
brw_nir_lower_raygen(nir, devinfo);
break;
case MESA_SHADER_ANY_HIT:
brw_nir_lower_any_hit(nir, devinfo);
break;
case MESA_SHADER_CLOSEST_HIT:
brw_nir_lower_closest_hit(nir, devinfo);
break;
case MESA_SHADER_MISS:
brw_nir_lower_miss(nir, devinfo);
break;
case MESA_SHADER_INTERSECTION:
unreachable("These are handled later");
case MESA_SHADER_CALLABLE:
brw_nir_lower_callable(nir, devinfo);
break;
default:
unreachable("Invalid ray-tracing shader stage");
}
result = compile_upload_rt_shader(pipeline, cache, nir, &stages[i],
tmp_stage_ctx);
if (result != VK_SUCCESS) {
ralloc_free(tmp_stage_ctx);
return result;
}
ralloc_free(tmp_stage_ctx);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
done:
for (uint32_t i = 0; i < info->groupCount; i++) {
const VkRayTracingShaderGroupCreateInfoKHR *ginfo = &info->pGroups[i];
struct anv_rt_shader_group *group = &pipeline->groups[i];
group->type = ginfo->type;
switch (ginfo->type) {
case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR:
assert(ginfo->generalShader < info->stageCount);
group->general = stages[ginfo->generalShader].bin;
break;
case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR:
if (ginfo->anyHitShader < info->stageCount)
group->any_hit = stages[ginfo->anyHitShader].bin;
if (ginfo->closestHitShader < info->stageCount)
group->closest_hit = stages[ginfo->closestHitShader].bin;
break;
case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR: {
if (ginfo->closestHitShader < info->stageCount)
group->closest_hit = stages[ginfo->closestHitShader].bin;
uint32_t intersection_idx = info->pGroups[i].intersectionShader;
assert(intersection_idx < info->stageCount);
/* Only compile this stage if not already found in the cache. */
if (stages[intersection_idx].bin == NULL) {
/* The any-hit and intersection shader have to be combined */
uint32_t any_hit_idx = info->pGroups[i].anyHitShader;
const nir_shader *any_hit = NULL;
if (any_hit_idx < info->stageCount)
any_hit = stages[any_hit_idx].nir;
void *tmp_group_ctx = ralloc_context(tmp_pipeline_ctx);
nir_shader *intersection =
nir_shader_clone(tmp_group_ctx, stages[intersection_idx].nir);
brw_nir_lower_combined_intersection_any_hit(intersection, any_hit,
devinfo);
result = compile_upload_rt_shader(pipeline, cache,
intersection,
&stages[intersection_idx],
tmp_group_ctx);
ralloc_free(tmp_group_ctx);
if (result != VK_SUCCESS)
return result;
}
group->intersection = stages[intersection_idx].bin;
break;
}
default:
unreachable("Invalid ray tracing shader group type");
}
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfo *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
uint32_t stage_count = create_feedback->pipelineStageCreationFeedbackCount;
assert(stage_count == 0 || info->stageCount == stage_count);
for (uint32_t i = 0; i < stage_count; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
}
}
return VK_SUCCESS;
}
VkResult
anv_device_init_rt_shaders(struct anv_device *device)
{
if (!device->vk.enabled_extensions.KHR_ray_tracing_pipeline)
return VK_SUCCESS;
bool cache_hit;
struct anv_push_descriptor_info empty_push_desc_info = {};
struct anv_pipeline_bind_map empty_bind_map = {};
struct brw_rt_trampoline {
char name[16];
struct brw_cs_prog_key key;
} trampoline_key = {
.name = "rt-trampoline",
};
device->rt_trampoline =
anv_device_search_for_kernel(device, device->internal_cache,
&trampoline_key, sizeof(trampoline_key),
&cache_hit);
if (device->rt_trampoline == NULL) {
void *tmp_ctx = ralloc_context(NULL);
nir_shader *trampoline_nir =
brw_nir_create_raygen_trampoline(device->physical->compiler, tmp_ctx);
if (device->info->ver >= 20)
trampoline_nir->info.subgroup_size = SUBGROUP_SIZE_REQUIRE_16;
else
trampoline_nir->info.subgroup_size = SUBGROUP_SIZE_REQUIRE_8;
struct brw_cs_prog_data trampoline_prog_data = {
.uses_btd_stack_ids = true,
};
struct brw_compile_cs_params params = {
.base = {
.nir = trampoline_nir,
.log_data = device,
.mem_ctx = tmp_ctx,
},
.key = &trampoline_key.key,
.prog_data = &trampoline_prog_data,
};
const unsigned *tramp_data =
brw_compile_cs(device->physical->compiler, &params);
struct anv_shader_upload_params upload_params = {
.stage = MESA_SHADER_COMPUTE,
.key_data = &trampoline_key,
.key_size = sizeof(trampoline_key),
.kernel_data = tramp_data,
.kernel_size = trampoline_prog_data.base.program_size,
.prog_data = &trampoline_prog_data.base,
.prog_data_size = sizeof(trampoline_prog_data),
.bind_map = &empty_bind_map,
.push_desc_info = &empty_push_desc_info,
};
device->rt_trampoline =
anv_device_upload_kernel(device, device->internal_cache,
&upload_params);
ralloc_free(tmp_ctx);
if (device->rt_trampoline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
/* The cache already has a reference and it's not going anywhere so there
* is no need to hold a second reference.
*/
anv_shader_bin_unref(device, device->rt_trampoline);
struct brw_rt_trivial_return {
char name[16];
struct brw_bs_prog_key key;
} return_key = {
.name = "rt-trivial-ret",
};
device->rt_trivial_return =
anv_device_search_for_kernel(device, device->internal_cache,
&return_key, sizeof(return_key),
&cache_hit);
if (device->rt_trivial_return == NULL) {
void *tmp_ctx = ralloc_context(NULL);
nir_shader *trivial_return_nir =
brw_nir_create_trivial_return_shader(device->physical->compiler, tmp_ctx);
NIR_PASS(_, trivial_return_nir, brw_nir_lower_rt_intrinsics,
&return_key.key.base, device->info);
struct brw_bs_prog_data return_prog_data = { 0, };
struct brw_compile_bs_params params = {
.base = {
.nir = trivial_return_nir,
.log_data = device,
.mem_ctx = tmp_ctx,
},
.key = &return_key.key,
.prog_data = &return_prog_data,
};
const unsigned *return_data =
brw_compile_bs(device->physical->compiler, &params);
struct anv_shader_upload_params upload_params = {
.stage = MESA_SHADER_CALLABLE,
.key_data = &return_key,
.key_size = sizeof(return_key),
.kernel_data = return_data,
.kernel_size = return_prog_data.base.program_size,
.prog_data = &return_prog_data.base,
.prog_data_size = sizeof(return_prog_data),
.bind_map = &empty_bind_map,
.push_desc_info = &empty_push_desc_info,
};
device->rt_trivial_return =
anv_device_upload_kernel(device, device->internal_cache,
&upload_params);
ralloc_free(tmp_ctx);
if (device->rt_trivial_return == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
/* The cache already has a reference and it's not going anywhere so there
* is no need to hold a second reference.
*/
anv_shader_bin_unref(device, device->rt_trivial_return);
struct brw_rt_null_ahs {
char name[16];
struct brw_bs_prog_key key;
} null_return_key = {
.name = "rt-null-ahs",
};
device->rt_null_ahs =
anv_device_search_for_kernel(device, device->internal_cache,
&null_return_key, sizeof(null_return_key),
&cache_hit);
if (device->rt_null_ahs == NULL) {
void *tmp_ctx = ralloc_context(NULL);
nir_shader *null_ahs_nir =
brw_nir_create_null_ahs_shader(device->physical->compiler, tmp_ctx);
NIR_PASS(_, null_ahs_nir, brw_nir_lower_rt_intrinsics,
&null_return_key.key.base, device->info);
struct brw_bs_prog_data return_prog_data = { 0, };
struct brw_compile_bs_params params = {
.base = {
.nir = null_ahs_nir,
.log_data = device,
.mem_ctx = tmp_ctx,
},
.key = &null_return_key.key,
.prog_data = &return_prog_data,
};
const unsigned *return_data =
brw_compile_bs(device->physical->compiler, &params);
struct anv_shader_upload_params upload_params = {
.stage = MESA_SHADER_CALLABLE,
.key_data = &null_return_key,
.key_size = sizeof(null_return_key),
.kernel_data = return_data,
.kernel_size = return_prog_data.base.program_size,
.prog_data = &return_prog_data.base,
.prog_data_size = sizeof(return_prog_data),
.bind_map = &empty_bind_map,
.push_desc_info = &empty_push_desc_info,
};
device->rt_null_ahs =
anv_device_upload_kernel(device, device->internal_cache,
&upload_params);
ralloc_free(tmp_ctx);
if (device->rt_null_ahs == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
/* The cache already has a reference and it's not going anywhere so there
* is no need to hold a second reference.
*/
anv_shader_bin_unref(device, device->rt_null_ahs);
return VK_SUCCESS;
}
void
anv_device_finish_rt_shaders(struct anv_device *device)
{
if (!device->vk.enabled_extensions.KHR_ray_tracing_pipeline)
return;
}
static void
anv_ray_tracing_pipeline_init(struct anv_ray_tracing_pipeline *pipeline,
struct anv_device *device,
struct vk_pipeline_cache *cache,
const VkRayTracingPipelineCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks *alloc)
{
util_dynarray_init(&pipeline->shaders, pipeline->base.mem_ctx);
ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
anv_pipeline_init_layout(&pipeline->base, pipeline_layout);
anv_pipeline_setup_l3_config(&pipeline->base, /* needs_slm */ false);
}
static void
assert_rt_stage_index_valid(const VkRayTracingPipelineCreateInfoKHR* pCreateInfo,
uint32_t stage_idx,
VkShaderStageFlags valid_stages)
{
if (stage_idx == VK_SHADER_UNUSED_KHR)
return;
assert(stage_idx <= pCreateInfo->stageCount);
assert(util_bitcount(pCreateInfo->pStages[stage_idx].stage) == 1);
assert(pCreateInfo->pStages[stage_idx].stage & valid_stages);
}
static VkResult
anv_ray_tracing_pipeline_create(
VkDevice _device,
struct vk_pipeline_cache * cache,
const VkRayTracingPipelineCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR);
uint32_t group_count = pCreateInfo->groupCount;
if (pCreateInfo->pLibraryInfo) {
for (uint32_t l = 0; l < pCreateInfo->pLibraryInfo->libraryCount; l++) {
ANV_FROM_HANDLE(anv_pipeline, library,
pCreateInfo->pLibraryInfo->pLibraries[l]);
struct anv_ray_tracing_pipeline *rt_library =
anv_pipeline_to_ray_tracing(library);
group_count += rt_library->group_count;
}
}
VK_MULTIALLOC(ma);
VK_MULTIALLOC_DECL(&ma, struct anv_ray_tracing_pipeline, pipeline, 1);
VK_MULTIALLOC_DECL(&ma, struct anv_rt_shader_group, groups, group_count);
if (!vk_multialloc_zalloc2(&ma, &device->vk.alloc, pAllocator,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
result = anv_pipeline_init(&pipeline->base, device,
ANV_PIPELINE_RAY_TRACING,
vk_rt_pipeline_create_flags(pCreateInfo),
pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
pipeline->group_count = group_count;
pipeline->groups = groups;
ASSERTED const VkShaderStageFlags ray_tracing_stages =
VK_SHADER_STAGE_RAYGEN_BIT_KHR |
VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR |
VK_SHADER_STAGE_MISS_BIT_KHR |
VK_SHADER_STAGE_INTERSECTION_BIT_KHR |
VK_SHADER_STAGE_CALLABLE_BIT_KHR;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++)
assert((pCreateInfo->pStages[i].stage & ~ray_tracing_stages) == 0);
for (uint32_t i = 0; i < pCreateInfo->groupCount; i++) {
const VkRayTracingShaderGroupCreateInfoKHR *ginfo =
&pCreateInfo->pGroups[i];
assert_rt_stage_index_valid(pCreateInfo, ginfo->generalShader,
VK_SHADER_STAGE_RAYGEN_BIT_KHR |
VK_SHADER_STAGE_MISS_BIT_KHR |
VK_SHADER_STAGE_CALLABLE_BIT_KHR);
assert_rt_stage_index_valid(pCreateInfo, ginfo->closestHitShader,
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
assert_rt_stage_index_valid(pCreateInfo, ginfo->anyHitShader,
VK_SHADER_STAGE_ANY_HIT_BIT_KHR);
assert_rt_stage_index_valid(pCreateInfo, ginfo->intersectionShader,
VK_SHADER_STAGE_INTERSECTION_BIT_KHR);
switch (ginfo->type) {
case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR:
assert(ginfo->generalShader < pCreateInfo->stageCount);
assert(ginfo->anyHitShader == VK_SHADER_UNUSED_KHR);
assert(ginfo->closestHitShader == VK_SHADER_UNUSED_KHR);
assert(ginfo->intersectionShader == VK_SHADER_UNUSED_KHR);
break;
case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR:
assert(ginfo->generalShader == VK_SHADER_UNUSED_KHR);
assert(ginfo->intersectionShader == VK_SHADER_UNUSED_KHR);
break;
case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR:
assert(ginfo->generalShader == VK_SHADER_UNUSED_KHR);
break;
default:
unreachable("Invalid ray-tracing shader group type");
}
}
anv_ray_tracing_pipeline_init(pipeline, device, cache,
pCreateInfo, pAllocator);
void *tmp_ctx = ralloc_context(NULL);
struct anv_pipeline_stage *stages =
anv_pipeline_init_ray_tracing_stages(pipeline, pCreateInfo, tmp_ctx);
result = anv_pipeline_compile_ray_tracing(pipeline, tmp_ctx, stages,
cache, pCreateInfo);
if (result != VK_SUCCESS) {
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
if (stages[i].bin != NULL)
anv_shader_bin_unref(device, stages[i].bin);
}
ralloc_free(tmp_ctx);
anv_pipeline_finish(&pipeline->base, device);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
/* Compute the size of the scratch BO (for register spilling) by taking the
* max of all the shaders in the pipeline. Also add the shaders to the list
* of executables.
*/
uint32_t stack_max[MESA_VULKAN_SHADER_STAGES] = {};
for (uint32_t s = 0; s < pCreateInfo->stageCount; s++) {
util_dynarray_append(&pipeline->shaders,
struct anv_shader_bin *,
stages[s].bin);
uint32_t stack_size =
brw_bs_prog_data_const(stages[s].bin->prog_data)->max_stack_size;
stack_max[stages[s].stage] = MAX2(stack_max[stages[s].stage], stack_size);
anv_pipeline_account_shader(&pipeline->base, stages[s].bin);
}
anv_pipeline_compute_ray_tracing_stacks(pipeline, pCreateInfo, stack_max);
if (pCreateInfo->pLibraryInfo) {
uint32_t g = pCreateInfo->groupCount;
for (uint32_t l = 0; l < pCreateInfo->pLibraryInfo->libraryCount; l++) {
ANV_FROM_HANDLE(anv_pipeline, library,
pCreateInfo->pLibraryInfo->pLibraries[l]);
struct anv_ray_tracing_pipeline *rt_library =
anv_pipeline_to_ray_tracing(library);
for (uint32_t lg = 0; lg < rt_library->group_count; lg++) {
pipeline->groups[g] = rt_library->groups[lg];
pipeline->groups[g].imported = true;
g++;
}
/* Account for shaders in the library. */
util_dynarray_foreach(&rt_library->shaders,
struct anv_shader_bin *, shader) {
util_dynarray_append(&pipeline->shaders,
struct anv_shader_bin *,
anv_shader_bin_ref(*shader));
anv_pipeline_account_shader(&pipeline->base, *shader);
}
/* Add the library shaders to this pipeline's executables. */
util_dynarray_foreach(&rt_library->base.executables,
struct anv_pipeline_executable, exe) {
util_dynarray_append(&pipeline->base.executables,
struct anv_pipeline_executable, *exe);
}
pipeline->base.active_stages |= rt_library->base.active_stages;
}
}
anv_genX(device->info, ray_tracing_pipeline_emit)(pipeline);
ralloc_free(tmp_ctx);
ANV_RMV(rt_pipeline_create, device, pipeline, false);
*pPipeline = anv_pipeline_to_handle(&pipeline->base);
return pipeline->base.batch.status;
}
VkResult
anv_CreateRayTracingPipelinesKHR(
VkDevice _device,
VkDeferredOperationKHR deferredOperation,
VkPipelineCache pipelineCache,
uint32_t createInfoCount,
const VkRayTracingPipelineCreateInfoKHR* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
VkResult result = VK_SUCCESS;
unsigned i;
for (i = 0; i < createInfoCount; i++) {
const VkPipelineCreateFlags2KHR flags =
vk_rt_pipeline_create_flags(&pCreateInfos[i]);
VkResult res = anv_ray_tracing_pipeline_create(_device, pipeline_cache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (res != VK_SUCCESS) {
result = res;
if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
break;
pPipelines[i] = VK_NULL_HANDLE;
}
}
for (; i < createInfoCount; i++)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
VkResult anv_GetPipelineExecutablePropertiesKHR(
VkDevice device,
const VkPipelineInfoKHR* pPipelineInfo,
uint32_t* pExecutableCount,
VkPipelineExecutablePropertiesKHR* pProperties)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutablePropertiesKHR, out,
pProperties, pExecutableCount);
util_dynarray_foreach (&pipeline->executables, struct anv_pipeline_executable, exe) {
vk_outarray_append_typed(VkPipelineExecutablePropertiesKHR, &out, props) {
gl_shader_stage stage = exe->stage;
props->stages = mesa_to_vk_shader_stage(stage);
unsigned simd_width = exe->stats.dispatch_width;
if (stage == MESA_SHADER_FRAGMENT) {
if (exe->stats.max_polygons > 1)
VK_PRINT_STR(props->name, "SIMD%dx%d %s",
exe->stats.max_polygons,
simd_width / exe->stats.max_polygons,
_mesa_shader_stage_to_string(stage));
else
VK_PRINT_STR(props->name, "%s%d %s",
simd_width ? "SIMD" : "vec",
simd_width ? simd_width : 4,
_mesa_shader_stage_to_string(stage));
} else {
VK_COPY_STR(props->name, _mesa_shader_stage_to_string(stage));
}
VK_PRINT_STR(props->description, "%s%d %s shader",
simd_width ? "SIMD" : "vec",
simd_width ? simd_width : 4,
_mesa_shader_stage_to_string(stage));
/* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
* wants a subgroup size of 1.
*/
props->subgroupSize = MAX2(simd_width, 1);
}
}
return vk_outarray_status(&out);
}
static const struct anv_pipeline_executable *
anv_pipeline_get_executable(struct anv_pipeline *pipeline, uint32_t index)
{
assert(index < util_dynarray_num_elements(&pipeline->executables,
struct anv_pipeline_executable));
return util_dynarray_element(
&pipeline->executables, struct anv_pipeline_executable, index);
}
VkResult anv_GetPipelineExecutableStatisticsKHR(
VkDevice device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pStatisticCount,
VkPipelineExecutableStatisticKHR* pStatistics)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableStatisticKHR, out,
pStatistics, pStatisticCount);
const struct anv_pipeline_executable *exe =
anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
const struct brw_stage_prog_data *prog_data;
switch (pipeline->type) {
case ANV_PIPELINE_GRAPHICS:
case ANV_PIPELINE_GRAPHICS_LIB: {
prog_data = anv_pipeline_to_graphics_base(pipeline)->shaders[exe->stage]->prog_data;
break;
}
case ANV_PIPELINE_COMPUTE: {
prog_data = anv_pipeline_to_compute(pipeline)->cs->prog_data;
break;
}
case ANV_PIPELINE_RAY_TRACING: {
struct anv_shader_bin **shader =
util_dynarray_element(&anv_pipeline_to_ray_tracing(pipeline)->shaders,
struct anv_shader_bin *,
pExecutableInfo->executableIndex);
prog_data = (*shader)->prog_data;
break;
}
default:
unreachable("invalid pipeline type");
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Instruction Count");
VK_COPY_STR(stat->description,
"Number of GEN instructions in the final generated "
"shader executable.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.instructions;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "SEND Count");
VK_COPY_STR(stat->description,
"Number of instructions in the final generated shader "
"executable which access external units such as the "
"constant cache or the sampler.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.sends;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Loop Count");
VK_COPY_STR(stat->description,
"Number of loops (not unrolled) in the final generated "
"shader executable.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.loops;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Cycle Count");
VK_COPY_STR(stat->description,
"Estimate of the number of EU cycles required to execute "
"the final generated executable. This is an estimate only "
"and may vary greatly from actual run-time performance.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.cycles;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Spill Count");
VK_COPY_STR(stat->description,
"Number of scratch spill operations. This gives a rough "
"estimate of the cost incurred due to spilling temporary "
"values to memory. If this is non-zero, you may want to "
"adjust your shader to reduce register pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.spills;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Fill Count");
VK_COPY_STR(stat->description,
"Number of scratch fill operations. This gives a rough "
"estimate of the cost incurred due to spilling temporary "
"values to memory. If this is non-zero, you may want to "
"adjust your shader to reduce register pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.fills;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Scratch Memory Size");
VK_COPY_STR(stat->description,
"Number of bytes of scratch memory required by the "
"generated shader executable. If this is non-zero, you "
"may want to adjust your shader to reduce register "
"pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = prog_data->total_scratch;
}
if (pipeline->device->info->ver >= 30) {
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "GRF registers");
VK_COPY_STR(stat->description,
"Number of GRF registers required by the shader.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = prog_data->grf_used;
}
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Max dispatch width");
VK_COPY_STR(stat->description,
"Largest SIMD dispatch width.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
/* Report the max dispatch width only on the smallest SIMD variant */
if (exe->stage != MESA_SHADER_FRAGMENT || exe->stats.dispatch_width == 8)
stat->value.u64 = exe->stats.max_dispatch_width;
else
stat->value.u64 = 0;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Max live registers");
VK_COPY_STR(stat->description,
"Maximum number of registers used across the entire shader.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.max_live_registers;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Workgroup Memory Size");
VK_COPY_STR(stat->description,
"Number of bytes of workgroup shared memory used by this "
"shader including any padding.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
if (gl_shader_stage_uses_workgroup(exe->stage))
stat->value.u64 = prog_data->total_shared;
else
stat->value.u64 = 0;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
uint32_t hash = pipeline->type == ANV_PIPELINE_COMPUTE ?
anv_pipeline_to_compute(pipeline)->cs->prog_data->source_hash :
(pipeline->type == ANV_PIPELINE_GRAPHICS_LIB ||
pipeline->type == ANV_PIPELINE_GRAPHICS) ?
anv_pipeline_to_graphics_base(pipeline)->shaders[
exe->stage]->prog_data->source_hash:
0 /* No source hash for ray tracing */;
VK_COPY_STR(stat->name, "Source hash");
VK_PRINT_STR(stat->description,
"hash = 0x%08x. Hash generated from shader source.", hash);
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = hash;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
VK_COPY_STR(stat->name, "Non SSA regs after NIR");
VK_COPY_STR(stat->description, "Non SSA regs after NIR translation to BRW.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.non_ssa_registers_after_nir;
}
return vk_outarray_status(&out);
}
static bool
write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
const char *data)
{
ir->isText = VK_TRUE;
size_t data_len = strlen(data) + 1;
if (ir->pData == NULL) {
ir->dataSize = data_len;
return true;
}
strncpy(ir->pData, data, ir->dataSize);
if (ir->dataSize < data_len)
return false;
ir->dataSize = data_len;
return true;
}
VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
VkDevice device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pInternalRepresentationCount,
VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableInternalRepresentationKHR, out,
pInternalRepresentations, pInternalRepresentationCount);
bool incomplete_text = false;
const struct anv_pipeline_executable *exe =
anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
if (exe->nir) {
vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
VK_COPY_STR(ir->name, "Final NIR");
VK_COPY_STR(ir->description,
"Final NIR before going into the back-end compiler");
if (!write_ir_text(ir, exe->nir))
incomplete_text = true;
}
}
if (exe->disasm) {
vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
VK_COPY_STR(ir->name, "GEN Assembly");
VK_COPY_STR(ir->description,
"Final GEN assembly for the generated shader binary");
if (!write_ir_text(ir, exe->disasm))
incomplete_text = true;
}
}
return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
}
VkResult
anv_GetRayTracingShaderGroupHandlesKHR(
VkDevice _device,
VkPipeline _pipeline,
uint32_t firstGroup,
uint32_t groupCount,
size_t dataSize,
void* pData)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
if (pipeline->type != ANV_PIPELINE_RAY_TRACING)
return vk_error(device, VK_ERROR_FEATURE_NOT_PRESENT);
struct anv_ray_tracing_pipeline *rt_pipeline =
anv_pipeline_to_ray_tracing(pipeline);
assert(firstGroup + groupCount <= rt_pipeline->group_count);
for (uint32_t i = 0; i < groupCount; i++) {
struct anv_rt_shader_group *group = &rt_pipeline->groups[firstGroup + i];
memcpy(pData, group->handle, sizeof(group->handle));
pData += sizeof(group->handle);
}
return VK_SUCCESS;
}
VkResult
anv_GetRayTracingCaptureReplayShaderGroupHandlesKHR(
VkDevice _device,
VkPipeline pipeline,
uint32_t firstGroup,
uint32_t groupCount,
size_t dataSize,
void* pData)
{
ANV_FROM_HANDLE(anv_device, device, _device);
unreachable("Unimplemented");
return vk_error(device, VK_ERROR_FEATURE_NOT_PRESENT);
}
VkDeviceSize
anv_GetRayTracingShaderGroupStackSizeKHR(
VkDevice device,
VkPipeline _pipeline,
uint32_t group,
VkShaderGroupShaderKHR groupShader)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
assert(pipeline->type == ANV_PIPELINE_RAY_TRACING);
struct anv_ray_tracing_pipeline *rt_pipeline =
anv_pipeline_to_ray_tracing(pipeline);
assert(group < rt_pipeline->group_count);
struct anv_shader_bin *bin;
switch (groupShader) {
case VK_SHADER_GROUP_SHADER_GENERAL_KHR:
bin = rt_pipeline->groups[group].general;
break;
case VK_SHADER_GROUP_SHADER_CLOSEST_HIT_KHR:
bin = rt_pipeline->groups[group].closest_hit;
break;
case VK_SHADER_GROUP_SHADER_ANY_HIT_KHR:
bin = rt_pipeline->groups[group].any_hit;
break;
case VK_SHADER_GROUP_SHADER_INTERSECTION_KHR:
bin = rt_pipeline->groups[group].intersection;
break;
default:
unreachable("Invalid VkShaderGroupShader enum");
}
if (bin == NULL)
return 0;
return brw_bs_prog_data_const(bin->prog_data)->max_stack_size;
}