blob: 425cdc0621e29a5a1660f90b6a95924c703ddec0 [file] [log] [blame]
# Copyright (c) 2015-2017 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
import argparse
import builtins
import collections
import os
import re
import sys
import textwrap
import xml.etree.ElementTree as et
hashed_funcs = {}
c_file = None
_c_indent = 0
def c(*args):
code = ' '.join(map(str,args))
for line in code.splitlines():
text = ''.rjust(_c_indent) + line
c_file.write(text.rstrip() + "\n")
# indented, but no trailing newline...
def c_line_start(code):
c_file.write(''.rjust(_c_indent) + code)
def c_raw(code):
c_file.write(code)
def c_indent(n):
global _c_indent
_c_indent = _c_indent + n
def c_outdent(n):
global _c_indent
_c_indent = _c_indent - n
header_file = None
_h_indent = 0
def h(*args):
code = ' '.join(map(str,args))
for line in code.splitlines():
text = ''.rjust(_h_indent) + line
header_file.write(text.rstrip() + "\n")
def h_indent(n):
global _c_indent
_h_indent = _h_indent + n
def h_outdent(n):
global _c_indent
_h_indent = _h_indent - n
def emit_fadd(tmp_id, args):
c("double tmp{0} = {1} + {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
# Be careful to check for divide by zero...
def emit_fdiv(tmp_id, args):
c("double tmp{0} = {1};".format(tmp_id, args[1]))
c("double tmp{0} = {1};".format(tmp_id + 1, args[0]))
c("double tmp{0} = tmp{1} ? tmp{2} / tmp{1} : 0;".format(tmp_id + 2, tmp_id + 1, tmp_id))
return tmp_id + 3
def emit_fmax(tmp_id, args):
c("double tmp{0} = {1};".format(tmp_id, args[1]))
c("double tmp{0} = {1};".format(tmp_id + 1, args[0]))
c("double tmp{0} = MAX(tmp{1}, tmp{2});".format(tmp_id + 2, tmp_id, tmp_id + 1))
return tmp_id + 3
def emit_fmul(tmp_id, args):
c("double tmp{0} = {1} * {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
def emit_fsub(tmp_id, args):
c("double tmp{0} = {1} - {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
def emit_read(tmp_id, args):
type = args[1].lower()
c("uint64_t tmp{0} = results->accumulator[query->{1}_offset + {2}];".format(tmp_id, type, args[0]))
return tmp_id + 1
def emit_uadd(tmp_id, args):
c("uint64_t tmp{0} = {1} + {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
# Be careful to check for divide by zero...
def emit_udiv(tmp_id, args):
c("uint64_t tmp{0} = {1};".format(tmp_id, args[1]))
c("uint64_t tmp{0} = {1};".format(tmp_id + 1, args[0]))
if args[0].isdigit():
assert int(args[0]) > 0
c("uint64_t tmp{0} = tmp{2} / tmp{1};".format(tmp_id + 2, tmp_id + 1, tmp_id))
else:
c("uint64_t tmp{0} = tmp{1} ? tmp{2} / tmp{1} : 0;".format(tmp_id + 2, tmp_id + 1, tmp_id))
return tmp_id + 3
def emit_umul(tmp_id, args):
c("uint64_t tmp{0} = {1} * {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
def emit_usub(tmp_id, args):
c("uint64_t tmp{0} = {1} - {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
def emit_umin(tmp_id, args):
c("uint64_t tmp{0} = MIN({1}, {2});".format(tmp_id, args[1], args[0]))
return tmp_id + 1
def emit_lshft(tmp_id, args):
c("uint64_t tmp{0} = {1} << {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
def emit_rshft(tmp_id, args):
c("uint64_t tmp{0} = {1} >> {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
def emit_and(tmp_id, args):
c("uint64_t tmp{0} = {1} & {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
def emit_ulte(tmp_id, args):
c("uint64_t tmp{0} = {1} <= {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
def emit_ult(tmp_id, args):
c("uint64_t tmp{0} = {1} < {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
def emit_ugte(tmp_id, args):
c("uint64_t tmp{0} = {1} >= {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
def emit_ugt(tmp_id, args):
c("uint64_t tmp{0} = {1} > {2};".format(tmp_id, args[1], args[0]))
return tmp_id + 1
ops = {}
# (n operands, emitter)
ops["FADD"] = (2, emit_fadd)
ops["FDIV"] = (2, emit_fdiv)
ops["FMAX"] = (2, emit_fmax)
ops["FMUL"] = (2, emit_fmul)
ops["FSUB"] = (2, emit_fsub)
ops["READ"] = (2, emit_read)
ops["UADD"] = (2, emit_uadd)
ops["UDIV"] = (2, emit_udiv)
ops["UMUL"] = (2, emit_umul)
ops["USUB"] = (2, emit_usub)
ops["UMIN"] = (2, emit_umin)
ops["<<"] = (2, emit_lshft)
ops[">>"] = (2, emit_rshft)
ops["AND"] = (2, emit_and)
ops["UGTE"] = (2, emit_ugte)
ops["UGT"] = (2, emit_ugt)
ops["ULTE"] = (2, emit_ulte)
ops["ULT"] = (2, emit_ult)
def brkt(subexp):
if " " in subexp:
return "(" + subexp + ")"
else:
return subexp
def splice_bitwise_and(args):
return brkt(args[1]) + " & " + brkt(args[0])
def splice_bitwise_or(args):
return brkt(args[1]) + " | " + brkt(args[0])
def splice_logical_and(args):
return brkt(args[1]) + " && " + brkt(args[0])
def splice_umul(args):
return brkt(args[1]) + " * " + brkt(args[0])
def splice_ult(args):
return brkt(args[1]) + " < " + brkt(args[0])
def splice_ugte(args):
return brkt(args[1]) + " >= " + brkt(args[0])
def splice_ulte(args):
return brkt(args[1]) + " <= " + brkt(args[0])
def splice_ugt(args):
return brkt(args[1]) + " > " + brkt(args[0])
def splice_lshft(args):
return brkt(args[1]) + " << " + brkt(args[0])
def splice_equal(args):
return brkt(args[1]) + " == " + brkt(args[0])
exp_ops = {}
# (n operands, splicer)
exp_ops["AND"] = (2, splice_bitwise_and)
exp_ops["OR"] = (2, splice_bitwise_or)
exp_ops["UGTE"] = (2, splice_ugte)
exp_ops["ULT"] = (2, splice_ult)
exp_ops["&&"] = (2, splice_logical_and)
exp_ops["UMUL"] = (2, splice_umul)
exp_ops["<<"] = (2, splice_lshft)
exp_ops["=="] = (2, splice_equal)
hw_vars = {}
hw_vars["$EuCoresTotalCount"] = "perf->sys_vars.n_eus"
hw_vars["$VectorEngineTotalCount"] = "perf->sys_vars.n_eus"
hw_vars["$EuSlicesTotalCount"] = "perf->sys_vars.n_eu_slices"
hw_vars["$EuSubslicesTotalCount"] = "perf->sys_vars.n_eu_sub_slices"
hw_vars["$XeCoreTotalCount"] = "perf->sys_vars.n_eu_sub_slices"
hw_vars["$EuDualSubslicesTotalCount"] = "perf->sys_vars.n_eu_sub_slices"
hw_vars["$EuDualSubslicesSlice0123Count"] = "perf->sys_vars.n_eu_slice0123"
hw_vars["$EuThreadsCount"] = "perf->devinfo->num_thread_per_eu"
hw_vars["$VectorEngineThreadsCount"] = "perf->devinfo->num_thread_per_eu"
hw_vars["$SliceMask"] = "perf->sys_vars.slice_mask"
hw_vars["$SliceTotalCount"] = "perf->sys_vars.n_eu_slices"
# subslice_mask is interchangeable with subslice/dual-subslice since Gfx12+
# only has dual subslices which can be assimilated with 16EUs subslices.
hw_vars["$SubsliceMask"] = "perf->sys_vars.subslice_mask"
hw_vars["$DualSubsliceMask"] = "perf->sys_vars.subslice_mask"
hw_vars["$XeCoreMask"] = "perf->sys_vars.subslice_mask"
hw_vars["$GpuTimestampFrequency"] = "perf->devinfo->timestamp_frequency"
hw_vars["$GpuMinFrequency"] = "perf->sys_vars.gt_min_freq"
hw_vars["$GpuMaxFrequency"] = "perf->sys_vars.gt_max_freq"
hw_vars["$SkuRevisionId"] = "perf->devinfo->revision"
hw_vars["$QueryMode"] = "perf->sys_vars.query_mode"
hw_vars["$ComputeEngineTotalCount"] = "perf->devinfo->engine_class_supported_count[INTEL_ENGINE_CLASS_COMPUTE]"
hw_vars["$CopyEngineTotalCount"] = "perf->devinfo->engine_class_supported_count[INTEL_ENGINE_CLASS_COPY]"
hw_vars["$L3BankTotalCount"] = "perf->sys_vars.n_l3_banks"
hw_vars["$L3BankMaxCount"] = "perf->sys_vars.n_l3_banks"
hw_vars["$L3NodeTotalCount"] = "perf->sys_vars.n_l3_nodes"
hw_vars["$SqidiTotalCount"] = "perf->sys_vars.n_sq_idis"
def resolve_variable(name, set, allow_counters):
if name in hw_vars:
return hw_vars[name]
m = re.search(r'\$GtSlice([0-9]+)$', name)
if m:
return 'intel_device_info_slice_available(perf->devinfo, {0})'.format(m.group(1))
m = re.search(r'\$GtSlice([0-9]+)XeCore([0-9]+)$', name)
if m:
return 'intel_device_info_subslice_available(perf->devinfo, {0}, {1})'.format(m.group(1), m.group(2))
m = re.search(r'\$GtXeCore([0-9]+)$', name)
if m:
n = m.group(1)
return (
'intel_device_info_subslice_available(perf->devinfo, '
'{n} / perf->devinfo->subslice_slice_stride, '
'{n} % perf->devinfo->subslice_slice_stride)'
).format(n=n)
if allow_counters and name in set.counter_vars:
return set.read_funcs[name[1:]] + "(perf, query, results)"
return None
def output_rpn_equation_code(set, counter, equation):
c("/* RPN equation: " + equation + " */")
tokens = equation.split()
stack = []
tmp_id = 0
tmp = None
for token in tokens:
stack.append(token)
while stack and stack[-1] in ops:
op = stack.pop()
argc, callback = ops[op]
args = []
for i in range(0, argc):
operand = stack.pop()
if operand[0] == "$":
resolved_variable = resolve_variable(operand, set, True)
if resolved_variable == None:
raise Exception("Failed to resolve variable " + operand + " in equation " + equation + " for " + set.name + " :: " + counter.get('name'));
operand = resolved_variable
args.append(operand)
tmp_id = callback(tmp_id, args)
tmp = "tmp{0}".format(tmp_id - 1)
stack.append(tmp)
if len(stack) != 1:
raise Exception("Spurious empty rpn code for " + set.name + " :: " +
counter.get('name') + ".\nThis is probably due to some unhandled RPN function, in the equation \"" +
equation + "\"")
value = stack[-1]
if value[0] == "$":
resolved_variable = resolve_variable(value, set, True)
if resolved_variable == None:
raise Exception("Failed to resolve variable " + operand + " in equation " + equation + " for " + set.name + " :: " + counter.get('name'));
value = resolved_variable
c("\nreturn " + value + ";")
def splice_rpn_expression(set, counter_name, expression):
tokens = expression.split()
stack = []
for token in tokens:
stack.append(token)
while stack and stack[-1] in exp_ops:
op = stack.pop()
argc, callback = exp_ops[op]
args = []
for i in range(0, argc):
operand = stack.pop()
if operand[0] == "$":
resolved_variable = resolve_variable(operand, set, False)
if resolved_variable == None:
raise Exception("Failed to resolve variable " + operand + " in expression " + expression + " for " + set.name + " :: " + counter_name)
operand = resolved_variable
args.append(operand)
subexp = callback(args)
stack.append(subexp)
if len(stack) != 1:
raise Exception("Spurious empty rpn expression for " + set.name + " :: " +
counter_name + ".\nThis is probably due to some unhandled RPN operation, in the expression \"" +
expression + "\"")
value = stack[-1]
if value[0] == "$":
resolved_variable = resolve_variable(value, set, False)
if resolved_variable == None:
raise Exception("Failed to resolve variable " + operand + " in expression " + expression + " for " + set.name + " :: " + counter_name)
value = resolved_variable
return value
def output_counter_read(gen, set, counter):
c("\n")
c("/* {0} :: {1} */".format(set.name, counter.get('name')))
if counter.read_hash in hashed_funcs:
c("#define %s \\" % counter.read_sym)
c_indent(3)
c("%s" % hashed_funcs[counter.read_hash])
c_outdent(3)
else:
ret_type = counter.get('data_type')
if ret_type == "uint64":
ret_type = "uint64_t"
read_eq = counter.get('equation')
c("static " + ret_type)
c(counter.read_sym + "(UNUSED struct intel_perf_config *perf,\n")
c_indent(len(counter.read_sym) + 1)
c("const struct intel_perf_query_info *query,\n")
c("const struct intel_perf_query_result *results)\n")
c_outdent(len(counter.read_sym) + 1)
c("{")
c_indent(3)
output_rpn_equation_code(set, counter, read_eq)
c_outdent(3)
c("}")
hashed_funcs[counter.read_hash] = counter.read_sym
def output_counter_max(gen, set, counter):
max_eq = counter.get('max_equation')
if not counter.has_custom_max_func():
return
c("\n")
c("/* {0} :: {1} */".format(set.name, counter.get('name')))
if counter.max_hash in hashed_funcs:
c("#define %s \\" % counter.max_sym)
c_indent(3)
c("%s" % hashed_funcs[counter.max_hash])
c_outdent(3)
else:
ret_type = counter.get('data_type')
if ret_type == "uint64":
ret_type = "uint64_t"
c("static " + ret_type)
c(counter.max_sym + "(struct intel_perf_config *perf,\n")
c_indent(len(counter.read_sym) + 1)
c("const struct intel_perf_query_info *query,\n")
c("const struct intel_perf_query_result *results)\n")
c_outdent(len(counter.read_sym) + 1)
c("{")
c_indent(3)
output_rpn_equation_code(set, counter, max_eq)
c_outdent(3)
c("}")
hashed_funcs[counter.max_hash] = counter.max_sym
c_type_sizes = { "uint32_t": 4, "uint64_t": 8, "float": 4, "double": 8, "bool": 4 }
def sizeof(c_type):
return c_type_sizes[c_type]
def pot_align(base, pot_alignment):
return (base + pot_alignment - 1) & ~(pot_alignment - 1);
semantic_type_map = {
"duration": "raw",
"ratio": "event"
}
def output_availability(set, availability, counter_name):
expression = splice_rpn_expression(set, counter_name, availability)
lines = expression.split(' && ')
n_lines = len(lines)
if n_lines == 1:
c("if (" + lines[0] + ") {")
else:
c("if (" + lines[0] + " &&")
c_indent(4)
for i in range(1, (n_lines - 1)):
c(lines[i] + " &&")
c(lines[(n_lines - 1)] + ") {")
c_outdent(4)
def output_units(unit):
return unit.replace(' ', '_').upper()
# should a unit be visible in description?
units_map = {
"bytes" : True,
"cycles" : True,
"eu atomic requests to l3 cache lines" : False,
"eu bytes per l3 cache line" : False,
"eu requests to l3 cache lines" : False,
"eu sends to l3 cache lines" : False,
"events" : True,
"hz" : True,
"messages" : True,
"ns" : True,
"number" : False,
"percent" : True,
"pixels" : True,
"texels" : True,
"threads" : True,
"us" : True,
"utilization" : False,
"gbps" : True,
}
def desc_units(unit):
val = units_map.get(unit)
if val is None:
raise Exception("Unknown unit: " + unit)
if val == False:
return ""
if unit == 'hz':
unit = 'Hz'
return "Unit: " + unit + "."
counter_key_tuple = collections.namedtuple(
'counter_key',
[
'name',
'description',
'symbol_name',
'mdapi_group',
'semantic_type',
'data_type',
'units',
]
)
def counter_key(counter):
return counter_key_tuple._make([counter.get(field) for field in counter_key_tuple._fields])
def output_counter_struct(set, counter, idx,
name_to_idx, desc_to_idx,
symbol_name_to_idx, category_to_idx):
data_type = counter.data_type
data_type_uc = data_type.upper()
semantic_type = counter.semantic_type
if semantic_type in semantic_type_map:
semantic_type = semantic_type_map[semantic_type]
semantic_type_uc = semantic_type.upper()
c("[" + str(idx) + "] = {\n")
c_indent(3)
c(".name_idx = " + str(name_to_idx[counter.name]) + ",\n")
c(".desc_idx = " + str(desc_to_idx[counter.description + " " + desc_units(counter.units)]) + ",\n")
c(".symbol_name_idx = " + str(symbol_name_to_idx[counter.symbol_name]) + ",\n")
c(".category_idx = " + str(category_to_idx[counter.mdapi_group]) + ",\n")
c(".type = INTEL_PERF_COUNTER_TYPE_" + semantic_type_uc + ",\n")
c(".data_type = INTEL_PERF_COUNTER_DATA_TYPE_" + data_type_uc + ",\n")
c(".units = INTEL_PERF_COUNTER_UNITS_" + output_units(counter.units) + ",\n")
c_outdent(3)
c("},\n")
def output_counter_report(set, counter, counter_to_idx, current_offset):
data_type = counter.get('data_type')
data_type_uc = data_type.upper()
c_type = data_type
if "uint" in c_type:
c_type = c_type + "_t"
semantic_type = counter.get('semantic_type')
if semantic_type in semantic_type_map:
semantic_type = semantic_type_map[semantic_type]
semantic_type_uc = semantic_type.upper()
c("\n")
availability = counter.get('availability')
if availability:
output_availability(set, availability, counter.get('name'))
c_indent(3)
key = counter_key(counter)
idx = str(counter_to_idx[key])
current_offset = pot_align(current_offset, sizeof(c_type))
if data_type == 'uint64':
c("intel_perf_query_add_counter_uint64(query, " + idx + ", " +
str(current_offset) + ", " +
set.max_funcs[counter.get('symbol_name')] + "," +
set.read_funcs[counter.get('symbol_name')] + ");\n")
else:
c("intel_perf_query_add_counter_float(query, " + idx + ", " +
str(current_offset) + ", " +
set.max_funcs[counter.get('symbol_name')] + "," +
set.read_funcs[counter.get('symbol_name')] + ");\n")
if availability:
c_outdent(3);
c("}")
return current_offset + sizeof(c_type)
def str_to_idx_table(strs):
sorted_strs = sorted(strs)
str_to_idx = collections.OrderedDict()
str_to_idx[sorted_strs[0]] = 0
previous = sorted_strs[0]
for i in range(1, len(sorted_strs)):
str_to_idx[sorted_strs[i]] = str_to_idx[previous] + len(previous) + 1
previous = sorted_strs[i]
return str_to_idx
def output_str_table(name: str, str_to_idx):
c("\n")
c("static const char " + name + "[] = {\n")
c_indent(3)
c("\n".join(f"/* {idx} */ \"{val}\\0\"" for val, idx in str_to_idx.items()))
c_outdent(3)
c("};\n")
register_types = {
'FLEX': 'flex_regs',
'NOA': 'mux_regs',
'OA': 'b_counter_regs',
}
def compute_register_lengths(set):
register_lengths = {}
register_configs = set.findall('register_config')
for register_config in register_configs:
t = register_types[register_config.get('type')]
if t not in register_lengths:
register_lengths[t] = len(register_config.findall('register'))
else:
register_lengths[t] += len(register_config.findall('register'))
return register_lengths
def generate_register_configs(set):
register_configs = set.findall('register_config')
for register_config in register_configs:
t = register_types[register_config.get('type')]
availability = register_config.get('availability')
if availability:
output_availability(set, availability, register_config.get('type') + ' register config')
c_indent(3)
registers = register_config.findall('register')
c("static const struct intel_perf_query_register_prog %s[] = {" % t)
c_indent(3)
for register in registers:
c("{ .reg = %s, .val = %s }," % (register.get('address'), register.get('value')))
c_outdent(3)
c("};")
c("query->config.%s = %s;" % (t, t))
c("query->config.n_%s = ARRAY_SIZE(%s);" % (t, t))
if availability:
c_outdent(3)
c("}")
c("\n")
# Wraps a <counter> element from the oa-*.xml files.
class Counter:
def __init__(self, set, xml):
self.xml = xml
self.set = set
self.read_hash = None
self.max_hash = None
self.read_sym = "{0}__{1}__{2}__read".format(self.set.gen.chipset,
self.set.underscore_name,
self.xml.get('underscore_name'))
self.max_sym = self.build_max_sym()
def get(self, prop):
return self.xml.get(prop)
# Compute the hash of a counter's equation by expanding (including all the
# sub-equations it depends on)
def compute_hashes(self):
if self.read_hash is not None:
return
def replace_token(token):
if token[0] != "$":
return token
if token not in self.set.counter_vars:
return token
self.set.counter_vars[token].compute_hashes()
return self.set.counter_vars[token].read_hash
read_eq = self.xml.get('equation')
self.read_hash = ' '.join(map(replace_token, read_eq.split()))
max_eq = self.xml.get('max_equation')
if max_eq:
self.max_hash = ' '.join(map(replace_token, max_eq.split()))
def has_custom_max_func(self):
max_eq = self.xml.get('max_equation')
if not max_eq:
return False
try:
val = float(max_eq)
if val == 100:
return False
except ValueError:
pass
for token in max_eq.split():
if token[0] == '$' and resolve_variable(token, self.set, True) == None:
print("unresolved token " + token)
return False
return True
def build_max_sym(self):
max_eq = self.xml.get('max_equation')
if not max_eq:
return "NULL"
try:
val = float(max_eq)
if val == 100:
if self.xml.get('data_type') == 'uint64':
return "percentage_max_uint64"
else:
return "percentage_max_float"
except ValueError:
pass
assert self.has_custom_max_func()
return "{0}__{1}__{2}__max".format(self.set.gen.chipset,
self.set.underscore_name,
self.xml.get('underscore_name'))
# Wraps a <set> element from the oa-*.xml files.
class Set:
def __init__(self, gen, xml):
self.gen = gen
self.xml = xml
self.counter_vars = {}
self.max_funcs = {}
self.read_funcs = {}
xml_counters = self.xml.findall("counter")
self.counters = []
for xml_counter in xml_counters:
counter = Counter(self, xml_counter)
self.counters.append(counter)
self.counter_vars['$' + counter.get('symbol_name')] = counter
self.read_funcs[counter.get('symbol_name')] = counter.read_sym
self.max_funcs[counter.get('symbol_name')] = counter.max_sym
for counter in self.counters:
counter.compute_hashes()
@property
def hw_config_guid(self):
return self.xml.get('hw_config_guid')
@property
def name(self):
return self.xml.get('name')
@property
def symbol_name(self):
return self.xml.get('symbol_name')
@property
def underscore_name(self):
return self.xml.get('underscore_name')
def findall(self, path):
return self.xml.findall(path)
def find(self, path):
return self.xml.find(path)
# Wraps an entire oa-*.xml file.
class Gen:
def __init__(self, filename):
self.filename = filename
self.xml = et.parse(self.filename)
self.chipset = self.xml.find('.//set').get('chipset').lower()
self.sets = []
for xml_set in self.xml.findall(".//set"):
self.sets.append(Set(self, xml_set))
def main():
global c_file
global header_file
parser = argparse.ArgumentParser()
parser.add_argument("--header", help="Header file to write", required=True)
parser.add_argument("--code", help="C file to write", required=True)
parser.add_argument("xml_files", nargs='+', help="List of xml metrics files to process")
args = parser.parse_args()
c_file = open(args.code, 'w')
header_file = open(args.header, 'w')
gens = []
for xml_file in args.xml_files:
gens.append(Gen(xml_file))
copyright = textwrap.dedent("""\
/* Autogenerated file, DO NOT EDIT manually! generated by {}
*
* Copyright (c) 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
""").format(os.path.basename(__file__))
h(copyright)
h(textwrap.dedent("""\
#pragma once
struct intel_perf_config;
"""))
c(copyright)
c(textwrap.dedent("""\
#include <stdint.h>
#include <stdbool.h>
#include "util/hash_table.h"
#include "util/ralloc.h"
"""))
c("#include \"" + os.path.basename(args.header) + "\"")
c(textwrap.dedent("""\
#include "perf/intel_perf.h"
#include "perf/intel_perf_setup.h"
"""))
names = builtins.set()
descs = builtins.set()
symbol_names = builtins.set()
categories = builtins.set()
for gen in gens:
for set in gen.sets:
for counter in set.counters:
names.add(counter.get('name'))
symbol_names.add(counter.get('symbol_name'))
descs.add(counter.get('description') + " " + desc_units(counter.get('units')))
categories.add(counter.get('mdapi_group'))
name_to_idx = str_to_idx_table(names)
output_str_table("name", name_to_idx)
desc_to_idx = str_to_idx_table(descs)
output_str_table("desc", desc_to_idx)
symbol_name_to_idx = str_to_idx_table(symbol_names)
output_str_table("symbol_name", symbol_name_to_idx)
category_to_idx = str_to_idx_table(categories)
output_str_table("category", category_to_idx)
# Print out all equation functions.
for gen in gens:
for set in gen.sets:
for counter in set.counters:
output_counter_read(gen, set, counter)
output_counter_max(gen, set, counter)
c("\n")
c("static const struct intel_perf_query_counter_data counters[] = {\n")
c_indent(3)
counter_to_idx = collections.OrderedDict()
idx = 0
for gen in gens:
for set in gen.sets:
for counter in set.counters:
key = counter_key(counter)
if key not in counter_to_idx:
counter_to_idx[key] = idx
output_counter_struct(set, key, idx,
name_to_idx,
desc_to_idx,
symbol_name_to_idx,
category_to_idx)
idx += 1
c_outdent(3)
c("};\n\n")
c(textwrap.dedent("""\
static void ATTRIBUTE_NOINLINE
intel_perf_query_add_counter_uint64(struct intel_perf_query_info *query,
int counter_idx, size_t offset,
intel_counter_read_uint64_t oa_counter_max,
intel_counter_read_uint64_t oa_counter_read)
{
struct intel_perf_query_counter *dest = &query->counters[query->n_counters++];
const struct intel_perf_query_counter_data *counter = &counters[counter_idx];
dest->name = &name[counter->name_idx];
dest->desc = &desc[counter->desc_idx];
dest->symbol_name = &symbol_name[counter->symbol_name_idx];
dest->category = &category[counter->category_idx];
dest->offset = offset;
dest->type = counter->type;
dest->data_type = counter->data_type;
dest->units = counter->units;
dest->oa_counter_max_uint64 = oa_counter_max;
dest->oa_counter_read_uint64 = oa_counter_read;
}
static void ATTRIBUTE_NOINLINE
intel_perf_query_add_counter_float(struct intel_perf_query_info *query,
int counter_idx, size_t offset,
intel_counter_read_float_t oa_counter_max,
intel_counter_read_float_t oa_counter_read)
{
struct intel_perf_query_counter *dest = &query->counters[query->n_counters++];
const struct intel_perf_query_counter_data *counter = &counters[counter_idx];
dest->name = &name[counter->name_idx];
dest->desc = &desc[counter->desc_idx];
dest->symbol_name = &symbol_name[counter->symbol_name_idx];
dest->category = &category[counter->category_idx];
dest->offset = offset;
dest->type = counter->type;
dest->data_type = counter->data_type;
dest->units = counter->units;
dest->oa_counter_max_float = oa_counter_max;
dest->oa_counter_read_float = oa_counter_read;
}
static float ATTRIBUTE_NOINLINE
percentage_max_float(struct intel_perf_config *perf,
const struct intel_perf_query_info *query,
const struct intel_perf_query_result *results)
{
return 100;
}
static uint64_t ATTRIBUTE_NOINLINE
percentage_max_uint64(struct intel_perf_config *perf,
const struct intel_perf_query_info *query,
const struct intel_perf_query_result *results)
{
return 100;
}
"""))
# Print out all metric sets registration functions for each set in each
# generation.
for gen in gens:
for set in gen.sets:
counters = set.counters
c("\n")
c("\nstatic void\n")
c("{0}_register_{1}_counter_query(struct intel_perf_config *perf)\n".format(gen.chipset, set.underscore_name))
c("{\n")
c_indent(3)
c("struct intel_perf_query_info *query = intel_query_alloc(perf, %u);\n" % len(counters))
c("\n")
c("query->name = \"" + set.name + "\";\n")
c("query->symbol_name = \"" + set.symbol_name + "\";\n")
c("query->guid = \"" + set.hw_config_guid + "\";\n")
c("\n")
c("struct intel_perf_query_counter *counter = query->counters;\n")
c("\n")
c("/* Note: we're assuming there can't be any variation in the definition ")
c(" * of a query between contexts so it's ok to describe a query within a ")
c(" * global variable which only needs to be initialized once... */")
c("\nif (!query->data_size) {")
c_indent(3)
generate_register_configs(set)
offset = 0
for counter in counters:
offset = output_counter_report(set, counter, counter_to_idx, offset)
c("\ncounter = &query->counters[query->n_counters - 1];\n")
c("query->data_size = counter->offset + intel_perf_query_counter_get_size(counter);\n")
c_outdent(3)
c("}");
c("\n_mesa_hash_table_insert(perf->oa_metrics_table, query->guid, query);")
c_outdent(3)
c("}\n")
h("void intel_oa_register_queries_" + gen.chipset + "(struct intel_perf_config *perf);\n")
c("\nvoid")
c("intel_oa_register_queries_" + gen.chipset + "(struct intel_perf_config *perf)")
c("{")
c_indent(3)
for set in gen.sets:
c("{0}_register_{1}_counter_query(perf);".format(gen.chipset, set.underscore_name))
c_outdent(3)
c("}")
if __name__ == '__main__':
main()