blob: 4c5e25126e31eebb24e2753f736939b396bbe155 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
#include "drm-uapi/drm_fourcc.h"
#include "anv_private.h"
#include "common/intel_aux_map.h"
#include "util/u_debug.h"
#include "vk_util.h"
#include "util/u_math.h"
#include "vk_format.h"
#include "av1_tables.h"
#define ANV_OFFSET_IMPLICIT UINT64_MAX
static const enum isl_surf_dim
vk_to_isl_surf_dim[] = {
[VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
[VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
[VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
};
static uint64_t MUST_CHECK UNUSED
memory_range_end(struct anv_image_memory_range memory_range)
{
assert(anv_is_aligned(memory_range.offset, memory_range.alignment));
return memory_range.offset + memory_range.size;
}
/**
* Get binding for VkImagePlaneMemoryRequirementsInfo,
* VkBindImagePlaneMemoryInfo and VkDeviceImageMemoryRequirements.
*/
enum anv_image_memory_binding
anv_image_aspect_to_binding(struct anv_image *image,
VkImageAspectFlags aspect)
{
uint32_t plane = 0;
assert(image->disjoint);
if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
/* Spec requires special aspects for modifier images. */
assert(aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT ||
aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT ||
aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT ||
aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT);
/* We don't advertise DISJOINT for modifiers with aux, and therefore we
* don't handle queries of the modifier's "aux plane" here.
*/
assert(!isl_drm_modifier_has_aux(image->vk.drm_format_mod));
switch(aspect) {
case VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT: plane = 0; break;
case VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT: plane = 1; break;
case VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT: plane = 2; break;
case VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT: plane = 3; break;
}
} else {
plane = anv_image_aspect_to_plane(image, aspect);
}
return ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane;
}
/**
* Extend the memory binding's range by appending a new memory range with `size`
* and `alignment` at `offset`. Return the appended range.
*
* Offset is ignored if ANV_OFFSET_IMPLICIT.
*
* The given binding must not be ANV_IMAGE_MEMORY_BINDING_MAIN. The function
* converts to MAIN as needed.
*/
static VkResult MUST_CHECK
image_binding_grow(const struct anv_device *device,
struct anv_image *image,
enum anv_image_memory_binding binding,
uint64_t offset,
uint64_t size,
uint32_t alignment,
struct anv_image_memory_range *out_range)
{
/* We overwrite 'offset' but need to remember if it was implicit. */
const bool has_implicit_offset = (offset == ANV_OFFSET_IMPLICIT);
assert(size > 0);
assert(util_is_power_of_two_or_zero(alignment));
switch (binding) {
case ANV_IMAGE_MEMORY_BINDING_MAIN:
/* The caller must not pre-translate BINDING_PLANE_i to BINDING_MAIN. */
unreachable("ANV_IMAGE_MEMORY_BINDING_MAIN");
case ANV_IMAGE_MEMORY_BINDING_PLANE_0:
case ANV_IMAGE_MEMORY_BINDING_PLANE_1:
case ANV_IMAGE_MEMORY_BINDING_PLANE_2:
if (!image->disjoint)
binding = ANV_IMAGE_MEMORY_BINDING_MAIN;
break;
case ANV_IMAGE_MEMORY_BINDING_PRIVATE:
assert(offset == ANV_OFFSET_IMPLICIT);
break;
case ANV_IMAGE_MEMORY_BINDING_END:
unreachable("ANV_IMAGE_MEMORY_BINDING_END");
}
struct anv_image_memory_range *container =
&image->bindings[binding].memory_range;
if (has_implicit_offset) {
offset = align64(container->offset + container->size, alignment);
} else {
/* Offset must be validated because it comes from
* VkImageDrmFormatModifierExplicitCreateInfoEXT.
*/
if (unlikely(!anv_is_aligned(offset, alignment))) {
return vk_errorf(device,
VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
"VkImageDrmFormatModifierExplicitCreateInfoEXT::"
"pPlaneLayouts[]::offset is misaligned");
}
}
/* Surfaces can be added out of memory-order. Track the end of each memory
* plane to update the binding size properly.
*/
uint64_t memory_range_end;
if (__builtin_add_overflow(offset, size, &memory_range_end)) {
if (has_implicit_offset) {
assert(!"overflow");
return vk_errorf(device, VK_ERROR_UNKNOWN,
"internal error: overflow in %s", __func__);
} else {
return vk_errorf(device,
VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
"VkImageDrmFormatModifierExplicitCreateInfoEXT::"
"pPlaneLayouts[]::offset is too large");
}
}
container->size = MAX2(container->size, memory_range_end);
container->alignment = MAX2(container->alignment, alignment);
*out_range = (struct anv_image_memory_range) {
.binding = binding,
.alignment = alignment,
.size = size,
.offset = offset,
};
return VK_SUCCESS;
}
/**
* Adjust range 'a' to contain range 'b'.
*
* For simplicity's sake, the offset of 'a' must be 0 and remains 0.
* If 'a' and 'b' target different bindings, then no merge occurs.
*/
static void
memory_range_merge(struct anv_image_memory_range *a,
const struct anv_image_memory_range b)
{
if (b.size == 0)
return;
if (a->binding != b.binding)
return;
assert(a->offset == 0);
assert(anv_is_aligned(a->offset, a->alignment));
assert(anv_is_aligned(b.offset, b.alignment));
a->alignment = MAX2(a->alignment, b.alignment);
a->size = MAX2(a->size, b.offset + b.size);
}
isl_surf_usage_flags_t
anv_image_choose_isl_surf_usage(struct anv_physical_device *device,
VkFormat vk_format,
VkImageCreateFlags vk_create_flags,
VkImageUsageFlags vk_usage,
isl_surf_usage_flags_t isl_extra_usage,
VkImageAspectFlagBits aspect,
VkImageCompressionFlagsEXT comp_flags)
{
isl_surf_usage_flags_t isl_usage = isl_extra_usage;
const struct intel_device_info *devinfo = &device->info;
/* On platform like MTL, we choose to allocate additional CCS memory at the
* back of the VkDeviceMemory objects since different images can share the
* AUX-TT PTE because the HW doesn't care about the image format in the
* PTE. That means we can always ignore the AUX-TT alignment requirement
* from an ISL point of view.
*/
if (device->alloc_aux_tt_mem)
isl_usage |= ISL_SURF_USAGE_NO_AUX_TT_ALIGNMENT_BIT;
if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
if (vk_usage & VK_IMAGE_USAGE_STORAGE_BIT)
isl_usage |= ISL_SURF_USAGE_STORAGE_BIT;
if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
if (vk_usage & VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR) {
isl_usage |= ISL_SURF_USAGE_CPB_BIT;
/* The CPS compression scheme matches STC_CCS. So, we can allow
* compression for BLORP writes, but not for general rendering
* nor image stores.
*/
if (devinfo->verx10 == 125 &&
vk_usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_STORAGE_BIT))
isl_usage |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
}
/* TODO: consider whether compression with sparse is workable. */
if (vk_create_flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT)
isl_usage |= ISL_SURF_USAGE_SPARSE_BIT |
ISL_SURF_USAGE_DISABLE_AUX_BIT;
if (vk_usage & VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR ||
vk_usage & VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR ||
vk_usage & VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR ||
vk_usage & VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR)
isl_usage |= ISL_SURF_USAGE_VIDEO_DECODE_BIT;
/* We disable aux surfaces for host read/write images so that we can update
* the main surface without caring about the auxiliary surface.
*/
if (vk_usage & VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT)
isl_usage |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
if (vk_create_flags & (VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT |
VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT))
isl_usage |= ISL_SURF_USAGE_2D_3D_COMPATIBLE_BIT;
if (vk_create_flags & VK_IMAGE_CREATE_PROTECTED_BIT)
isl_usage |= ISL_SURF_USAGE_PROTECTED_BIT;
/* Even if we're only using it for transfer operations, clears to depth and
* stencil images happen as depth and stencil so they need the right ISL
* usage bits or else things will fall apart.
*/
switch (aspect) {
case VK_IMAGE_ASPECT_DEPTH_BIT:
isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
break;
case VK_IMAGE_ASPECT_STENCIL_BIT:
isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
break;
case VK_IMAGE_ASPECT_COLOR_BIT:
case VK_IMAGE_ASPECT_PLANE_0_BIT:
case VK_IMAGE_ASPECT_PLANE_1_BIT:
case VK_IMAGE_ASPECT_PLANE_2_BIT:
break;
default:
unreachable("bad VkImageAspect");
}
if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
/* blorp implements transfers by sampling from the source image. */
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
}
if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
/* blorp implements transfers by rendering into the destination image.
* Only request this with color images, as we deal with depth/stencil
* formats differently. */
isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
}
if (comp_flags & VK_IMAGE_COMPRESSION_DISABLED_EXT)
isl_usage |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
if (anv_is_storage_format_atomics_emulated(devinfo, vk_format)) {
isl_usage |= ISL_SURF_USAGE_DISABLE_AUX_BIT |
ISL_SURF_USAGE_SOFTWARE_DETILING;
}
return isl_usage;
}
static isl_tiling_flags_t
choose_isl_tiling_flags(const struct intel_device_info *devinfo,
const struct anv_image *image,
const struct anv_image_create_info *anv_info,
const struct isl_drm_modifier_info *isl_mod_info)
{
const VkImageCreateInfo *base_info = anv_info->vk_info;
isl_tiling_flags_t flags = 0;
assert((isl_mod_info != NULL) ==
(base_info->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT));
switch (base_info->tiling) {
default:
unreachable("bad VkImageTiling");
case VK_IMAGE_TILING_OPTIMAL:
flags = ISL_TILING_ANY_MASK;
break;
case VK_IMAGE_TILING_LINEAR:
flags = ISL_TILING_LINEAR_BIT;
break;
case VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT:
flags = 1 << isl_mod_info->tiling;
}
if (anv_info->isl_tiling_flags) {
assert(isl_mod_info == NULL);
flags &= anv_info->isl_tiling_flags;
}
if (image->vk.wsi_legacy_scanout) {
isl_tiling_flags_t legacy_mask = ISL_TILING_LINEAR_BIT;
if (devinfo->has_tiling_uapi)
legacy_mask |= ISL_TILING_X_BIT;
flags &= legacy_mask;
}
assert(flags);
return flags;
}
/**
* Add the surface to the binding at the given offset.
*
* \see image_binding_grow()
*/
static VkResult MUST_CHECK
add_surface(struct anv_device *device,
struct anv_image *image,
struct anv_surface *surf,
enum anv_image_memory_binding binding,
uint64_t offset)
{
/* isl surface must be initialized */
assert(surf->isl.size_B > 0);
return image_binding_grow(device, image, binding, offset,
surf->isl.size_B,
surf->isl.alignment_B,
&surf->memory_range);
}
static bool
image_may_use_r32_view(VkImageCreateFlags create_flags,
VkFormat vk_format,
const VkImageFormatListCreateInfo *fmt_list)
{
if (vk_format == VK_FORMAT_R32_SINT ||
vk_format == VK_FORMAT_R32_UINT ||
vk_format == VK_FORMAT_R32_SFLOAT)
return true;
if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
return false;
if (fmt_list) {
for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
if (fmt_list->pViewFormats[i] == VK_FORMAT_R32_SINT ||
fmt_list->pViewFormats[i] == VK_FORMAT_R32_UINT ||
fmt_list->pViewFormats[i] == VK_FORMAT_R32_SFLOAT)
return true;
}
return false;
}
return vk_format_get_blocksizebits(vk_format) == 32;
}
static bool
formats_ccs_e_compatible(const struct anv_physical_device *physical_device,
VkImageCreateFlags create_flags,
VkImageAspectFlagBits aspect,
enum isl_format format, VkImageTiling vk_tiling,
const VkImageFormatListCreateInfo *fmt_list)
{
const struct intel_device_info *devinfo = &physical_device->info;
if (!anv_format_supports_ccs_e(physical_device, format))
return false;
/* For images created without MUTABLE_FORMAT_BIT set, we know that they will
* always be used with the original format. In particular, they will always
* be used with a format that supports color compression.
*/
if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
return true;
if (!fmt_list || fmt_list->viewFormatCount == 0)
return false;
for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
if (fmt_list->pViewFormats[i] == VK_FORMAT_UNDEFINED)
continue;
enum isl_format view_format =
anv_get_isl_format(physical_device, fmt_list->pViewFormats[i],
aspect, vk_tiling);
if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
return false;
}
return true;
}
bool
anv_format_supports_ccs_e(const struct anv_physical_device *physical_device,
const enum isl_format format)
{
/* CCS_E for YCRCB_NORMAL and YCRCB_SWAP_UV is not currently supported by
* ANV so leave it disabled for now.
*/
if (isl_format_is_yuv(format))
return false;
return isl_format_supports_ccs_e(&physical_device->info, format);
}
bool
anv_formats_ccs_e_compatible(const struct anv_physical_device *physical_device,
VkImageCreateFlags create_flags,
VkFormat vk_format, VkImageTiling vk_tiling,
VkImageUsageFlags vk_usage,
const VkImageFormatListCreateInfo *fmt_list)
{
const struct intel_device_info *devinfo = &physical_device->info;
u_foreach_bit(b, vk_format_aspects(vk_format)) {
VkImageAspectFlagBits aspect = 1 << b;
enum isl_format format =
anv_get_isl_format(physical_device, vk_format, aspect, vk_tiling);
if (!formats_ccs_e_compatible(physical_device, create_flags, aspect,
format, vk_tiling, fmt_list))
return false;
}
if ((vk_usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
vk_tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
/* Only color */
assert((vk_format_aspects(vk_format) & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
if (devinfo->ver == 12) {
/* From the TGL Bspec 44930 (r47128):
*
* "Memory atomic operation on compressed data is not supported
* in Gen12 E2E compression. Result of such operation is
* undefined.
*
* Software should ensure at the time of the Atomic operation
* the surface is resolved (uncompressed) state."
*
* On gfx12.0, compression is not supported with atomic
* operations. On gfx12.5, the support is there, but it's slow
* (see HSD 1406337848).
*/
if (image_may_use_r32_view(create_flags, vk_format, fmt_list))
return false;
} else if (devinfo->ver <= 11) {
/* Storage accesses are not supported on compressed surfaces. */
return false;
}
}
return true;
}
/**
* For color images that have an auxiliary surface, request allocation for an
* additional buffer that mainly stores fast-clear values. Use of this buffer
* allows us to access the image's subresources while being aware of their
* fast-clear values in non-trivial cases (e.g., outside of a render pass in
* which a fast clear has occurred).
*
* In order to avoid having multiple clear colors for a single plane of an
* image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on
* the first slice (level 0, layer 0). At the time of our testing (Jan 17,
* 2018), there were no known applications which would benefit from fast-
* clearing more than just the first slice.
*
* The fast clear portion of the image is laid out in the following order:
*
* * 1 or 4 dwords (depending on hardware generation) for the clear color
* * 1 dword for the anv_fast_clear_type of the clear color
* * On gfx9+, 1 dword per level and layer of the image (3D levels count
* multiple layers) in level-major order for compression state.
*
* For the purpose of discoverability, the algorithm used to manage
* compression and fast-clears is described here:
*
* * On a transition from UNDEFINED or PREINITIALIZED to a defined layout,
* all of the values in the fast clear portion of the image are initialized
* to default values.
*
* * On fast-clear, the clear value is written into surface state and also
* into the buffer and the fast clear type is set appropriately. Both
* setting the fast-clear value in the buffer and setting the fast-clear
* type happen from the GPU using MI commands.
*
* * Whenever a render or blorp operation is performed with CCS_E, we call
* genX(cmd_buffer_mark_image_written) to set the compression state to
* true (which is represented by UINT32_MAX).
*
* * On pipeline barrier transitions, the worst-case transition is computed
* from the image layouts. The command streamer inspects the fast clear
* type and compression state dwords and constructs a predicate. The
* worst-case resolve is performed with the given predicate and the fast
* clear and compression state is set accordingly.
*
* See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for
* details on exactly what is allowed in what layouts.
*
* On gfx7-9, we do not have a concept of indirect clear colors in hardware.
* In order to deal with this, we have to do some clear color management.
*
* * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear
* value from the buffer into the surface state with MI commands.
*
* * For any blorp operations, we pass the address to the clear value into
* blorp and it knows to copy the clear color.
*/
static VkResult MUST_CHECK
add_aux_state_tracking_buffer(struct anv_device *device,
struct anv_image *image,
uint64_t state_offset,
uint32_t plane)
{
assert(image && device);
/* Xe2+ platforms don't use aux tracking buffers. We shouldn't get here. */
assert(device->info->ver < 20);
assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_NONE &&
image->vk.aspects & (VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV |
VK_IMAGE_ASPECT_DEPTH_BIT));
unsigned clear_color_state_size;
if (device->info->ver >= 11) {
/* When importing an image from another source with a drm modifier that
* supports clear color, the clear color values are in a 32-byte struct
* defined in drm_fourcc.h. The fast clear type and compression state
* are not defined in these drm_fourcc.h, so there won't be memory
* allocated for these extra meta data by the source.
*
* We use the last 2 dwords of the clear color struct's memory to store
* the fast clear type and the first compression state, so the driver
* doesn't assume the extra size or need another allocation later.
*
* So far, the 2 stolen dwords are either not used in the clear color
* struct or for features not enabled. There should be no side effect to
* the hardware and destinations of images exported by this driver.
*
* Images with multiple levels or layers are not supported by drm
* modifiers, so we don't have to apply the above approach or face a
* bigger shortage from multiple compression states. We just apply the
* approach to all cases to keep the design unified.
*
* As a result, the state starts 8 bytes lower than where it should be.
*/
assert(device->isl_dev.ss.clear_color_state_size == 32);
clear_color_state_size = (image->num_view_formats - 1) * 64 + 32 - 8;
} else {
/* When sampling or rendering with an sRGB format, HW expects the clear
* color to be in two different color spaces - sRGB in the former and
* linear in the latter. Allocate twice the space to support either
* access.
*/
assert(device->isl_dev.ss.clear_value_size == 16);
clear_color_state_size = image->num_view_formats * 16 * 2;
}
/* Clear color and fast clear type */
unsigned state_size = clear_color_state_size + 4;
/* We only need to track compression on CCS_E surfaces. */
if (isl_aux_usage_has_ccs_e(image->planes[plane].aux_usage)) {
if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
for (uint32_t l = 0; l < image->vk.mip_levels; l++)
state_size += u_minify(image->vk.extent.depth, l) * 4;
} else {
state_size += image->vk.mip_levels * image->vk.array_layers * 4;
}
}
enum anv_image_memory_binding binding =
ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane;
const struct isl_drm_modifier_info *mod_info =
isl_drm_modifier_get_info(image->vk.drm_format_mod);
/* If an auxiliary surface is used for an externally-shareable image,
* we have to hide this from the memory of the image since other
* processes with access to the memory may not be aware of it or of
* its current state. So put that auxiliary data into a separate
* buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
*
* But when the image is created with a drm modifier that supports
* clear color, it will be exported along with main surface.
*/
if (anv_image_is_externally_shared(image) &&
!mod_info->supports_clear_color)
binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
/* The indirect clear color BO requires 64B-alignment on gfx11+. If we're
* using a modifier with clear color, then some kernels might require a 4k
* alignment.
*/
const uint32_t clear_color_alignment =
(mod_info && mod_info->supports_clear_color) ? 4096 : 64;
return image_binding_grow(device, image, binding,
state_offset, state_size, clear_color_alignment,
&image->planes[plane].fast_clear_memory_range);
}
static VkResult MUST_CHECK
add_compression_control_buffer(struct anv_device *device,
struct anv_image *image,
uint32_t plane,
uint32_t binding,
uint64_t offset)
{
assert(device->info->has_aux_map);
return image_binding_grow(device, image, binding, offset,
image->planes[plane].primary_surface.isl.size_B /
INTEL_AUX_MAP_MAIN_SIZE_SCALEDOWN,
INTEL_AUX_MAP_META_ALIGNMENT_B,
&image->planes[plane].compr_ctrl_memory_range);
}
static bool
want_hiz_wt_for_image(const struct intel_device_info *devinfo,
const struct anv_image *image)
{
/* Gen12 only supports single-sampled while Gen20+ supports
* multi-sampled images.
*/
if (devinfo->ver < 20 && image->vk.samples > 1)
return false;
if ((image->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) == 0)
return false;
/* If this image has the maximum number of samples supported by
* running platform and will be used as a texture, put the HiZ surface
* in write-through mode so that we can sample from it.
*
* TODO: This is a heuristic trade-off; we haven't tuned it at all.
*/
return true;
}
/**
* The return code indicates whether creation of the VkImage should continue
* or fail, not whether the creation of the aux surface succeeded. If the aux
* surface is not required (for example, by neither hardware nor DRM format
* modifier), then this may return VK_SUCCESS when creation of the aux surface
* fails.
*
* @param offset See add_surface()
*/
static VkResult
add_aux_surface_if_supported(struct anv_device *device,
struct anv_image *image,
uint32_t plane,
struct anv_format_plane plane_format,
const VkImageFormatListCreateInfo *fmt_list,
uint64_t offset,
uint32_t stride,
uint64_t aux_state_offset)
{
VkImageAspectFlags aspect = plane_format.aspect;
VkResult result;
bool ok;
const struct isl_surf *main_surf = &image->planes[plane].primary_surface.isl;
/* The aux surface must not be already added. */
assert(!anv_surface_is_valid(&image->planes[plane].aux_surface));
if (main_surf->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)
return VK_SUCCESS;
uint32_t binding;
if (image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID ||
isl_drm_modifier_has_aux(image->vk.drm_format_mod)) {
binding = ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane;
} else {
binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
}
if (main_surf->usage & ISL_SURF_USAGE_DEPTH_BIT) {
/* We don't advertise that depth buffers could be used as storage
* images.
*/
assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT));
ok = isl_surf_get_hiz_surf(&device->isl_dev, main_surf,
&image->planes[plane].aux_surface.isl);
if (!ok)
return VK_SUCCESS;
if (!isl_surf_supports_ccs(&device->isl_dev, main_surf,
&image->planes[plane].aux_surface.isl)) {
image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
} else if (want_hiz_wt_for_image(device->info, image)) {
assert(device->info->ver >= 12);
image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS_WT;
} else {
assert(device->info->ver >= 12);
image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS;
}
result = add_surface(device, image, &image->planes[plane].aux_surface,
binding, ANV_OFFSET_IMPLICIT);
if (result != VK_SUCCESS)
return result;
if (anv_image_plane_uses_aux_map(device, image, plane)) {
result = add_compression_control_buffer(device, image, plane,
binding,
ANV_OFFSET_IMPLICIT);
if (result != VK_SUCCESS)
return result;
}
if (device->info->ver == 12 &&
image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT) {
return add_aux_state_tracking_buffer(device, image, aux_state_offset,
plane);
}
} else if (main_surf->usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_CPB_BIT)) {
if (!isl_surf_supports_ccs(&device->isl_dev, main_surf, NULL))
return VK_SUCCESS;
image->planes[plane].aux_usage = ISL_AUX_USAGE_STC_CCS;
if (device->info->has_aux_map) {
result = add_compression_control_buffer(device, image, plane,
binding,
ANV_OFFSET_IMPLICIT);
if (result != VK_SUCCESS)
return result;
}
} else if (image->vk.samples == 1) {
assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
if (device->info->has_flat_ccs || device->info->has_aux_map) {
ok = isl_surf_supports_ccs(&device->isl_dev, main_surf, NULL);
} else {
ok = isl_surf_get_ccs_surf(&device->isl_dev, main_surf,
&image->planes[plane].aux_surface.isl,
stride);
}
if (!ok)
return VK_SUCCESS;
/* Choose aux usage. */
if (device->info->verx10 == 125 && !device->physical->disable_fcv) {
/* FCV is enabled via 3DSTATE_3D_MODE. We'd expect plain CCS_E to
* perform better because it allows for non-zero fast clear colors,
* but we've run into regressions in several benchmarks (F1 22 and
* RDR2) when trying to enable it. When non-zero clear colors are
* enabled, we've observed many partial resolves. We haven't yet
* root-caused what layout transitions are causing these resolves,
* so in the meantime, we choose to reduce our clear color support.
* With only zero clear colors being supported, we might as well
* turn on FCV.
*/
image->planes[plane].aux_usage = ISL_AUX_USAGE_FCV_CCS_E;
} else if (intel_needs_workaround(device->info, 1607794140)) {
/* FCV is permanently enabled on this hardware. */
assert(device->info->verx10 == 120);
image->planes[plane].aux_usage = ISL_AUX_USAGE_FCV_CCS_E;
} else if (device->info->ver >= 12) {
/* Support for CCS_E was already checked for in anv_image_init(). */
image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
} else if (anv_formats_ccs_e_compatible(device->physical,
image->vk.create_flags,
image->vk.format,
image->vk.tiling,
image->vk.usage, fmt_list)) {
image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
} else {
image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_D;
}
if (device->info->has_flat_ccs) {
result = VK_SUCCESS;
} else if (device->info->has_aux_map) {
result = add_compression_control_buffer(device, image, plane,
binding, offset);
} else {
result = add_surface(device, image,
&image->planes[plane].aux_surface, binding,
offset);
}
if (result != VK_SUCCESS)
return result;
if (device->info->ver <= 12)
return add_aux_state_tracking_buffer(device, image, aux_state_offset,
plane);
} else if (image->vk.samples > 1) {
assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT));
ok = isl_surf_get_mcs_surf(&device->isl_dev, main_surf,
&image->planes[plane].aux_surface.isl);
if (!ok)
return VK_SUCCESS;
if (isl_surf_supports_ccs(&device->isl_dev, main_surf,
&image->planes[plane].aux_surface.isl)) {
image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS_CCS;
} else {
image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
}
result = add_surface(device, image, &image->planes[plane].aux_surface,
binding, ANV_OFFSET_IMPLICIT);
if (result != VK_SUCCESS)
return result;
if (anv_image_plane_uses_aux_map(device, image, plane)) {
result = add_compression_control_buffer(device, image, plane,
binding,
ANV_OFFSET_IMPLICIT);
if (result != VK_SUCCESS)
return result;
}
if (device->info->ver <= 12)
return add_aux_state_tracking_buffer(device, image, aux_state_offset,
plane);
}
return VK_SUCCESS;
}
static VkResult
add_video_buffers(struct anv_device *device,
struct anv_image *image,
const struct VkVideoProfileListInfoKHR *profile_list,
bool independent_profile)
{
ASSERTED VkResult ok;
unsigned size = 0;
if (independent_profile) {
/* Takes the worst case */
unsigned w_mb = DIV_ROUND_UP(image->vk.extent.width, ANV_MB_WIDTH);
unsigned h_mb = DIV_ROUND_UP(image->vk.extent.height, ANV_MB_HEIGHT);
size = w_mb * h_mb * 128;
} else {
size = anv_video_get_image_mv_size(device, image, profile_list);
}
if (size == 0)
return VK_SUCCESS;
ok = image_binding_grow(device, image, ANV_IMAGE_MEMORY_BINDING_PRIVATE,
ANV_OFFSET_IMPLICIT, size, 65536, &image->vid_dmv_top_surface);
if (ok != VK_SUCCESS)
return ok;
/* Doesn't work for av1 without provided profiles */
if (!independent_profile) {
for (unsigned i = 0; i < profile_list->profileCount; i++) {
if (profile_list->pProfiles[i].videoCodecOperation == VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR) {
ok = image_binding_grow(device, image, ANV_IMAGE_MEMORY_BINDING_PRIVATE,
ANV_OFFSET_IMPLICIT, av1_cdf_max_num_bytes, 4096, &image->av1_cdf_table);
}
}
} else {
/* Nothing to check if it's AV1 decoding, so we need to allocate av1
* tables all the time.
*/
ok = image_binding_grow(device, image, ANV_IMAGE_MEMORY_BINDING_PRIVATE,
ANV_OFFSET_IMPLICIT, av1_cdf_max_num_bytes, 4096, &image->av1_cdf_table);
}
return ok;
}
/**
* Initialize the anv_image::*_surface selected by \a aspect. Then update the
* image's memory requirements (that is, the image's size and alignment).
*
* @param offset See add_surface()
*/
static VkResult
add_primary_surface(struct anv_device *device,
struct anv_image *image,
uint32_t plane,
struct anv_format_plane plane_format,
uint64_t offset,
uint32_t stride,
isl_tiling_flags_t isl_tiling_flags,
isl_surf_usage_flags_t isl_usage)
{
struct anv_surface *anv_surf = &image->planes[plane].primary_surface;
bool ok;
uint32_t width = image->vk.extent.width;
uint32_t height = image->vk.extent.height;
const struct vk_format_ycbcr_info *ycbcr_info =
vk_format_get_ycbcr_info(image->vk.format);
if (ycbcr_info) {
assert(plane < ycbcr_info->n_planes);
width /= ycbcr_info->planes[plane].denominator_scales[0];
height /= ycbcr_info->planes[plane].denominator_scales[1];
}
ok = isl_surf_init(&device->isl_dev, &anv_surf->isl,
.dim = vk_to_isl_surf_dim[image->vk.image_type],
.format = plane_format.isl_format,
.width = width,
.height = height,
.depth = image->vk.extent.depth,
.levels = image->vk.mip_levels,
.array_len = image->vk.array_layers,
.samples = image->vk.samples,
.min_alignment_B = 0,
.row_pitch_B = stride,
.usage = isl_usage,
.tiling_flags = isl_tiling_flags);
if (!ok) {
/* TODO: Should return
* VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT in come cases.
*/
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
return add_surface(device, image, anv_surf,
ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane, offset);
}
#ifndef NDEBUG
static bool MUST_CHECK
memory_range_is_aligned(struct anv_image_memory_range memory_range)
{
return anv_is_aligned(memory_range.offset, memory_range.alignment);
}
static bool MUST_CHECK
memory_ranges_equal(struct anv_image_memory_range a,
struct anv_image_memory_range b)
{
return a.binding == b.binding &&
a.alignment == b.alignment &&
a.size == b.size &&
a.offset == b.offset;
}
#endif
struct check_memory_range_params {
struct anv_image_memory_range *accum_ranges;
const struct anv_surface *test_surface;
const struct anv_image_memory_range *test_range;
enum anv_image_memory_binding expect_binding;
};
#define check_memory_range(...) \
check_memory_range_s(&(struct check_memory_range_params) { __VA_ARGS__ })
static void UNUSED
check_memory_range_s(const struct check_memory_range_params *p)
{
assert((p->test_surface == NULL) != (p->test_range == NULL));
const struct anv_image_memory_range *test_range =
p->test_range ?: &p->test_surface->memory_range;
struct anv_image_memory_range *accum_range =
&p->accum_ranges[p->expect_binding];
assert(test_range->binding == p->expect_binding);
assert(test_range->offset >= memory_range_end(*accum_range));
assert(memory_range_is_aligned(*test_range));
if (p->test_surface) {
assert(anv_surface_is_valid(p->test_surface));
assert(p->test_surface->memory_range.alignment ==
p->test_surface->isl.alignment_B);
}
memory_range_merge(accum_range, *test_range);
}
/**
* Validate the image's memory bindings *after* all its surfaces and memory
* ranges are final.
*
* For simplicity's sake, we do not validate free-form layout of the image's
* memory bindings. We validate the layout described in the comments of struct
* anv_image.
*/
static void
check_memory_bindings(const struct anv_device *device,
const struct anv_image *image)
{
#if MESA_DEBUG
/* As we inspect each part of the image, we merge the part's memory range
* into these accumulation ranges.
*/
struct anv_image_memory_range accum_ranges[ANV_IMAGE_MEMORY_BINDING_END];
for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) {
accum_ranges[i] = (struct anv_image_memory_range) {
.binding = i,
};
}
for (uint32_t p = 0; p < image->n_planes; ++p) {
const struct anv_image_plane *plane = &image->planes[p];
/* The binding that must contain the plane's primary surface. */
const enum anv_image_memory_binding primary_binding = image->disjoint
? ANV_IMAGE_MEMORY_BINDING_PLANE_0 + p
: ANV_IMAGE_MEMORY_BINDING_MAIN;
/* Aliasing is incompatible with the private binding because it does not
* live in a VkDeviceMemory. The exception is either swapchain images or
* that the private binding is for a video motion vector buffer.
*/
assert(!(image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) ||
image->from_wsi ||
(plane->primary_surface.isl.usage & ISL_SURF_USAGE_VIDEO_DECODE_BIT) ||
image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].memory_range.size == 0);
/* Check primary surface */
check_memory_range(accum_ranges,
.test_surface = &plane->primary_surface,
.expect_binding = primary_binding);
/* Check aux_surface */
const struct anv_image_memory_range *aux_mem_range =
anv_image_get_aux_memory_range(image, p);
if (aux_mem_range->size > 0) {
enum anv_image_memory_binding binding = primary_binding;
/* If an auxiliary surface is used for an externally-shareable image,
* we have to hide this from the memory of the image since other
* processes with access to the memory may not be aware of it or of
* its current state. So put that auxiliary data into a separate
* buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
*/
if (anv_image_is_externally_shared(image) &&
!isl_drm_modifier_has_aux(image->vk.drm_format_mod)) {
binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
}
/* Display hardware requires that the aux surface start at
* a higher address than the primary surface. The 3D hardware
* doesn't care, but we enforce the display requirement in case
* the image is sent to display.
*/
check_memory_range(accum_ranges,
.test_range = aux_mem_range,
.expect_binding = binding);
}
/* Check fast clear state */
if (plane->fast_clear_memory_range.size > 0) {
enum anv_image_memory_binding binding = primary_binding;
/* If an auxiliary surface is used for an externally-shareable image,
* we have to hide this from the memory of the image since other
* processes with access to the memory may not be aware of it or of
* its current state. So put that auxiliary data into a separate
* buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
*
* But when the image is created with a drm modifier that supports
* clear color, it will be exported along with main surface.
*/
if (anv_image_is_externally_shared(image)
&& !isl_drm_modifier_get_info(image->vk.drm_format_mod)->supports_clear_color) {
binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
}
/* The indirect clear color BO requires 64B-alignment on gfx11+. */
assert(plane->fast_clear_memory_range.alignment % 64 == 0);
check_memory_range(accum_ranges,
.test_range = &plane->fast_clear_memory_range,
.expect_binding = binding);
}
}
#endif
}
/**
* Check that the fully-initialized anv_image is compatible with its DRM format
* modifier.
*
* Checking compatibility at the end of image creation is prudent, not
* superfluous, because usage of modifiers triggers numerous special cases
* throughout queries and image creation, and because
* vkGetPhysicalDeviceImageFormatProperties2 has difficulty detecting all
* incompatibilities.
*
* Return VK_ERROR_UNKNOWN if the incompatibility is difficult to detect in
* vkGetPhysicalDeviceImageFormatProperties2. Otherwise, assert fail.
*
* Ideally, if vkGetPhysicalDeviceImageFormatProperties2() succeeds with a given
* modifier, then vkCreateImage() produces an image that is compatible with the
* modifier. However, it is difficult to reconcile the two functions to agree
* due to their complexity. For example, isl_surf_get_ccs_surf() may
* unexpectedly fail in vkCreateImage(), eliminating the image's aux surface
* even when the modifier requires one. (Maybe we should reconcile the two
* functions despite the difficulty).
*/
static VkResult MUST_CHECK
check_drm_format_mod(const struct anv_device *device,
const struct anv_image *image)
{
/* Image must have a modifier if and only if it has modifier tiling. */
assert((image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID) ==
(image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT));
if (image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID)
return VK_SUCCESS;
const struct isl_drm_modifier_info *isl_mod_info =
isl_drm_modifier_get_info(image->vk.drm_format_mod);
/* Driver must support the modifier. */
assert(isl_drm_modifier_get_score(device->info, isl_mod_info->modifier));
/* Enforced by us, not the Vulkan spec. */
assert(image->vk.image_type == VK_IMAGE_TYPE_2D || image->vk.drm_format_mod == DRM_FORMAT_MOD_LINEAR);
assert(!(image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT));
assert(!(image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT));
assert(image->vk.mip_levels == 1);
assert(image->vk.array_layers == 1 || image->vk.drm_format_mod == DRM_FORMAT_MOD_LINEAR);
assert(image->vk.samples == 1);
for (int i = 0; i < image->n_planes; ++i) {
const struct anv_image_plane *plane = &image->planes[i];
ASSERTED const struct isl_format_layout *isl_layout =
isl_format_get_layout(plane->primary_surface.isl.format);
/* Enforced by us, not the Vulkan spec. */
assert(isl_layout->txc == ISL_TXC_NONE);
assert(isl_layout->colorspace == ISL_COLORSPACE_LINEAR ||
isl_layout->colorspace == ISL_COLORSPACE_SRGB);
if (isl_drm_modifier_has_aux(isl_mod_info->modifier)) {
/* Reject DISJOINT for consistency with the GL driver. */
assert(!image->disjoint);
/* The modifier's required aux usage mandates the image's aux usage.
* The inverse, however, does not hold; if the modifier has no aux
* usage, then we may enable a private aux surface.
*/
if ((isl_mod_info->supports_media_compression &&
plane->aux_usage != ISL_AUX_USAGE_MC) ||
(isl_mod_info->supports_render_compression &&
!isl_aux_usage_has_ccs_e(plane->aux_usage))) {
return vk_errorf(device, VK_ERROR_UNKNOWN,
"image with modifier unexpectedly has wrong aux "
"usage");
}
}
}
return VK_SUCCESS;
}
/**
* Use when the app does not provide
* VkImageDrmFormatModifierExplicitCreateInfoEXT.
*/
static VkResult MUST_CHECK
add_all_surfaces_implicit_layout(
struct anv_device *device,
struct anv_image *image,
const VkImageFormatListCreateInfo *format_list_info,
uint32_t stride,
isl_tiling_flags_t isl_tiling_flags,
isl_surf_usage_flags_t isl_extra_usage_flags)
{
VkResult result;
const struct vk_format_ycbcr_info *ycbcr_info =
vk_format_get_ycbcr_info(image->vk.format);
if (ycbcr_info)
assert(ycbcr_info->n_planes == image->n_planes);
unsigned num_aspects = 0;
VkImageAspectFlagBits aspects[3];
u_foreach_bit(b, image->vk.aspects) {
assert(num_aspects < 3);
aspects[num_aspects++] = 1 << b;
}
assert(num_aspects == image->n_planes);
/* The Android hardware buffer YV12 format has the planes ordered as Y-Cr-Cb,
* while Vulkan expects VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM to be in Y-Cb-Cr.
* Adjust the order we add the ISL surfaces accordingly so the implicit
* offset gets calculated correctly.
*/
if (image->from_ahb && image->vk.format == VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM) {
assert(num_aspects == 3);
assert(aspects[1] == VK_IMAGE_ASPECT_PLANE_1_BIT);
assert(aspects[2] == VK_IMAGE_ASPECT_PLANE_2_BIT);
aspects[1] = VK_IMAGE_ASPECT_PLANE_2_BIT;
aspects[2] = VK_IMAGE_ASPECT_PLANE_1_BIT;
}
for (unsigned i = 0; i < num_aspects; i++) {
VkImageAspectFlagBits aspect = aspects[i];
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
const struct anv_format_plane plane_format =
anv_get_format_plane(device->physical, image->vk.format,
plane, image->vk.tiling);
enum isl_format isl_fmt = plane_format.isl_format;
assert(isl_fmt != ISL_FORMAT_UNSUPPORTED);
uint32_t plane_stride = stride * isl_format_get_layout(isl_fmt)->bpb / 8;
if (ycbcr_info)
plane_stride /= ycbcr_info->planes[plane].denominator_scales[0];
VkImageUsageFlags vk_usage = vk_image_usage(&image->vk, aspect);
isl_surf_usage_flags_t isl_usage =
anv_image_choose_isl_surf_usage(device->physical,
image->vk.format,
image->vk.create_flags, vk_usage,
isl_extra_usage_flags, aspect,
image->vk.compr_flags);
result = add_primary_surface(device, image, plane, plane_format,
ANV_OFFSET_IMPLICIT, plane_stride,
isl_tiling_flags, isl_usage);
if (result != VK_SUCCESS)
return result;
result = add_aux_surface_if_supported(device, image, plane, plane_format,
format_list_info,
ANV_OFFSET_IMPLICIT, plane_stride,
ANV_OFFSET_IMPLICIT);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
/**
* Use when the app provides VkImageDrmFormatModifierExplicitCreateInfoEXT.
*/
static VkResult
add_all_surfaces_explicit_layout(
struct anv_device *device,
struct anv_image *image,
const VkImageFormatListCreateInfo *format_list_info,
const VkImageDrmFormatModifierExplicitCreateInfoEXT *drm_info,
isl_tiling_flags_t isl_tiling_flags,
isl_surf_usage_flags_t isl_extra_usage_flags)
{
const struct intel_device_info *devinfo = device->info;
const uint32_t mod_plane_count = drm_info->drmFormatModifierPlaneCount;
const bool mod_has_aux =
isl_drm_modifier_has_aux(drm_info->drmFormatModifier);
VkResult result;
/* Currently there is no way to properly map memory planes to format planes
* and aux planes due to the lack of defined ABI for external multi-planar
* images.
*/
if (image->n_planes == 1)
assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
else
assert(!(image->vk.aspects & ~VK_IMAGE_ASPECT_PLANES_BITS_ANV));
if (mod_has_aux) {
assert(image->n_planes == 1);
/* About valid usage in the Vulkan spec:
*
* Unlike vanilla vkCreateImage, which produces undefined behavior on user
* error, here the spec requires the implementation to return
* VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT if the app provides
* a bad plane layout. However, the spec does require
* drmFormatModifierPlaneCount to be valid.
*
* Most validation of plane layout occurs in add_surface().
*/
uint32_t n_mod_planes =
isl_drm_modifier_get_plane_count(devinfo,
drm_info->drmFormatModifier,
image->n_planes);
assert(n_mod_planes == mod_plane_count);
} else {
assert(image->n_planes == mod_plane_count);
}
/* Reject special values in the app-provided plane layouts. */
for (uint32_t i = 0; i < mod_plane_count; ++i) {
if (drm_info->pPlaneLayouts[i].rowPitch == 0) {
return vk_errorf(device,
VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
"VkImageDrmFormatModifierExplicitCreateInfoEXT::"
"pPlaneLayouts[%u]::rowPitch is 0", i);
}
if (drm_info->pPlaneLayouts[i].offset == ANV_OFFSET_IMPLICIT) {
return vk_errorf(device,
VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
"VkImageDrmFormatModifierExplicitCreateInfoEXT::"
"pPlaneLayouts[%u]::offset is %" PRIu64,
i, ANV_OFFSET_IMPLICIT);
}
}
u_foreach_bit(b, image->vk.aspects) {
const VkImageAspectFlagBits aspect = 1 << b;
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
const struct anv_format_plane format_plane =
anv_get_format_plane(device->physical, image->vk.format,
plane, image->vk.tiling);
const VkSubresourceLayout *primary_layout = &drm_info->pPlaneLayouts[plane];
result = add_primary_surface(device, image, plane,
format_plane,
primary_layout->offset,
primary_layout->rowPitch,
isl_tiling_flags,
isl_extra_usage_flags);
if (result != VK_SUCCESS)
return result;
if (mod_has_aux) {
const VkSubresourceLayout flat_ccs_layout = {
.offset = ANV_OFFSET_IMPLICIT,
};
const VkSubresourceLayout *aux_layout;
uint64_t aux_state_offset = ANV_OFFSET_IMPLICIT;
/* We already asserted on image->n_planes == 1 when mod_has_aux is
* true above, so the indexes of aux and clear color are just hard-
* coded without ambiguity.
*/
if (devinfo->has_flat_ccs) {
aux_layout = &flat_ccs_layout;
if (isl_drm_modifier_get_info(
drm_info->drmFormatModifier)->supports_clear_color) {
aux_state_offset = drm_info->pPlaneLayouts[1].offset;
}
} else {
aux_layout = &drm_info->pPlaneLayouts[1];
if (isl_drm_modifier_get_info(
drm_info->drmFormatModifier)->supports_clear_color) {
aux_state_offset = drm_info->pPlaneLayouts[2].offset;
}
}
result = add_aux_surface_if_supported(device, image, plane,
format_plane,
format_list_info,
aux_layout->offset,
aux_layout->rowPitch,
aux_state_offset);
if (result != VK_SUCCESS)
return result;
assert(isl_aux_usage_has_ccs(image->planes[plane].aux_usage));
if (aux_state_offset != ANV_OFFSET_IMPLICIT) {
assert(image->planes[plane].fast_clear_memory_range.size <=
device->isl_dev.ss.clear_color_state_size);
}
}
}
return VK_SUCCESS;
}
static const struct isl_drm_modifier_info *
choose_drm_format_mod(const struct anv_physical_device *device,
uint32_t modifier_count,
const uint64_t *modifiers,
isl_surf_usage_flags_t isl_usage_flags)
{
uint64_t best_mod = UINT64_MAX;
uint32_t best_score = 0;
for (uint32_t i = 0; i < modifier_count; ++i) {
if ((isl_usage_flags & ISL_SURF_USAGE_DISABLE_AUX_BIT) &&
isl_drm_modifier_has_aux(modifiers[i])) {
/* When aux is disabled, we simply cannot choose a modifier with
* compression.
*/
continue;
}
uint32_t score = isl_drm_modifier_get_score(&device->info, modifiers[i]);
if (score > best_score) {
best_mod = modifiers[i];
best_score = score;
}
}
if (best_score > 0)
return isl_drm_modifier_get_info(best_mod);
else
return NULL;
}
static VkImageUsageFlags
anv_image_create_usage(const VkImageCreateInfo *pCreateInfo,
VkImageUsageFlags usage)
{
/* Add TRANSFER_SRC usage for multisample attachment images. This is
* because we might internally use the TRANSFER_SRC layout on them for
* blorp operations associated with resolving those into other attachments
* at the end of a subpass.
*
* Without this additional usage, we compute an incorrect AUX state in
* anv_layout_to_aux_state().
*/
if (pCreateInfo->samples > VK_SAMPLE_COUNT_1_BIT &&
(usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)))
usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
return usage;
}
static VkResult MUST_CHECK
alloc_private_binding(struct anv_device *device,
struct anv_image *image,
const VkImageCreateInfo *create_info)
{
struct anv_image_binding *binding =
&image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE];
if (binding->memory_range.size == 0)
return VK_SUCCESS;
enum anv_bo_alloc_flags alloc_flags = 0;
uint64_t explicit_address = 0;
if (create_info->flags & VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT) {
alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
const VkOpaqueCaptureDescriptorDataCreateInfoEXT *opaque_info =
vk_find_struct_const(create_info->pNext,
OPAQUE_CAPTURE_DESCRIPTOR_DATA_CREATE_INFO_EXT);
if (opaque_info) {
const struct anv_image_opaque_capture_data *explicit_addresses =
opaque_info->opaqueCaptureDescriptorData;
explicit_address = explicit_addresses->private_binding;
}
}
VkResult result = anv_device_alloc_bo(device, "image-binding-private",
binding->memory_range.size,
alloc_flags, explicit_address,
&binding->address.bo);
ANV_DMR_BO_ALLOC(&image->vk.base, binding->address.bo, result);
return result;
}
static void
anv_image_finish_sparse_bindings(struct anv_image *image)
{
struct anv_device *device =
container_of(image->vk.base.device, struct anv_device, vk);
assert(anv_image_is_sparse(image));
for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; i++) {
struct anv_image_binding *b = &image->bindings[i];
if (b->sparse_data.size != 0) {
assert(b->memory_range.size == b->sparse_data.size);
assert(b->address.offset == b->sparse_data.address);
anv_free_sparse_bindings(device, &b->sparse_data);
}
}
}
static VkResult MUST_CHECK
anv_image_init_sparse_bindings(struct anv_image *image,
const struct anv_image_create_info *create_info)
{
struct anv_device *device =
container_of(image->vk.base.device, struct anv_device, vk);
VkResult result;
assert(anv_image_is_sparse(image));
enum anv_bo_alloc_flags alloc_flags = 0;
const struct anv_image_opaque_capture_data *explicit_addresses = NULL;
if (image->vk.create_flags & VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT) {
alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
const VkOpaqueCaptureDescriptorDataCreateInfoEXT *opaque_info =
vk_find_struct_const(create_info->vk_info->pNext,
OPAQUE_CAPTURE_DESCRIPTOR_DATA_CREATE_INFO_EXT);
if (opaque_info)
explicit_addresses = opaque_info->opaqueCaptureDescriptorData;
}
for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; i++) {
struct anv_image_binding *b = &image->bindings[i];
if (b->memory_range.size != 0) {
assert(b->sparse_data.size == 0);
uint64_t explicit_address = 0;
if (explicit_addresses) {
switch (i) {
case ANV_IMAGE_MEMORY_BINDING_MAIN:
explicit_address = explicit_addresses->planes[0];
break;
case ANV_IMAGE_MEMORY_BINDING_PLANE_0:
case ANV_IMAGE_MEMORY_BINDING_PLANE_1:
case ANV_IMAGE_MEMORY_BINDING_PLANE_2:
explicit_address = explicit_addresses->planes[i - ANV_IMAGE_MEMORY_BINDING_PLANE_0];
break;
case ANV_IMAGE_MEMORY_BINDING_PRIVATE:
explicit_address = explicit_addresses->private_binding;
break;
default:
unreachable("invalid binding");
}
}
/* From the spec, Custom Sparse Image Block Shapes section:
* "... the size in bytes of the custom sparse image block shape
* will be reported in VkMemoryRequirements::alignment."
*
* ISL should have set this for us, so just assert it here.
*/
assert(b->memory_range.alignment == ANV_SPARSE_BLOCK_SIZE);
assert(b->memory_range.size % ANV_SPARSE_BLOCK_SIZE == 0);
result = anv_init_sparse_bindings(device,
b->memory_range.size,
&b->sparse_data,
alloc_flags,
explicit_address,
&b->address);
if (result != VK_SUCCESS) {
anv_image_finish_sparse_bindings(image);
return result;
}
}
}
return VK_SUCCESS;
}
bool
anv_image_view_formats_incomplete(const struct anv_image *image)
{
/* See mark_image_view_formats_incomplete(). */
return image->num_view_formats < ARRAY_SIZE(image->view_formats) &&
image->view_formats[image->num_view_formats] ==
ISL_FORMAT_UNSUPPORTED;
}
static void
mark_image_view_formats_incomplete(struct anv_image *image)
{
/* We need to reserve space to insert the token for an incomplete list. Use
* up all the space except for the first entry. This helps various code
* paths that depend on the list to have decent fall-back behavior. For
* examples, see add_aux_state_tracking_buffer() and
* set_image_clear_color().
*/
assert(image->num_view_formats >= 1);
image->num_view_formats = 1;
/* Replace the first unused entry with the token for an incomplete list. */
image->view_formats[image->num_view_formats] = ISL_FORMAT_UNSUPPORTED;
assert(anv_image_view_formats_incomplete(image));
}
static void
add_image_view_format(struct anv_image *image, enum isl_format view_format)
{
/* If this list can't be completed, reject all formats. */
if (anv_image_view_formats_incomplete(image))
return;
/* Reject invalid formats. */
if (view_format == ISL_FORMAT_UNSUPPORTED)
return;
/* Reject duplicate formats. */
for (int i = 0; i < image->num_view_formats; i++)
if (view_format == image->view_formats[i])
return;
if (image->num_view_formats == ARRAY_SIZE(image->view_formats)) {
/* The array is full, so we can't add any more entries. */
mark_image_view_formats_incomplete(image);
} else {
/* Add to the end of the array. */
image->view_formats[image->num_view_formats++] = view_format;
}
}
VkResult
anv_image_init(struct anv_device *device, struct anv_image *image,
const struct anv_image_create_info *create_info)
{
const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
VkResult r;
vk_image_init(&device->vk, &image->vk, pCreateInfo);
image->vk.usage = anv_image_create_usage(pCreateInfo, image->vk.usage);
image->vk.stencil_usage =
anv_image_create_usage(pCreateInfo, image->vk.stencil_usage);
isl_surf_usage_flags_t isl_extra_usage_flags =
create_info->isl_extra_usage_flags;
for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) {
image->bindings[i] = (struct anv_image_binding) {
.memory_range = { .binding = i },
};
}
/* In case of AHardwareBuffer import, we don't know the layout yet */
if (image->vk.external_handle_types &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) {
image->from_ahb = true;
#if DETECT_OS_ANDROID
image->vk.ahb_format = anv_ahb_format_for_vk_format(image->vk.format);
#endif
return VK_SUCCESS;
}
image->n_planes = anv_get_format_planes(device->physical, image->vk.format);
#ifdef VK_USE_PLATFORM_ANDROID_KHR
/* In the case of gralloc-backed swap chain image, we don't know the
* layout yet.
*/
if (vk_find_struct_const(pCreateInfo->pNext,
IMAGE_SWAPCHAIN_CREATE_INFO_KHR) != NULL)
return VK_SUCCESS;
#endif
const struct wsi_image_create_info *wsi_info =
vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
image->from_wsi = wsi_info != NULL;
image->wsi_blit_src = wsi_info && wsi_info->blit_src;
/* The Vulkan 1.2.165 glossary says:
*
* A disjoint image consists of multiple disjoint planes, and is created
* with the VK_IMAGE_CREATE_DISJOINT_BIT bit set.
*/
image->disjoint = image->n_planes > 1 &&
(pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT);
if (anv_is_compressed_format_emulated(device->physical, pCreateInfo->format)) {
assert(image->n_planes == 1 &&
vk_format_is_compressed(image->vk.format));
assert(!(image->vk.create_flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT));
image->emu_plane_format = anv_get_compressed_format_emulation(
device->physical, image->vk.format);
/* for fetching the raw copmressed data and storing the decompressed
* data
*/
image->vk.create_flags |=
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT |
VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT;
if (image->vk.image_type == VK_IMAGE_TYPE_3D)
image->vk.create_flags |= VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT;
image->vk.usage |=
VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
/* TODO: enable compression on emulation plane */
isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
}
/* Disable aux if image supports export without modifiers. */
if (image->vk.external_handle_types != 0 &&
image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)
isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
if (device->queue_count > 1) {
/* Notify ISL that the app may access this image from different engines.
* Note that parallel access to the surface will occur regardless of the
* sharing mode.
*/
isl_extra_usage_flags |= ISL_SURF_USAGE_MULTI_ENGINE_PAR_BIT;
/* If the resource is created with the CONCURRENT sharing mode, we can't
* support compression because we aren't allowed barriers in order to
* construct the main surface data with FULL_RESOLVE/PARTIAL_RESOLVE.
*/
if (image->vk.sharing_mode == VK_SHARING_MODE_CONCURRENT)
isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
}
/* Aux is pointless if it will never be used as an attachment. */
if (vk_format_is_depth_or_stencil(image->vk.format) &&
!(image->vk.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT))
isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
/* TODO: Adjust blorp for multi-LOD HiZ surface on Gen9. */
if (vk_format_has_depth(image->vk.format) &&
image->vk.mip_levels > 1 && device->info->ver == 9) {
anv_perf_warn(VK_LOG_OBJS(&image->vk.base), "Enable multi-LOD HiZ");
isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
}
/* Mark WSI images with the right surf usage. */
if (image->from_wsi)
isl_extra_usage_flags |= ISL_SURF_USAGE_DISPLAY_BIT;
const VkImageFormatListCreateInfo *fmt_list =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_FORMAT_LIST_CREATE_INFO);
if ((image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
image->vk.samples == 1) {
if (image->n_planes != 1) {
/* Multiplanar images seem to hit a sampler bug with CCS and R16G16
* format. (Putting the clear state a page/4096bytes further fixes
* the issue).
*/
isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
}
if ((image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) &&
!image->from_wsi) {
/* The image may alias a plane of a multiplanar image. Above we ban
* CCS on multiplanar images.
*
* We must also reject aliasing of any image that uses
* ANV_IMAGE_MEMORY_BINDING_PRIVATE. Since we're already rejecting
* all aliasing here, there's no need to further analyze if the image
* needs a private binding.
*/
isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
}
if (device->info->ver >= 12 &&
!anv_formats_ccs_e_compatible(device->physical,
image->vk.create_flags,
image->vk.format, image->vk.tiling,
image->vk.usage, fmt_list)) {
/* CCS_E is the only aux-mode supported for single sampled color
* surfaces on gfx12+. If we can't support it, we should configure
* the main surface without aux support.
*/
isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
}
}
/* Fill out the list of view formats. */
const enum isl_format image_format =
anv_get_format_plane(device->physical, image->vk.format, 0,
image->vk.tiling).isl_format;
add_image_view_format(image, image_format);
if (image->vk.usage & (VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT)) {
if (vk_format_is_color(image->vk.format)) {
const enum isl_format blorp_copy_format =
blorp_copy_get_color_format(&device->isl_dev, image_format);
add_image_view_format(image, blorp_copy_format);
if (vk_format_is_color_depth_stencil_capable(image->vk.format))
add_image_view_format(image, ISL_FORMAT_RAW);
} else {
/* We don't have a blorp_copy format query for depth-stencil formats. */
mark_image_view_formats_incomplete(image);
}
}
if (image->vk.create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) {
if (!fmt_list || fmt_list->viewFormatCount == 0) {
/* Without a format list provided, we must assume all compatible
* formats. Instead of adding them all, mark our list as incomplete.
*/
mark_image_view_formats_incomplete(image);
} else {
for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
const enum isl_format fmt_list_format =
anv_get_format_plane(device->physical,
fmt_list->pViewFormats[i], 0,
image->vk.tiling).isl_format;
add_image_view_format(image, fmt_list_format);
}
}
}
const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_explicit_info = NULL;
const struct isl_drm_modifier_info *isl_mod_info = NULL;
if (pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
assert(!image->vk.wsi_legacy_scanout);
mod_explicit_info =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
if (mod_explicit_info) {
isl_mod_info = isl_drm_modifier_get_info(mod_explicit_info->drmFormatModifier);
} else {
const struct VkImageDrmFormatModifierListCreateInfoEXT *mod_list_info =
vk_find_struct_const(pCreateInfo->pNext,
IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
isl_mod_info = choose_drm_format_mod(device->physical,
mod_list_info->drmFormatModifierCount,
mod_list_info->pDrmFormatModifiers,
isl_extra_usage_flags);
}
if (!isl_mod_info) {
return vk_errorf(device, VK_ERROR_UNKNOWN,
"Cannot choose a suitable modifier to create image");
}
assert(image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID);
image->vk.drm_format_mod = isl_mod_info->modifier;
if (isl_drm_modifier_needs_display_layout(image->vk.drm_format_mod))
isl_extra_usage_flags |= ISL_SURF_USAGE_DISPLAY_BIT;
/* Disable compression on gen12+ if the selected/requested modifier
* doesn't support it. Prior to that we can use a private binding for
* the aux surface and it should be transparent to users.
*/
if (device->info->ver >= 12 &&
!isl_drm_modifier_has_aux(image->vk.drm_format_mod)) {
isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
}
}
if (isl_mod_info && isl_mod_info->supports_clear_color) {
if (image->num_view_formats > 1) {
/* We use the number of view formats to determine the number of
* CLEAR_COLOR structures to append to the image. For an imported
* dmabuf supporting clear colors, we're limited to a single such
* struct. So, mark the view format list as incomplete because doing
* so shrinks the list size to one.
*/
mark_image_view_formats_incomplete(image);
}
assert(image->num_view_formats == 1);
}
const isl_tiling_flags_t isl_tiling_flags =
choose_isl_tiling_flags(device->info, image, create_info, isl_mod_info);
if (mod_explicit_info) {
r = add_all_surfaces_explicit_layout(device, image, fmt_list,
mod_explicit_info, isl_tiling_flags,
isl_extra_usage_flags);
} else {
r = add_all_surfaces_implicit_layout(device, image, fmt_list, create_info->stride,
isl_tiling_flags,
isl_extra_usage_flags);
}
if (r != VK_SUCCESS)
goto fail;
if (image->emu_plane_format != VK_FORMAT_UNDEFINED) {
const uint32_t plane = image->n_planes;
const struct anv_format_plane plane_format = anv_get_format_plane(
device->physical, image->emu_plane_format, 0, image->vk.tiling);
isl_surf_usage_flags_t isl_usage = anv_image_choose_isl_surf_usage(
device->physical, image->vk.format, image->vk.create_flags,
image->vk.usage, isl_extra_usage_flags, VK_IMAGE_ASPECT_COLOR_BIT,
image->vk.compr_flags);
r = add_primary_surface(device, image, plane, plane_format,
ANV_OFFSET_IMPLICIT, 0,
isl_tiling_flags, isl_usage);
if (r != VK_SUCCESS)
goto fail;
}
const VkVideoProfileListInfoKHR *video_profile =
vk_find_struct_const(pCreateInfo->pNext,
VIDEO_PROFILE_LIST_INFO_KHR);
bool independent_video_profile =
pCreateInfo->flags & VK_IMAGE_CREATE_VIDEO_PROFILE_INDEPENDENT_BIT_KHR;
if (video_profile || independent_video_profile) {
r = add_video_buffers(device, image, video_profile, independent_video_profile);
if (r != VK_SUCCESS)
goto fail;
}
if (!create_info->no_private_binding_alloc) {
r = alloc_private_binding(device, image, pCreateInfo);
if (r != VK_SUCCESS)
goto fail;
}
check_memory_bindings(device, image);
r = check_drm_format_mod(device, image);
if (r != VK_SUCCESS)
goto fail;
if (anv_image_is_sparse(image)) {
r = anv_image_init_sparse_bindings(image, create_info);
if (r != VK_SUCCESS)
goto fail;
}
return VK_SUCCESS;
fail:
vk_image_finish(&image->vk);
return r;
}
void
anv_image_finish(struct anv_image *image)
{
struct anv_device *device =
container_of(image->vk.base.device, struct anv_device, vk);
if (anv_image_is_sparse(image))
anv_image_finish_sparse_bindings(image);
/* Unmap a CCS so that if the bound region of the image is rebound to
* another image, the AUX tables will be cleared to allow for a new
* mapping.
*/
for (int p = 0; p < image->n_planes; ++p) {
if (image->planes[p].aux_tt.mapped) {
intel_aux_map_del_mapping(device->aux_map_ctx,
image->planes[p].aux_tt.addr,
image->planes[p].aux_tt.size);
}
}
if (image->from_gralloc) {
assert(!image->disjoint);
assert(image->n_planes == 1);
assert(image->planes[0].primary_surface.memory_range.binding ==
ANV_IMAGE_MEMORY_BINDING_MAIN);
assert(image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo != NULL);
anv_device_release_bo(device, image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo);
}
for (uint32_t b = 0; b < ARRAY_SIZE(image->bindings); b++) {
if (image->bindings[b].host_map != NULL && !image->bindings[b].address.bo->from_host_ptr) {
anv_device_unmap_bo(device,
image->bindings[b].address.bo,
image->bindings[b].host_map,
image->bindings[b].map_size,
false /* replace */);
}
}
struct anv_bo *private_bo = image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo;
if (private_bo) {
if (image->device_registered) {
pthread_mutex_lock(&device->mutex);
list_del(&image->link);
pthread_mutex_unlock(&device->mutex);
}
ANV_DMR_BO_FREE(&image->vk.base, private_bo);
anv_device_release_bo(device, private_bo);
}
vk_image_finish(&image->vk);
}
static VkResult
anv_image_init_from_create_info(struct anv_device *device,
struct anv_image *image,
const VkImageCreateInfo *pCreateInfo,
bool no_private_binding_alloc)
{
if (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) {
VkResult result =
anv_sparse_image_check_support(device->physical,
pCreateInfo->flags,
pCreateInfo->tiling,
pCreateInfo->samples,
pCreateInfo->imageType,
pCreateInfo->format);
if (result != VK_SUCCESS)
return result;
}
const VkNativeBufferANDROID *gralloc_info =
vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
if (gralloc_info)
return anv_image_init_from_gralloc(device, image, pCreateInfo,
gralloc_info);
struct anv_image_create_info create_info = {
.vk_info = pCreateInfo,
.no_private_binding_alloc = no_private_binding_alloc,
};
return anv_image_init(device, image, &create_info);
}
VkResult anv_CreateImage(
VkDevice _device,
const VkImageCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkImage* pImage)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) &&
INTEL_DEBUG(DEBUG_SPARSE) &&
pCreateInfo->flags & (VK_IMAGE_CREATE_SPARSE_BINDING_BIT |
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT |
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT))
fprintf(stderr, "=== %s %s:%d flags:0x%08x\n", __func__, __FILE__,
__LINE__, pCreateInfo->flags);
#ifndef VK_USE_PLATFORM_ANDROID_KHR
/* Skip the WSI common swapchain creation here on Android. Similar to ahw,
* this case is handled by a partial image init and then resolved when the
* image is bound and gralloc info is passed.
*/
const VkImageSwapchainCreateInfoKHR *swapchain_info =
vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) {
return wsi_common_create_swapchain_image(&device->physical->wsi_device,
pCreateInfo,
swapchain_info->swapchain,
pImage);
}
#endif
struct anv_image *image =
vk_object_zalloc(&device->vk, pAllocator, sizeof(*image),
VK_OBJECT_TYPE_IMAGE);
if (!image)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
VkResult result = anv_image_init_from_create_info(device, image,
pCreateInfo,
false);
if (result != VK_SUCCESS) {
vk_object_free(&device->vk, pAllocator, image);
return result;
}
ANV_RMV(image_create, device, false, image);
*pImage = anv_image_to_handle(image);
return result;
}
void
anv_DestroyImage(VkDevice _device, VkImage _image,
const VkAllocationCallbacks *pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, _image);
if (!image)
return;
ANV_RMV(image_destroy, device, image);
assert(&device->vk == image->vk.base.device);
anv_image_finish(image);
vk_free2(&device->vk.alloc, pAllocator, image);
}
VkResult
anv_GetImageOpaqueCaptureDescriptorDataEXT(VkDevice device,
const VkImageCaptureDescriptorDataInfoEXT *pInfo,
void *pData)
{
ANV_FROM_HANDLE(anv_image, image, pInfo->image);
struct anv_image_opaque_capture_data *bound_addresses = pData;
memset(bound_addresses, 0, sizeof(*bound_addresses));
for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; i++) {
struct anv_image_binding *b = &image->bindings[i];
if (b->memory_range.size != 0) {
uint64_t addr = anv_address_physical(b->address);
switch (i) {
case ANV_IMAGE_MEMORY_BINDING_MAIN:
bound_addresses->planes[0] = addr;
break;
case ANV_IMAGE_MEMORY_BINDING_PLANE_0:
case ANV_IMAGE_MEMORY_BINDING_PLANE_1:
case ANV_IMAGE_MEMORY_BINDING_PLANE_2:
bound_addresses->planes[i - ANV_IMAGE_MEMORY_BINDING_PLANE_0] = addr;
break;
case ANV_IMAGE_MEMORY_BINDING_PRIVATE:
bound_addresses->private_binding = addr;
break;
default:
unreachable("invalid binding");
}
}
}
return VK_SUCCESS;
}
/* We are binding AHardwareBuffer. Get a description, resolve the
* format and prepare anv_image properly.
*/
static void
resolve_ahw_image(struct anv_device *device,
struct anv_image *image,
struct anv_device_memory *mem)
{
#if DETECT_OS_ANDROID && ANDROID_API_LEVEL >= 26
assert(mem->vk.ahardware_buffer);
AHardwareBuffer_Desc desc;
AHardwareBuffer_describe(mem->vk.ahardware_buffer, &desc);
VkResult result;
/* Check tiling. */
enum isl_tiling tiling;
const native_handle_t *handle =
AHardwareBuffer_getNativeHandle(mem->vk.ahardware_buffer);
struct u_gralloc_buffer_handle gr_handle = {
.handle = handle,
.hal_format = desc.format,
.pixel_stride = desc.stride,
};
result = anv_android_get_tiling(device, &gr_handle, &tiling);
assert(result == VK_SUCCESS);
isl_tiling_flags_t isl_tiling_flags = (1u << tiling);
/* Check format. */
VkFormat vk_format = vk_format_from_android(desc.format, desc.usage);
assert(vk_format != VK_FORMAT_UNDEFINED);
/* Now we are able to fill anv_image fields properly and create
* isl_surface for it.
*/
vk_image_set_format(&image->vk, vk_format);
image->n_planes = anv_get_format_planes(device->physical, image->vk.format);
result = add_all_surfaces_implicit_layout(device, image, NULL, desc.stride,
isl_tiling_flags,
ISL_SURF_USAGE_DISABLE_AUX_BIT);
assert(result == VK_SUCCESS);
#endif
}
static VkResult
resolve_anb_image(struct anv_device *device,
struct anv_image *image,
const VkNativeBufferANDROID *gralloc_info)
{
#if DETECT_OS_ANDROID && ANDROID_API_LEVEL >= 29
VkResult result;
/* Do not close the gralloc handle's dma_buf. The lifetime of the dma_buf
* must exceed that of the gralloc handle, and we do not own the gralloc
* handle.
*/
int dma_buf = gralloc_info->handle->data[0];
/* If this function fails and if the imported bo was resident in the cache,
* we should avoid updating the bo's flags. Therefore, we defer updating
* the flags until success is certain.
*
*/
struct anv_bo *bo = NULL;
result = anv_device_import_bo(device, dma_buf,
ANV_BO_ALLOC_EXTERNAL,
0 /* client_address */,
&bo);
if (result != VK_SUCCESS) {
return vk_errorf(device, result,
"failed to import dma-buf from VkNativeBufferANDROID");
}
/* Check tiling. */
enum isl_tiling tiling;
struct u_gralloc_buffer_handle gr_handle = {
.handle = gralloc_info->handle,
.hal_format = gralloc_info->format,
.pixel_stride = gralloc_info->stride,
};
result = anv_android_get_tiling(device, &gr_handle, &tiling);
assert(result == VK_SUCCESS);
isl_tiling_flags_t isl_tiling_flags = (1u << tiling);
/* Now we are able to fill anv_image fields properly and create
* isl_surface for it.
*/
result = add_all_surfaces_implicit_layout(device, image, NULL, gralloc_info->stride,
isl_tiling_flags,
ISL_SURF_USAGE_DISABLE_AUX_BIT);
if (result != VK_SUCCESS) {
anv_device_release_bo(device, bo);
return vk_errorf(device, result,
"failed to add surfaces from VkNativeBufferANDROID");
}
VkMemoryRequirements2 mem_reqs = {
.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
};
anv_image_get_memory_requirements(device, image, image->vk.aspects,
&mem_reqs);
VkDeviceSize aligned_image_size =
align64(mem_reqs.memoryRequirements.size,
mem_reqs.memoryRequirements.alignment);
if (bo->size < aligned_image_size) {
result = vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"dma-buf from VkNativeBufferANDROID is too small for "
"VkImage: %"PRIu64"B < %"PRIu64"B",
bo->size, aligned_image_size);
anv_device_release_bo(device, bo);
return result;
}
assert(!image->disjoint);
assert(image->n_planes == 1);
assert(image->planes[0].primary_surface.memory_range.binding ==
ANV_IMAGE_MEMORY_BINDING_MAIN);
assert(image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo == NULL);
assert(image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.offset == 0);
image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo = bo;
image->from_gralloc = true;
return VK_SUCCESS;
#else
return VK_ERROR_EXTENSION_NOT_PRESENT;
#endif
}
static bool
anv_image_is_pat_compressible(struct anv_device *device, struct anv_image *image)
{
if (device->info->ver < 20)
return false;
/*
* Be aware that Vulkan spec requires that Images with some properties
* always returns the same memory types, so this function also needs to
* have the same return for the same set of properties.
*
* For images created with a color format, the memoryTypeBits member is
* identical for all VkImage objects created with the same combination
* of values for the tiling member, the
* VK_IMAGE_CREATE_SPARSE_BINDING_BIT bit and
* VK_IMAGE_CREATE_PROTECTED_BIT bit of the flags member, the
* VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT bit of the flags
* member, the VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT bit of the usage
* member if the
* VkPhysicalDeviceHostImageCopyPropertiesEXT::identicalMemoryTypeRequirements
* property is VK_FALSE, handleTypes member of
* VkExternalMemoryImageCreateInfo, and the
* VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the usage member in the
* VkImageCreateInfo structure passed to vkCreateImage.
*
* For images created with a depth/stencil format, the memoryTypeBits
* member is identical for all VkImage objects created with the same
* combination of values for the format member, the tiling member, the
* VK_IMAGE_CREATE_SPARSE_BINDING_BIT bit and
* VK_IMAGE_CREATE_PROTECTED_BIT bit of the flags member, the
* VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT bit of the flags
* member, the VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT bit of the usage
* member if the
* VkPhysicalDeviceHostImageCopyPropertiesEXT::identicalMemoryTypeRequirements
* property is VK_FALSE, handleTypes member of
* VkExternalMemoryImageCreateInfo, and the
* VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the usage member in the
* VkImageCreateInfo structure passed to vkCreateImage.
*/
/* Because we cannot report different memory types for uncompressed and
* compressed modifiers on the VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT,
* We don't set the right compressed memory type set for Xe2 modifiers, in
* order to keep the memory types same as the uncompressed modifiers. The
* image will get compressed memory through a dedicated allocation later.
*/
if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)
return false;
if (image->vk.external_handle_types)
return false;
/* Host accessed images cannot be compressed. */
if (image->vk.usage & VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT)
return false;
return true;
}
void
anv_image_get_memory_requirements(struct anv_device *device,
struct anv_image *image,
VkImageAspectFlags aspects,
VkMemoryRequirements2 *pMemoryRequirements)
{
/* The Vulkan spec (git aaed022) says:
*
* memoryTypeBits is a bitfield and contains one bit set for every
* supported memory type for the resource. The bit `1<<i` is set if and
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
* structure for the physical device is supported.
*/
uint32_t memory_types;
if (image->vk.create_flags & VK_IMAGE_CREATE_PROTECTED_BIT) {
memory_types = device->physical->memory.protected_mem_types;
} else {
memory_types = device->physical->memory.default_buffer_mem_types;
if (anv_image_is_pat_compressible(device, image))
memory_types |= device->physical->memory.compressed_mem_types;
}
if (image->vk.usage & VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT) {
/* Remove non host visible heaps from the types for host transfers on
* non ReBAR devices
*/
if (device->physical->has_small_bar) {
for (uint32_t i = 0; i < device->physical->memory.type_count; i++) {
if (!(device->physical->memory.types[i].propertyFlags &
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))
memory_types &= ~BITFIELD_BIT(i);
}
}
}
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *requirements = (void *)ext;
if (image->vk.wsi_legacy_scanout ||
image->from_ahb ||
(isl_drm_modifier_has_aux(image->vk.drm_format_mod) &&
(anv_image_uses_aux_map(device, image) ||
device->info->ver >= 20))) {
/* On pre-Xe2 platforms, if we need to set the tiling for external
* consumers or the modifier involves AUX tables, we need a
* dedicated allocation. On Xe2+ platforms, a dedicated allocation
* is still needed because we need to pass modifier information
* down to the allocation path. Refer to
* anv_image_is_pat_compressible().
*
* See also anv_AllocateMemory().
*/
requirements->prefersDedicatedAllocation = true;
requirements->requiresDedicatedAllocation = true;
} else {
requirements->prefersDedicatedAllocation = false;
requirements->requiresDedicatedAllocation = false;
}
break;
}
default:
vk_debug_ignored_stype(ext->sType);
break;
}
}
/* If the image is disjoint, then we must return the memory requirements for
* the single plane specified in VkImagePlaneMemoryRequirementsInfo. If
* non-disjoint, then exactly one set of memory requirements exists for the
* whole image.
*
* This is enforced by the Valid Usage for VkImageMemoryRequirementsInfo2,
* which requires that the app provide VkImagePlaneMemoryRequirementsInfo if
* and only if the image is disjoint (that is, multi-planar format and
* VK_IMAGE_CREATE_DISJOINT_BIT).
*/
enum anv_image_memory_binding binding;
if (image->disjoint) {
assert(util_bitcount(aspects) == 1);
assert(aspects & image->vk.aspects);
binding = anv_image_aspect_to_binding(image, aspects);
} else {
assert(aspects == image->vk.aspects);
binding = ANV_IMAGE_MEMORY_BINDING_MAIN;
}
pMemoryRequirements->memoryRequirements = (VkMemoryRequirements) {
.size = image->bindings[binding].memory_range.size,
.alignment = image->bindings[binding].memory_range.alignment,
.memoryTypeBits = memory_types,
};
}
void anv_GetImageMemoryRequirements2(
VkDevice _device,
const VkImageMemoryRequirementsInfo2* pInfo,
VkMemoryRequirements2* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, pInfo->image);
VkImageAspectFlags aspects = image->vk.aspects;
vk_foreach_struct_const(ext, pInfo->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
assert(image->disjoint);
const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
(const VkImagePlaneMemoryRequirementsInfo *) ext;
aspects = plane_reqs->planeAspect;
break;
}
default:
vk_debug_ignored_stype(ext->sType);
break;
}
}
anv_image_get_memory_requirements(device, image, aspects,
pMemoryRequirements);
}
void anv_GetDeviceImageMemoryRequirements(
VkDevice _device,
const VkDeviceImageMemoryRequirements* pInfo,
VkMemoryRequirements2* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_image image = { 0 };
if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) &&
INTEL_DEBUG(DEBUG_SPARSE) &&
pInfo->pCreateInfo->flags & (VK_IMAGE_CREATE_SPARSE_BINDING_BIT |
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT |
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT))
fprintf(stderr, "=== %s %s:%d flags:0x%08x\n", __func__, __FILE__,
__LINE__, pInfo->pCreateInfo->flags);
ASSERTED VkResult result =
anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo, true);
assert(result == VK_SUCCESS);
VkImageAspectFlags aspects =
image.disjoint ? pInfo->planeAspect : image.vk.aspects;
anv_image_get_memory_requirements(device, &image, aspects,
pMemoryRequirements);
anv_image_finish(&image);
}
static void
anv_image_get_sparse_memory_requirements(
struct anv_device *device,
struct anv_image *image,
VkImageAspectFlags aspects,
uint32_t *pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements2 *pSparseMemoryRequirements)
{
VK_OUTARRAY_MAKE_TYPED(VkSparseImageMemoryRequirements2, reqs,
pSparseMemoryRequirements,
pSparseMemoryRequirementCount);
/* From the spec:
* "The sparse image must have been created using the
* VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag to retrieve valid sparse
* image memory requirements."
*/
if (!(image->vk.create_flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT))
return;
VkSparseImageMemoryRequirements ds_mem_reqs = {};
VkSparseImageMemoryRequirements2 *ds_reqs_ptr = NULL;
u_foreach_bit(b, aspects) {
VkImageAspectFlagBits aspect = 1 << b;
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
struct isl_surf *surf = &image->planes[plane].primary_surface.isl;
VkSparseImageFormatProperties format_props =
anv_sparse_calc_image_format_properties(device->physical, aspect,
image->vk.image_type,
image->vk.samples, surf);
uint32_t miptail_first_lod;
VkDeviceSize miptail_size, miptail_offset, miptail_stride;
anv_sparse_calc_miptail_properties(device, image, aspect,
&miptail_first_lod, &miptail_size,
&miptail_offset, &miptail_stride);
VkSparseImageMemoryRequirements mem_reqs = {
.formatProperties = format_props,
.imageMipTailFirstLod = miptail_first_lod,
.imageMipTailSize = miptail_size,
.imageMipTailOffset = miptail_offset,
.imageMipTailStride = miptail_stride,
};
/* If both depth and stencil are the same, unify them if possible. */
if (aspect & (VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (!ds_reqs_ptr) {
ds_mem_reqs = mem_reqs;
} else if (ds_mem_reqs.formatProperties.imageGranularity.width ==
mem_reqs.formatProperties.imageGranularity.width &&
ds_mem_reqs.formatProperties.imageGranularity.height ==
mem_reqs.formatProperties.imageGranularity.height &&
ds_mem_reqs.formatProperties.imageGranularity.depth ==
mem_reqs.formatProperties.imageGranularity.depth &&
ds_mem_reqs.imageMipTailFirstLod ==
mem_reqs.imageMipTailFirstLod &&
ds_mem_reqs.imageMipTailSize ==
mem_reqs.imageMipTailSize &&
ds_mem_reqs.imageMipTailOffset ==
mem_reqs.imageMipTailOffset &&
ds_mem_reqs.imageMipTailStride ==
mem_reqs.imageMipTailStride) {
ds_reqs_ptr->memoryRequirements.formatProperties.aspectMask |=
aspect;
continue;
}
}
vk_outarray_append_typed(VkSparseImageMemoryRequirements2, &reqs, r) {
r->memoryRequirements = mem_reqs;
if (aspect & (VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT))
ds_reqs_ptr = r;
}
}
}
void anv_GetImageSparseMemoryRequirements2(
VkDevice _device,
const VkImageSparseMemoryRequirementsInfo2* pInfo,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, pInfo->image);
if (!anv_sparse_residency_is_enabled(device)) {
if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) &&
INTEL_DEBUG(DEBUG_SPARSE))
fprintf(stderr, "=== [%s:%d] [%s]\n", __FILE__, __LINE__, __func__);
*pSparseMemoryRequirementCount = 0;
return;
}
anv_image_get_sparse_memory_requirements(device, image, image->vk.aspects,
pSparseMemoryRequirementCount,
pSparseMemoryRequirements);
}
void anv_GetDeviceImageSparseMemoryRequirements(
VkDevice _device,
const VkDeviceImageMemoryRequirements* pInfo,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_image image = { 0 };
if (!anv_sparse_residency_is_enabled(device)) {
if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) &&
INTEL_DEBUG(DEBUG_SPARSE))
fprintf(stderr, "=== [%s:%d] [%s]\n", __FILE__, __LINE__, __func__);
*pSparseMemoryRequirementCount = 0;
return;
}
/* This function is similar to anv_GetDeviceImageMemoryRequirements, in
* which it actually creates an image, gets the properties and then
* destroys the image.
*
* We could one day refactor things to allow us to gather the properties
* without having to actually create the image, maybe by reworking ISL to
* separate creation from parameter computing.
*/
VkResult result =
anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo,
true /* no_private_binding_alloc */);
if (result != VK_SUCCESS) {
*pSparseMemoryRequirementCount = 0;
return;
}
/* The spec says:
* "planeAspect is a VkImageAspectFlagBits value specifying the aspect
* corresponding to the image plane to query. This parameter is ignored
* unless pCreateInfo::tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT,
* or pCreateInfo::flags has VK_IMAGE_CREATE_DISJOINT_BIT set."
*/
VkImageAspectFlags aspects =
(pInfo->pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT) ||
(pInfo->pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)
? pInfo->planeAspect : image.vk.aspects;
anv_image_get_sparse_memory_requirements(device, &image, aspects,
pSparseMemoryRequirementCount,
pSparseMemoryRequirements);
anv_image_finish(&image);
}
static bool
anv_image_map_aux_tt(struct anv_device *device,
struct anv_image *image, uint32_t plane)
{
const struct anv_address main_addr = anv_image_address(
image, &image->planes[plane].primary_surface.memory_range);
struct anv_bo *bo = main_addr.bo;
assert(bo != NULL);
/* If the additional memory padding was added at the end of the BO for CCS
* data, map this region at the granularity of the main/CCS pages.
*
* Otherwise the image should have additional CCS data at the computed
* offset.
*/
if (device->physical->alloc_aux_tt_mem &&
(bo->alloc_flags & ANV_BO_ALLOC_AUX_CCS)) {
uint64_t main_aux_alignment =
intel_aux_map_get_alignment(device->aux_map_ctx);
assert(bo->offset % main_aux_alignment == 0);
const struct anv_address start_addr = (struct anv_address) {
.bo = bo,
.offset = ROUND_DOWN_TO(main_addr.offset, main_aux_alignment),
};
const struct anv_address aux_addr = (struct anv_address) {
.bo = bo,
.offset = bo->ccs_offset +
intel_aux_main_to_aux_offset(device->aux_map_ctx,
start_addr.offset),
};
const struct isl_surf *surf = &image->planes[plane].primary_surface.isl;
const uint64_t format_bits =
intel_aux_map_format_bits_for_isl_surf(surf);
/* Make sure to have the mapping cover the entire image from the aux
* aligned start.
*/
const uint64_t main_size = align(
(main_addr.offset - start_addr.offset) + surf->size_B,
main_aux_alignment);
if (intel_aux_map_add_mapping(device->aux_map_ctx,
anv_address_physical(start_addr),
anv_address_physical(aux_addr),
main_size, format_bits)) {
image->planes[plane].aux_tt.mapped = true;
image->planes[plane].aux_tt.addr = anv_address_physical(start_addr);
image->planes[plane].aux_tt.size = main_size;
return true;
}
} else {
if (anv_address_allows_aux_map(device, main_addr)) {
const struct anv_address aux_addr =
anv_image_address(image,
&image->planes[plane].compr_ctrl_memory_range);
const struct isl_surf *surf =
&image->planes[plane].primary_surface.isl;
const uint64_t format_bits =
intel_aux_map_format_bits_for_isl_surf(surf);
if (intel_aux_map_add_mapping(device->aux_map_ctx,
anv_address_physical(main_addr),
anv_address_physical(aux_addr),
surf->size_B, format_bits)) {
image->planes[plane].aux_tt.mapped = true;
image->planes[plane].aux_tt.addr = anv_address_physical(main_addr);
image->planes[plane].aux_tt.size = surf->size_B;
return true;
}
}
}
return false;
}
static VkResult
anv_image_bind_address(struct anv_device *device,
struct anv_image *image,
enum anv_image_memory_binding binding,
struct anv_address address)
{
image->bindings[binding].address = address;
/* Map bindings for images with host transfer usage, so that we don't have
* to map/unmap things at every host operation. We map cached, that means
* that the copy operations need to cflush on platforms that have no
* host_cache+host_coherent memory types.
*/
if (image->vk.usage & VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT) {
uint64_t offset = image->bindings[binding].address.offset +
image->bindings[binding].memory_range.offset;
if (address.bo->from_host_ptr) {
image->bindings[binding].host_map = address.bo->map + address.bo->offset;
image->bindings[binding].map_size = address.bo->size;
image->bindings[binding].map_delta = 0;
} else {
uint64_t map_offset, map_size;
anv_sanitize_map_params(device, image->bindings[binding].address.bo, offset,
image->bindings[binding].memory_range.size,
&map_offset, &map_size);
VkResult result = anv_device_map_bo(device,
image->bindings[binding].address.bo,
map_offset, map_size,
NULL /* placed_addr */,
&image->bindings[binding].host_map);
if (result != VK_SUCCESS)
return result;
image->bindings[binding].map_delta = (offset - map_offset);
image->bindings[binding].map_size = map_size;
}
}
ANV_RMV(image_bind, device, image, binding);
return VK_SUCCESS;
}
static VkResult
anv_bind_image_memory(struct anv_device *device,
const VkBindImageMemoryInfo *bind_info)
{
ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
ANV_FROM_HANDLE(anv_image, image, bind_info->image);
bool did_bind = false;
VkResult result = VK_SUCCESS;
const VkBindMemoryStatusKHR *bind_status =
vk_find_struct_const(bind_info->pNext, BIND_MEMORY_STATUS_KHR);
assert(!anv_image_is_sparse(image));
/* Resolve will alter the image's aspects, do this first. */
if (mem && mem->vk.ahardware_buffer)
resolve_ahw_image(device, image, mem);
vk_foreach_struct_const(s, bind_info->pNext) {
switch (s->sType) {
case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: {
const VkBindImagePlaneMemoryInfo *plane_info =
(const VkBindImagePlaneMemoryInfo *) s;
/* Workaround for possible spec bug.
*
* Unlike VkImagePlaneMemoryRequirementsInfo, which requires that
* the image be disjoint (that is, multi-planar format and
* VK_IMAGE_CREATE_DISJOINT_BIT), VkBindImagePlaneMemoryInfo allows
* the image to be non-disjoint and requires only that the image
* have the DISJOINT flag. In this case, regardless of the value of
* VkImagePlaneMemoryRequirementsInfo::planeAspect, the behavior is
* the same as if VkImagePlaneMemoryRequirementsInfo were omitted.
*/
if (!image->disjoint)
break;
enum anv_image_memory_binding binding =
anv_image_aspect_to_binding(image, plane_info->planeAspect);
anv_image_bind_address(device, image, binding,
(struct anv_address) {
.bo = mem->bo,
.offset = bind_info->memoryOffset,
});
did_bind = true;
break;
}
case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: {
/* Ignore this struct on Android, we cannot access swapchain
* structures there.
*/
#ifndef VK_USE_PLATFORM_ANDROID_KHR
const VkBindImageMemorySwapchainInfoKHR *swapchain_info =
(const VkBindImageMemorySwapchainInfoKHR *) s;
mem = anv_device_memory_from_handle(wsi_common_get_memory(
swapchain_info->swapchain, swapchain_info->imageIndex));
struct anv_image *swapchain_image = mem->dedicated_image;
assert(swapchain_image);
assert(image->vk.aspects == swapchain_image->vk.aspects);
/* Remove the internally allocated private binding since we're going
* to replace everything with BOs from the WSI image, we don't want
* to leak the current BO.
*/
struct anv_bo *private_bo =
image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo;
if (private_bo) {
assert(image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].memory_range.size);
assert(!image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].host_map);
ANV_DMR_BO_FREE(&image->vk.base, private_bo);
anv_device_release_bo(device, private_bo);
image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo = NULL;
}
for (int j = 0; j < ARRAY_SIZE(image->bindings); ++j) {
assert(memory_ranges_equal(image->bindings[j].memory_range,
swapchain_image->bindings[j].memory_range));
if (image->bindings[j].memory_range.size != 0) {
anv_image_bind_address(device, image, j,
swapchain_image->bindings[j].address);
}
}
/* We must bump the private binding's bo's refcount because, unlike the other
* bindings, its lifetime is not application-managed.
*/
private_bo = image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo;
if (private_bo)
anv_bo_ref(private_bo);
did_bind = true;
#endif
break;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch"
case VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID: {
const VkNativeBufferANDROID *gralloc_info =
(const VkNativeBufferANDROID *)s;
result = resolve_anb_image(device, image, gralloc_info);
if (result != VK_SUCCESS)
return result;
did_bind = true;
break;
}
#pragma GCC diagnostic pop
default:
vk_debug_ignored_stype(s->sType);
break;
}
}
if (!did_bind) {
assert(!image->disjoint);
result = anv_image_bind_address(device, image,
ANV_IMAGE_MEMORY_BINDING_MAIN,
(struct anv_address) {
.bo = mem->bo,
.offset = bind_info->memoryOffset,
});
did_bind = true;
}
/* Now that we have the BO, finalize CCS setup. */
for (int p = 0; p < image->n_planes; ++p) {
enum anv_image_memory_binding binding =
image->planes[p].primary_surface.memory_range.binding;
const struct anv_bo *bo =
image->bindings[binding].address.bo;
if (!bo || !isl_aux_usage_has_ccs(image->planes[p].aux_usage))
continue;
/* Do nothing if flat CCS requirements are satisfied.
*
* Also, assume that imported BOs with a modifier including
* CCS live only in local memory. Otherwise the exporter should
* have failed the creation of the BO.
*/
if (device->info->has_flat_ccs &&
(anv_bo_is_vram_only(bo) ||
(bo->alloc_flags & ANV_BO_ALLOC_COMPRESSED) ||
(bo->alloc_flags & ANV_BO_ALLOC_IMPORTED)))
continue;
/* If the AUX-TT mapping succeeds, there is nothing else to do. */
if (device->info->has_aux_map && anv_image_map_aux_tt(device, image, p))
continue;
/* No special requirements on gfx9-11. */
if (device->info->ver <= 11)
continue;
/* The plane's BO cannot support CCS, disable compression on it. */
assert(!isl_drm_modifier_has_aux(image->vk.drm_format_mod));
anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
"BO lacks CCS support. Disabling the CCS aux usage.");
if (image->planes[p].aux_usage == ISL_AUX_USAGE_MCS_CCS) {
assert(image->planes[p].aux_surface.memory_range.size);
image->planes[p].aux_usage = ISL_AUX_USAGE_MCS;
} else if (image->planes[p].aux_usage == ISL_AUX_USAGE_HIZ_CCS ||
image->planes[p].aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT) {
assert(image->planes[p].aux_surface.memory_range.size);
image->planes[p].aux_usage = ISL_AUX_USAGE_HIZ;
} else {
assert(image->planes[p].aux_usage == ISL_AUX_USAGE_CCS_E ||
image->planes[p].aux_usage == ISL_AUX_USAGE_FCV_CCS_E ||
image->planes[p].aux_usage == ISL_AUX_USAGE_STC_CCS);
image->planes[p].aux_usage = ISL_AUX_USAGE_NONE;
}
}
if (image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo != NULL &&
!image->device_registered) {
pthread_mutex_lock(&device->mutex);
list_addtail(&image->link, &device->image_private_objects);
image->device_registered = true;
pthread_mutex_unlock(&device->mutex);
}
if (bind_status)
*bind_status->pResult = result;
return result;
}
VkResult anv_BindImageMemory2(
VkDevice _device,
uint32_t bindInfoCount,
const VkBindImageMemoryInfo* pBindInfos)
{
ANV_FROM_HANDLE(anv_device, device, _device);
VkResult result = VK_SUCCESS;
for (uint32_t i = 0; i < bindInfoCount; i++) {
VkResult res = anv_bind_image_memory(device, &pBindInfos[i]);
if (result == VK_SUCCESS && res != VK_SUCCESS)
result = res;
}
return result;
}
static void
anv_get_image_subresource_layout(struct anv_device *device,
const struct anv_image *image,
const VkImageSubresource2KHR *subresource,
VkSubresourceLayout2KHR *layout)
{
const struct isl_surf *isl_surf = NULL;
const struct anv_image_memory_range *mem_range;
uint64_t row_pitch_B;
assert(__builtin_popcount(subresource->imageSubresource.aspectMask) == 1);
/* The Vulkan spec requires that aspectMask be
* VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT if tiling is
* VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
*
* For swapchain images, the Vulkan spec says that every swapchain image has
* tiling VK_IMAGE_TILING_OPTIMAL, but we may choose
* VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT internally. Vulkan doesn't allow
* vkGetImageSubresourceLayout for images with VK_IMAGE_TILING_OPTIMAL,
* therefore it's invalid for the application to call this on a swapchain
* image. The WSI code, however, knows when it has internally created
* a swapchain image with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT,
* so it _should_ correctly use VK_IMAGE_ASPECT_MEMORY_PLANE_* in that case.
* But it incorrectly uses VK_IMAGE_ASPECT_PLANE_*, so we have a temporary
* workaround.
*
* https://gitlab.freedesktop.org/mesa/mesa/-/issues/10176
*/
if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
/* TODO(chadv): Drop this workaround when WSI gets fixed. */
uint32_t mem_plane;
switch (subresource->imageSubresource.aspectMask) {
case VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT:
case VK_IMAGE_ASPECT_PLANE_0_BIT:
mem_plane = 0;
break;
case VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT:
case VK_IMAGE_ASPECT_PLANE_1_BIT:
mem_plane = 1;
break;
case VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT:
case VK_IMAGE_ASPECT_PLANE_2_BIT:
mem_plane = 2;
break;
default:
unreachable("bad VkImageAspectFlags");
}
if (isl_drm_modifier_plane_is_clear_color(image->vk.drm_format_mod,
mem_plane)) {
assert(image->n_planes == 1);
mem_range = &image->planes[0].fast_clear_memory_range;
row_pitch_B = ISL_DRM_CC_PLANE_PITCH_B;
} else if (mem_plane == 1 &&
image->planes[0].compr_ctrl_memory_range.size > 0) {
assert(image->n_planes == 1);
assert(isl_drm_modifier_has_aux(image->vk.drm_format_mod));
mem_range = &image->planes[0].compr_ctrl_memory_range;
row_pitch_B = image->planes[0].primary_surface.isl.row_pitch_B /
INTEL_AUX_MAP_MAIN_PITCH_SCALEDOWN;
} else if (mem_plane == 1 &&
image->planes[0].aux_surface.memory_range.size > 0) {
assert(image->n_planes == 1);
assert(image->vk.drm_format_mod == I915_FORMAT_MOD_Y_TILED_CCS);
mem_range = &image->planes[0].aux_surface.memory_range;
row_pitch_B = image->planes[0].aux_surface.isl.row_pitch_B;
} else {
assert(mem_plane < image->n_planes);
mem_range = &image->planes[mem_plane].primary_surface.memory_range;
row_pitch_B =
image->planes[mem_plane].primary_surface.isl.row_pitch_B;
isl_surf = &image->planes[mem_plane].primary_surface.isl;
}
/* If the memory binding differs between the primary plane and the
* specified memory plane, the returned offset will be incorrect.
*/
assert(mem_range->binding ==
image->planes[0].primary_surface.memory_range.binding);
/* We are working with a non-arrayed 2D image. */
assert(image->vk.image_type == VK_IMAGE_TYPE_2D || image->vk.drm_format_mod == DRM_FORMAT_MOD_LINEAR);
assert(image->vk.array_layers == 1 || image->vk.drm_format_mod == DRM_FORMAT_MOD_LINEAR);
} else {
const uint32_t plane =
anv_image_aspect_to_plane(image,
subresource->imageSubresource.aspectMask);
isl_surf = &image->planes[plane].primary_surface.isl;
mem_range = &image->planes[plane].primary_surface.memory_range;
row_pitch_B = isl_surf->row_pitch_B;
}
const uint32_t level = subresource->imageSubresource.mipLevel;
bool subresource_has_unique_tiles = false;
if (isl_surf) {
/* ISL tries to give us a single layer but the Vulkan API expect the
* entire 3D size.
*/
const uint32_t layer = subresource->imageSubresource.arrayLayer;
const uint32_t layers = u_minify(isl_surf->logical_level0_px.d, level);
uint64_t start_tile_B, end_tile_B;
subresource_has_unique_tiles =
isl_surf_image_has_unique_tiles(isl_surf, level, layer, layers,
&start_tile_B, &end_tile_B);
layout->subresourceLayout.offset = mem_range->offset + start_tile_B;
layout->subresourceLayout.size = end_tile_B - start_tile_B;
layout->subresourceLayout.rowPitch = row_pitch_B;
layout->subresourceLayout.depthPitch =
isl_surf_get_array_pitch(isl_surf);
layout->subresourceLayout.arrayPitch =
isl_surf_get_array_pitch(isl_surf);
} else {
layout->subresourceLayout.offset = mem_range->offset;
layout->subresourceLayout.size = mem_range->size;
layout->subresourceLayout.rowPitch = row_pitch_B;
/* Not a surface so those fields don't make sense */
layout->subresourceLayout.depthPitch = 0;
layout->subresourceLayout.arrayPitch = 0;
}
VkSubresourceHostMemcpySizeEXT *host_memcpy_size =
vk_find_struct(layout->pNext, SUBRESOURCE_HOST_MEMCPY_SIZE_EXT);
if (host_memcpy_size) {
if (!isl_surf) {
host_memcpy_size->size = 0;
} else if (subresource_has_unique_tiles) {
host_memcpy_size->size = layout->subresourceLayout.size;
} else {
/* If we cannot do straight memcpy of the image, compute a linear
* size. This will be the format in which we store the data.
*/
struct isl_surf lin_surf;
bool ok =
isl_surf_init(&device->physical->isl_dev, &lin_surf,
.dim = isl_surf->dim,
.format = isl_surf->format,
.width = u_minify(
isl_surf->logical_level0_px.w, level),
.height = u_minify(
isl_surf->logical_level0_px.h, level),
.depth = u_minify(
isl_surf->logical_level0_px.d, level),
.array_len = 1,
.levels = 1,
.samples = isl_surf->samples,
.tiling_flags = ISL_TILING_LINEAR_BIT);
assert(ok);
host_memcpy_size->size = lin_surf.size_B;
}
}
VkImageCompressionPropertiesEXT *comp_props =
vk_find_struct(layout->pNext, IMAGE_COMPRESSION_PROPERTIES_EXT);
if (comp_props) {
comp_props->imageCompressionFixedRateFlags =
VK_IMAGE_COMPRESSION_FIXED_RATE_NONE_EXT;
comp_props->imageCompressionFlags = VK_IMAGE_COMPRESSION_DISABLED_EXT;
for (uint32_t p = 0; p < image->n_planes; p++) {
if (image->planes[p].aux_usage != ISL_AUX_USAGE_NONE) {
comp_props->imageCompressionFlags = VK_IMAGE_COMPRESSION_DEFAULT_EXT;
break;
}
}
}
}
void anv_GetDeviceImageSubresourceLayoutKHR(
VkDevice _device,
const VkDeviceImageSubresourceInfoKHR* pInfo,
VkSubresourceLayout2KHR* pLayout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_image image = { 0 };
if (anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo,
true) != VK_SUCCESS) {
pLayout->subresourceLayout = (VkSubresourceLayout) { 0, };
return;
}
anv_get_image_subresource_layout(device, &image, pInfo->pSubresource, pLayout);
}
void anv_GetImageSubresourceLayout2KHR(
VkDevice _device,
VkImage _image,
const VkImageSubresource2KHR* pSubresource,
VkSubresourceLayout2KHR* pLayout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, _image);
anv_get_image_subresource_layout(device, image, pSubresource, pLayout);
}
static VkImageUsageFlags
anv_image_flags_filter_for_queue(VkImageUsageFlags usages,
VkQueueFlagBits queue_flags)
{
/* Eliminate graphics usages if the queue is not graphics capable */
if (!(queue_flags & VK_QUEUE_GRAPHICS_BIT)) {
usages &= ~(VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT |
VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR |
VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT);
}
/* Eliminate sampling & storage usages if the queue is neither graphics nor
* compute capable
*/
if (!(queue_flags & (VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT))) {
usages &= ~(VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_STORAGE_BIT);
}
/* Eliminate transfer usages if the queue is neither transfer, compute or
* graphics capable
*/
if (!(queue_flags & (VK_QUEUE_TRANSFER_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_GRAPHICS_BIT))) {
usages &= ~(VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT);
}
return usages;
}
/**
* This function returns the assumed isl_aux_state for a given VkImageLayout.
* Because Vulkan image layouts don't map directly to isl_aux_state enums, the
* returned enum is the assumed worst case.
*
* @param devinfo The device information of the Intel GPU.
* @param image The image that may contain a collection of buffers.
* @param aspect The aspect of the image to be accessed.
* @param layout The current layout of the image aspect(s).
*
* @return The primary buffer that should be used for the given layout.
*/
enum isl_aux_state ATTRIBUTE_PURE
anv_layout_to_aux_state(const struct intel_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlagBits aspect,
const VkImageLayout layout,
const VkQueueFlagBits queue_flags)
{
/* Validate the inputs. */
/* The devinfo is needed as the optimal buffer varies across generations. */
assert(devinfo != NULL);
/* The layout of a NULL image is not properly defined. */
assert(image != NULL);
/* The aspect must be exactly one of the image aspects. */
assert(util_bitcount(aspect) == 1 && (aspect & image->vk.aspects));
/* Determine the optimal buffer. */
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
/* If we don't have an aux buffer then aux state makes no sense */
const enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
assert(aux_usage != ISL_AUX_USAGE_NONE);
/* Handle a few special cases */
switch (layout) {
/* Invalid layouts */
case VK_IMAGE_LAYOUT_MAX_ENUM:
unreachable("Invalid image layout.");
/* Undefined layouts
*
* The pre-initialized layout is equivalent to the undefined layout for
* optimally-tiled images and for images not bound to host-visible memory.
* We only do compression on images that have one or both properties.
*/
case VK_IMAGE_LAYOUT_UNDEFINED:
case VK_IMAGE_LAYOUT_PREINITIALIZED:
return ISL_AUX_STATE_AUX_INVALID;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
/* Handle transition to present layout for non wsi images just like
* normal images. Some apps like gfx-reconstruct incorrectly use this
* layout on non-wsi image which is against spec. It's easy enough to
* deal with it here and potentially avoid unnecessary resolve
* operations.
*/
if (!image->from_wsi)
break;
enum isl_aux_state aux_state =
isl_drm_modifier_get_default_aux_state(image->vk.drm_format_mod);
switch (aux_state) {
case ISL_AUX_STATE_AUX_INVALID:
/* The modifier does not support compression. But, if we arrived
* here, then we have enabled compression on it anyway. If this is a
* WSI blit source, keep compression as we can do a compressed to
* uncompressed copy.
*/
if (image->wsi_blit_src)
return ISL_AUX_STATE_COMPRESSED_CLEAR;
/* If this is not a WSI blit source, we must resolve the aux surface
* before we release ownership to the presentation engine (because,
* having no modifier, the presentation engine will not be aware of
* the aux surface). The presentation engine will not access the aux
* surface (because it is unware of it), and so the aux surface will
* still be resolved when we re-acquire ownership.
*
* Therefore, at ownership transfers in either direction, there does
* exist an aux surface despite the lack of modifier and its state is
* pass-through.
*/
return ISL_AUX_STATE_PASS_THROUGH;
case ISL_AUX_STATE_COMPRESSED_CLEAR:
return ISL_AUX_STATE_COMPRESSED_CLEAR;
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
default:
unreachable("unexpected isl_aux_state");
}
}
default:
break;
}
const bool read_only = vk_image_layout_is_read_only(layout, aspect);
const VkImageUsageFlags image_aspect_usage =
anv_image_flags_filter_for_queue(
vk_image_usage(&image->vk, aspect), queue_flags);
const VkImageUsageFlags usage =
vk_image_layout_to_usage_flags(layout, aspect) & image_aspect_usage;
bool aux_supported = true;
bool clear_supported = isl_aux_usage_has_fast_clears(aux_usage);
if ((usage & (VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT)) &&
!read_only) {
/* This image could be used as both an input attachment and a render
* target (depth, stencil, or color) at the same time and this can cause
* corruption.
*
* We currently only disable aux in this way for depth even though we
* disable it for color in GL.
*
* TODO: Should we be disabling this in more cases?
*/
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT && devinfo->ver <= 9) {
aux_supported = false;
clear_supported = false;
}
}
if (usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
switch (aux_usage) {
case ISL_AUX_USAGE_HIZ:
if (!anv_can_sample_with_hiz(devinfo, image)) {
aux_supported = false;
clear_supported = false;
}
break;
case ISL_AUX_USAGE_HIZ_CCS:
aux_supported = false;
clear_supported = false;
break;
case ISL_AUX_USAGE_HIZ_CCS_WT:
break;
case ISL_AUX_USAGE_CCS_D:
aux_supported = false;
clear_supported = false;
break;
case ISL_AUX_USAGE_MCS:
case ISL_AUX_USAGE_MCS_CCS:
if (!anv_can_sample_mcs_with_clear(devinfo, image))
clear_supported = false;
break;
case ISL_AUX_USAGE_CCS_E:
case ISL_AUX_USAGE_FCV_CCS_E:
case ISL_AUX_USAGE_STC_CCS:
break;
default:
unreachable("Unsupported aux usage");
}
}
switch (aux_usage) {
case ISL_AUX_USAGE_HIZ:
case ISL_AUX_USAGE_HIZ_CCS:
case ISL_AUX_USAGE_HIZ_CCS_WT:
if (aux_supported) {
assert(clear_supported);
return ISL_AUX_STATE_COMPRESSED_CLEAR;
} else if (read_only) {
return ISL_AUX_STATE_RESOLVED;
} else {
return ISL_AUX_STATE_AUX_INVALID;
}
case ISL_AUX_USAGE_CCS_D:
/* We only support clear in exactly one state */
if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL ||
layout == VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL) {
assert(aux_supported);
assert(clear_supported);
return ISL_AUX_STATE_PARTIAL_CLEAR;
} else {
return ISL_AUX_STATE_PASS_THROUGH;
}
case ISL_AUX_USAGE_CCS_E:
case ISL_AUX_USAGE_FCV_CCS_E:
if (aux_supported) {
assert(clear_supported);
return ISL_AUX_STATE_COMPRESSED_CLEAR;
} else {
return ISL_AUX_STATE_PASS_THROUGH;
}
case ISL_AUX_USAGE_MCS:
case ISL_AUX_USAGE_MCS_CCS:
assert(aux_supported);
if (clear_supported) {
return ISL_AUX_STATE_COMPRESSED_CLEAR;
} else {
return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
}
case ISL_AUX_USAGE_STC_CCS:
assert(aux_supported);
assert(!clear_supported);
return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
default:
unreachable("Unsupported aux usage");
}
}
/**
* This function determines the optimal buffer to use for a given
* VkImageLayout and other pieces of information needed to make that
* determination. This does not determine the optimal buffer to use
* during a resolve operation.
*
* @param devinfo The device information of the Intel GPU.
* @param image The image that may contain a collection of buffers.
* @param aspect The aspect of the image to be accessed.
* @param usage The usage which describes how the image will be accessed.
* @param layout The current layout of the image aspect(s).
*
* @return The primary buffer that should be used for the given layout.
*/
enum isl_aux_usage ATTRIBUTE_PURE
anv_layout_to_aux_usage(const struct intel_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlagBits aspect,
const VkImageUsageFlagBits usage,
const VkImageLayout layout,
const VkQueueFlagBits queue_flags)
{
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
/* If there is no auxiliary surface allocated, we must use the one and only
* main buffer.
*/
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
return ISL_AUX_USAGE_NONE;
enum isl_aux_state aux_state =
anv_layout_to_aux_state(devinfo, image, aspect, layout, queue_flags);
switch (aux_state) {
case ISL_AUX_STATE_CLEAR:
unreachable("We never use this state");
case ISL_AUX_STATE_PARTIAL_CLEAR:
assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D);
assert(image->vk.samples == 1);
return ISL_AUX_USAGE_CCS_D;
case ISL_AUX_STATE_COMPRESSED_CLEAR:
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
return image->planes[plane].aux_usage;
case ISL_AUX_STATE_RESOLVED:
/* We can only use RESOLVED in read-only layouts because any write will
* either land us in AUX_INVALID or COMPRESSED_NO_CLEAR. We can do
* writes in PASS_THROUGH without destroying it so that is allowed.
*/
assert(vk_image_layout_is_read_only(layout, aspect));
assert(util_is_power_of_two_or_zero(usage));
if (usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
/* If we have valid HiZ data and are using the image as a read-only
* depth/stencil attachment, we should enable HiZ so that we can get
* faster depth testing.
*/
return image->planes[plane].aux_usage;
} else {
return ISL_AUX_USAGE_NONE;
}
case ISL_AUX_STATE_PASS_THROUGH:
case ISL_AUX_STATE_AUX_INVALID:
return ISL_AUX_USAGE_NONE;
}
unreachable("Invalid isl_aux_state");
}
/**
* This function returns the level of unresolved fast-clear support of the
* given image in the given VkImageLayout.
*
* @param devinfo The device information of the Intel GPU.
* @param image The image that may contain a collection of buffers.
* @param aspect The aspect of the image to be accessed.
* @param usage The usage which describes how the image will be accessed.
* @param layout The current layout of the image aspect(s).
*/
enum anv_fast_clear_type ATTRIBUTE_PURE
anv_layout_to_fast_clear_type(const struct intel_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlagBits aspect,
const VkImageLayout layout,
const VkQueueFlagBits queue_flags)
{
if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR))
return ANV_FAST_CLEAR_NONE;
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
/* If there is no auxiliary surface allocated, there are no fast-clears */
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
return ANV_FAST_CLEAR_NONE;
/* Bspec 57340 (r68483) has no fast-clear rectangle for linear surfaces. */
if (image->planes[plane].primary_surface.isl.tiling == ISL_TILING_LINEAR) {
assert(devinfo->ver >= 20);
return ANV_FAST_CLEAR_NONE;
}
/* Xe2+ platforms don't have fast clear type and can always support
* arbitrary fast-clear values.
*/
if (devinfo->ver >= 20)
return ANV_FAST_CLEAR_ANY;
enum isl_aux_state aux_state =
anv_layout_to_aux_state(devinfo, image, aspect, layout, queue_flags);
const VkImageUsageFlags layout_usage =
vk_image_layout_to_usage_flags(layout, aspect) & image->vk.usage;
const struct isl_drm_modifier_info *isl_mod_info =
image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT ?
isl_drm_modifier_get_info(image->vk.drm_format_mod) : NULL;
switch (aux_state) {
case ISL_AUX_STATE_CLEAR:
unreachable("We never use this state");
case ISL_AUX_STATE_PARTIAL_CLEAR:
case ISL_AUX_STATE_COMPRESSED_CLEAR:
/* Generally, enabling non-zero fast-clears is dependent on knowing which
* formats will be used with the surface. So, disable them if we lack
* this knowledge.
*
* For dmabufs with clear color modifiers, we already restrict
* problematic accesses for the clear color during the negotiation
* phase. So, don't restrict clear color support in this case.
*/
if (anv_image_view_formats_incomplete(image) &&
!(isl_mod_info && isl_mod_info->supports_clear_color)) {
return ANV_FAST_CLEAR_DEFAULT_VALUE;
}
/* On gfx12, the FCV feature may convert a block of fragment shader
* outputs to fast-clears. If this image has multiple subresources,
* restrict the clear color to zero to keep the fast cleared blocks in
* sync.
*/
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_FCV_CCS_E &&
(image->vk.mip_levels > 1 ||
image->vk.array_layers > 1 ||
image->vk.extent.depth > 1)) {
return ANV_FAST_CLEAR_DEFAULT_VALUE;
}
/* On gfx9, we only load clear colors for attachments and for BLORP
* surfaces. Outside of those surfaces, we can only support the default
* clear value of zero.
*/
if (devinfo->ver == 9 &&
(layout_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))) {
return ANV_FAST_CLEAR_DEFAULT_VALUE;
}
return ANV_FAST_CLEAR_ANY;
case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
case ISL_AUX_STATE_RESOLVED:
case ISL_AUX_STATE_PASS_THROUGH:
case ISL_AUX_STATE_AUX_INVALID:
return ANV_FAST_CLEAR_NONE;
}
unreachable("Invalid isl_aux_state");
}
bool
anv_can_fast_clear_color(const struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlags clear_aspect,
unsigned level,
const struct VkClearRect *clear_rect,
VkImageLayout layout,
enum isl_format view_format,
union isl_color_value clear_color)
{
if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR))
return false;
/* We only have fast-clears implemented for the render engine. */
if (cmd_buffer->queue_family->engine_class != INTEL_ENGINE_CLASS_RENDER)
return false;
/* Start by getting the fast clear type. We use the first subpass
* layout here because we don't want to fast-clear if the first subpass
* to use the attachment can't handle fast-clears.
*/
enum anv_fast_clear_type fast_clear_type =
anv_layout_to_fast_clear_type(cmd_buffer->device->info, image,
clear_aspect, layout,
cmd_buffer->queue_family->queueFlags);
switch (fast_clear_type) {
case ANV_FAST_CLEAR_NONE:
return false;
case ANV_FAST_CLEAR_DEFAULT_VALUE:
if (!isl_color_value_is_zero(clear_color, view_format))
return false;
break;
case ANV_FAST_CLEAR_ANY:
break;
}
/* Potentially, we could do partial fast-clears but doing so has crazy
* alignment restrictions. It's easier to just restrict to full size
* fast clears for now.
*/
if (clear_rect->rect.offset.x != 0 ||
clear_rect->rect.offset.y != 0 ||
clear_rect->rect.extent.width != image->vk.extent.width ||
clear_rect->rect.extent.height != image->vk.extent.height)
return false;
/* We only allow fast clears to the first slice of an image (level 0,
* layer 0) and only for the entire slice. This guarantees us that, at
* any given time, there is only one clear color on any given image at
* any given time. At the time of our testing (Jan 17, 2018), there
* were no known applications which would benefit from fast-clearing
* more than just the first slice.
*/
if (level > 0) {
anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
"level > 0. Not fast clearing.");
return false;
}
if (clear_rect->baseArrayLayer > 0) {
anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
"baseArrayLayer > 0. Not fast clearing.");
return false;
}
if (clear_rect->layerCount > 1) {
anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
"layerCount > 1. Only fast-clearing the first slice");
}
/* Wa_18020603990 - slow clear surfaces up to 256x256, 32bpp. */
if (intel_needs_workaround(cmd_buffer->device->info, 18020603990)) {
const struct anv_surface *anv_surf = &image->planes->primary_surface;
if (isl_format_get_layout(anv_surf->isl.format)->bpb <= 32 &&
anv_surf->isl.logical_level0_px.w <= 256 &&
anv_surf->isl.logical_level0_px.h <= 256)
return false;
}
/* On gfx12.0, CCS fast clears don't seem to cover the correct portion of
* the aux buffer when the pitch is not 512B-aligned.
*/
if (cmd_buffer->device->info->verx10 == 120 &&
image->planes->primary_surface.isl.samples == 1 &&
image->planes->primary_surface.isl.row_pitch_B % 512) {
anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
"Pitch not 512B-aligned. Slow clearing surface.");
return false;
}
/* Wa_16021232440, HSD_16023071695: Disable fast clear when height
* or width is 16k
* */
if (intel_needs_workaround(cmd_buffer->device->info, 16021232440) &&
(image->vk.extent.height == 16 * 1024 ||
image->vk.extent.width == 16 * 1024)) {
return false;
}
return true;
}
bool
anv_can_hiz_clear_image(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageLayout layout,
VkImageAspectFlags clear_aspects,
float depth_clear_value,
VkRect2D render_area,
const unsigned level)
{
const struct anv_device *device = cmd_buffer->device;
const VkQueueFlagBits queue_flags = cmd_buffer->queue_family->queueFlags;
if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR))
return false;
/* If we're just clearing stencil, we can always HiZ clear */
if (!(clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
return true;
const enum isl_aux_usage clear_aux_usage =
anv_layout_to_aux_usage(device->info, image,
VK_IMAGE_ASPECT_DEPTH_BIT, 0,
layout, queue_flags);
const uint32_t plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_DEPTH_BIT);
const struct isl_surf *surf = &image->planes[plane].primary_surface.isl;
if (!isl_aux_usage_has_fast_clears(clear_aux_usage))
return false;
if (isl_aux_usage_has_ccs(clear_aux_usage)) {
/* From the TGL PRM, Vol 9, "Compressed Depth Buffers" (under the
* "Texture performant" and "ZCS" columns):
*
* Update with clear at either 16x8 or 8x4 granularity, based on
* fs_clr or otherwise.
*
* Although alignment requirements are only listed for the texture
* performant mode, test results indicate that requirements exist for
* the non-texture performant mode as well. Disable partial clears.
*/
if (render_area.offset.x > 0 ||
render_area.offset.y > 0 ||
render_area.extent.width !=
u_minify(image->vk.extent.width, level) ||
render_area.extent.height !=
u_minify(image->vk.extent.height, level)) {
return false;
}
/* When fast-clearing, hardware behaves in unexpected ways if the clear
* rectangle, aligned to 16x8, could cover neighboring LODs.
* Fortunately, ISL guarantees that LOD0 will be 8-row aligned and
* LOD0's height seems to not matter. Also, few applications ever clear
* LOD1+. Only allow fast-clearing upper LODs if no overlap can occur.
*/
assert(surf->dim_layout == ISL_DIM_LAYOUT_GFX4_2D);
assert(surf->array_pitch_el_rows % 8 == 0);
if (clear_aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT &&
level >= 1 &&
(image->vk.extent.width % 32 != 0 ||
surf->image_alignment_el.h % 8 != 0)) {
return false;
}
}
if (device->info->ver <= 12 &&
depth_clear_value != anv_image_hiz_clear_value(image).f32[0])
return false;
/* If we got here, then we can fast clear */
return true;
}
/**
* This function determines if the layout & usage of an image can have
* untracked aux writes. When we see a transition that matches this criteria,
* we need to mark the image as compressed written so that our predicated
* resolves work properly.
*
* @param devinfo The device information of the Intel GPU.
* @param image The image that may contain a collection of buffers.
* @param aspect The aspect of the image to be accessed.
* @param layout The current layout of the image aspect(s).
*/
bool
anv_layout_has_untracked_aux_writes(const struct intel_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlagBits aspect,
const VkImageLayout layout,
const VkQueueFlagBits queue_flags)
{
const VkImageUsageFlags image_aspect_usage =
vk_image_usage(&image->vk, aspect);
const VkImageUsageFlags usage =
vk_image_layout_to_usage_flags(layout, aspect) & image_aspect_usage;
/* Storage is the only usage where we do not write the image through a
* render target but through a descriptor. Since VK_EXT_descriptor_indexing
* and the update-after-bind feature, it has become impossible to track
* writes to images in descriptor at the command buffer build time. So it's
* not possible to mark an image as compressed like we do in
* genX_cmd_buffer.c(EndRendering) or anv_blorp.c for all transfer
* operations.
*/
if (!(usage & VK_IMAGE_USAGE_STORAGE_BIT))
return false;
/* No AUX, no writes to the AUX surface :) */
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
const enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
if (aux_usage == ISL_AUX_USAGE_NONE)
return false;
return true;
}
void anv_GetRenderingAreaGranularityKHR(
VkDevice _device,
const VkRenderingAreaInfoKHR* pRenderingAreaInfo,
VkExtent2D* pGranularity)
{
*pGranularity = (VkExtent2D) {
.width = 1,
.height = 1,
};
}