| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| /** @file elk_fs_visitor.cpp |
| * |
| * This file supports generating the FS LIR from the GLSL IR. The LIR |
| * makes it easier to do backend-specific optimizations than doing so |
| * in the GLSL IR or in the native code. |
| */ |
| #include "elk_eu.h" |
| #include "elk_fs.h" |
| #include "elk_fs_builder.h" |
| #include "elk_nir.h" |
| #include "elk_private.h" |
| #include "compiler/glsl_types.h" |
| |
| using namespace elk; |
| |
| /* Input data is organized with first the per-primitive values, followed |
| * by per-vertex values. The per-vertex will have interpolation information |
| * associated, so use 4 components for each value. |
| */ |
| |
| /* The register location here is relative to the start of the URB |
| * data. It will get adjusted to be a real location before |
| * generate_code() time. |
| */ |
| elk_fs_reg |
| elk_fs_visitor::interp_reg(const fs_builder &bld, unsigned location, |
| unsigned channel, unsigned comp) |
| { |
| assert(stage == MESA_SHADER_FRAGMENT); |
| assert(BITFIELD64_BIT(location) & ~nir->info.per_primitive_inputs); |
| |
| const struct elk_wm_prog_data *prog_data = elk_wm_prog_data(this->prog_data); |
| |
| assert(prog_data->urb_setup[location] >= 0); |
| unsigned nr = prog_data->urb_setup[location]; |
| channel += prog_data->urb_setup_channel[location]; |
| |
| /* Adjust so we start counting from the first per_vertex input. */ |
| assert(nr >= prog_data->num_per_primitive_inputs); |
| nr -= prog_data->num_per_primitive_inputs; |
| |
| const unsigned per_vertex_start = prog_data->num_per_primitive_inputs; |
| const unsigned regnr = per_vertex_start + (nr * 4) + channel; |
| |
| return component(elk_fs_reg(ATTR, regnr, ELK_REGISTER_TYPE_F), comp); |
| } |
| |
| /* The register location here is relative to the start of the URB |
| * data. It will get adjusted to be a real location before |
| * generate_code() time. |
| */ |
| elk_fs_reg |
| elk_fs_visitor::per_primitive_reg(const fs_builder &bld, int location, unsigned comp) |
| { |
| assert(stage == MESA_SHADER_FRAGMENT); |
| assert(BITFIELD64_BIT(location) & nir->info.per_primitive_inputs); |
| |
| const struct elk_wm_prog_data *prog_data = elk_wm_prog_data(this->prog_data); |
| |
| comp += prog_data->urb_setup_channel[location]; |
| |
| assert(prog_data->urb_setup[location] >= 0); |
| |
| const unsigned regnr = prog_data->urb_setup[location] + comp / 4; |
| |
| assert(regnr < prog_data->num_per_primitive_inputs); |
| |
| return component(elk_fs_reg(ATTR, regnr, ELK_REGISTER_TYPE_F), comp % 4); |
| } |
| |
| /** Emits the interpolation for the varying inputs. */ |
| void |
| elk_fs_visitor::emit_interpolation_setup_gfx4() |
| { |
| struct elk_reg g1_uw = retype(elk_vec1_grf(1, 0), ELK_REGISTER_TYPE_UW); |
| |
| fs_builder abld = fs_builder(this).at_end().annotate("compute pixel centers"); |
| this->uw_pixel_x = vgrf(glsl_uint_type()); |
| this->uw_pixel_y = vgrf(glsl_uint_type()); |
| this->uw_pixel_x.type = ELK_REGISTER_TYPE_UW; |
| this->uw_pixel_y.type = ELK_REGISTER_TYPE_UW; |
| abld.ADD(this->uw_pixel_x, |
| elk_fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)), |
| elk_fs_reg(elk_imm_v(0x10101010))); |
| abld.ADD(this->uw_pixel_y, |
| elk_fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)), |
| elk_fs_reg(elk_imm_v(0x11001100))); |
| |
| const fs_builder bld = fs_builder(this).at_end(); |
| abld = bld.annotate("compute pixel deltas from v0"); |
| |
| this->delta_xy[ELK_BARYCENTRIC_PERSPECTIVE_PIXEL] = |
| vgrf(glsl_vec2_type()); |
| const elk_fs_reg &delta_xy = this->delta_xy[ELK_BARYCENTRIC_PERSPECTIVE_PIXEL]; |
| const elk_fs_reg xstart(negate(elk_vec1_grf(1, 0))); |
| const elk_fs_reg ystart(negate(elk_vec1_grf(1, 1))); |
| |
| if (devinfo->has_pln) { |
| for (unsigned i = 0; i < dispatch_width / 8; i++) { |
| abld.quarter(i).ADD(quarter(offset(delta_xy, abld, 0), i), |
| quarter(this->uw_pixel_x, i), xstart); |
| abld.quarter(i).ADD(quarter(offset(delta_xy, abld, 1), i), |
| quarter(this->uw_pixel_y, i), ystart); |
| } |
| } else { |
| abld.ADD(offset(delta_xy, abld, 0), this->uw_pixel_x, xstart); |
| abld.ADD(offset(delta_xy, abld, 1), this->uw_pixel_y, ystart); |
| } |
| |
| this->pixel_z = fetch_payload_reg(bld, fs_payload().source_depth_reg); |
| |
| /* The SF program automatically handles doing the perspective correction or |
| * not based on wm_prog_data::interp_mode[] so we can use the same pixel |
| * offsets for both perspective and non-perspective. |
| */ |
| this->delta_xy[ELK_BARYCENTRIC_NONPERSPECTIVE_PIXEL] = |
| this->delta_xy[ELK_BARYCENTRIC_PERSPECTIVE_PIXEL]; |
| |
| abld = bld.annotate("compute pos.w and 1/pos.w"); |
| } |
| |
| /** Emits the interpolation for the varying inputs. */ |
| void |
| elk_fs_visitor::emit_interpolation_setup_gfx6() |
| { |
| const fs_builder bld = fs_builder(this).at_end(); |
| fs_builder abld = bld.annotate("compute pixel centers"); |
| |
| const struct elk_wm_prog_key *wm_key = (elk_wm_prog_key*) this->key; |
| struct elk_wm_prog_data *wm_prog_data = elk_wm_prog_data(prog_data); |
| |
| elk_fs_reg int_sample_offset_x, int_sample_offset_y; /* Used on Gen12HP+ */ |
| elk_fs_reg int_sample_offset_xy; /* Used on Gen8+ */ |
| elk_fs_reg half_int_sample_offset_x, half_int_sample_offset_y; |
| |
| /* The thread payload only delivers subspan locations (ss0, ss1, |
| * ss2, ...). Since subspans covers 2x2 pixels blocks, we need to |
| * generate 4 pixel coordinates out of each subspan location. We do this |
| * by replicating a subspan coordinate 4 times and adding an offset of 1 |
| * in each direction from the initial top left (tl) location to generate |
| * top right (tr = +1 in x), bottom left (bl = +1 in y) and bottom right |
| * (br = +1 in x, +1 in y). |
| * |
| * The locations we build look like this in SIMD8 : |
| * |
| * ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br |
| * |
| * The value 0x11001010 is a vector of 8 half byte vector. It adds |
| * following to generate the 4 pixels coordinates out of the subspan0: |
| * |
| * 0x |
| * 1 : ss0.y + 1 -> ss0.br.y |
| * 1 : ss0.y + 1 -> ss0.bl.y |
| * 0 : ss0.y + 0 -> ss0.tr.y |
| * 0 : ss0.y + 0 -> ss0.tl.y |
| * 1 : ss0.x + 1 -> ss0.br.x |
| * 0 : ss0.x + 0 -> ss0.bl.x |
| * 1 : ss0.x + 1 -> ss0.tr.x |
| * 0 : ss0.x + 0 -> ss0.tl.x |
| * |
| * By doing a SIMD16 add in a SIMD8 shader, we can generate the 8 pixels |
| * coordinates out of 2 subspans coordinates in a single ADD instruction |
| * (twice the operation above). |
| */ |
| int_sample_offset_xy = elk_fs_reg(elk_imm_v(0x11001010)); |
| half_int_sample_offset_x = elk_fs_reg(elk_imm_uw(0)); |
| half_int_sample_offset_y = elk_fs_reg(elk_imm_uw(0)); |
| /* On Gfx12.5, because of regioning restrictions, the interpolation code |
| * is slightly different and works off X & Y only inputs. The ordering |
| * of the half bytes here is a bit odd, with each subspan replicated |
| * twice and every other element is discarded : |
| * |
| * ss0.tl ss0.tl ss0.tr ss0.tr ss0.bl ss0.bl ss0.br ss0.br |
| * X offset: 0 0 1 0 0 0 1 0 |
| * Y offset: 0 0 0 0 1 0 1 0 |
| */ |
| int_sample_offset_x = elk_fs_reg(elk_imm_v(0x01000100)); |
| int_sample_offset_y = elk_fs_reg(elk_imm_v(0x01010000)); |
| |
| elk_fs_reg int_pixel_offset_xy = int_sample_offset_xy; /* Used on Gen8+ */ |
| elk_fs_reg half_int_pixel_offset_x = half_int_sample_offset_x; |
| elk_fs_reg half_int_pixel_offset_y = half_int_sample_offset_y; |
| |
| uw_pixel_x = abld.vgrf(ELK_REGISTER_TYPE_UW); |
| uw_pixel_y = abld.vgrf(ELK_REGISTER_TYPE_UW); |
| |
| for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) { |
| const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i); |
| |
| elk_fs_reg int_pixel_x = offset(uw_pixel_x, hbld, i); |
| elk_fs_reg int_pixel_y = offset(uw_pixel_y, hbld, i); |
| |
| /* According to the "PS Thread Payload for Normal Dispatch" |
| * pages on the BSpec, subspan X/Y coordinates are stored in |
| * R1.2-R1.5/R2.2-R2.5 on gfx6+, and on R0.10-R0.13/R1.10-R1.13 |
| * on gfx20+. gi_reg is the 32B section of the GRF that |
| * contains the subspan coordinates. |
| */ |
| const struct elk_reg gi_reg = elk_vec1_grf(i + 1, 0); |
| const struct elk_reg gi_uw = retype(gi_reg, ELK_REGISTER_TYPE_UW); |
| |
| if (devinfo->ver >= 8 || dispatch_width == 8) { |
| /* The "Register Region Restrictions" page says for BDW (and newer, |
| * presumably): |
| * |
| * "When destination spans two registers, the source may be one or |
| * two registers. The destination elements must be evenly split |
| * between the two registers." |
| * |
| * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 |
| * to compute our pixel centers. |
| */ |
| const fs_builder dbld = |
| abld.exec_all().group(hbld.dispatch_width() * 2, 0); |
| elk_fs_reg int_pixel_xy = dbld.vgrf(ELK_REGISTER_TYPE_UW); |
| |
| dbld.ADD(int_pixel_xy, |
| elk_fs_reg(stride(suboffset(gi_uw, 4), 1, 4, 0)), |
| int_pixel_offset_xy); |
| |
| hbld.emit(ELK_FS_OPCODE_PIXEL_X, int_pixel_x, int_pixel_xy, |
| horiz_stride(half_int_pixel_offset_x, 0)); |
| hbld.emit(ELK_FS_OPCODE_PIXEL_Y, int_pixel_y, int_pixel_xy, |
| horiz_stride(half_int_pixel_offset_y, 0)); |
| } else { |
| /* The "Register Region Restrictions" page says for SNB, IVB, HSW: |
| * |
| * "When destination spans two registers, the source MUST span |
| * two registers." |
| * |
| * Since the GRF source of the ADD will only read a single register, |
| * we must do two separate ADDs in SIMD16. |
| */ |
| hbld.ADD(int_pixel_x, |
| elk_fs_reg(stride(suboffset(gi_uw, 4), 2, 4, 0)), |
| elk_fs_reg(elk_imm_v(0x10101010))); |
| hbld.ADD(int_pixel_y, |
| elk_fs_reg(stride(suboffset(gi_uw, 5), 2, 4, 0)), |
| elk_fs_reg(elk_imm_v(0x11001100))); |
| } |
| } |
| |
| abld = bld.annotate("compute pos.z"); |
| if (wm_prog_data->uses_src_depth) |
| this->pixel_z = fetch_payload_reg(bld, fs_payload().source_depth_reg); |
| |
| if (wm_key->persample_interp == ELK_SOMETIMES) { |
| assert(!elk_needs_unlit_centroid_workaround(devinfo)); |
| |
| const fs_builder ubld = bld.exec_all().group(16, 0); |
| bool loaded_flag = false; |
| |
| for (int i = 0; i < ELK_BARYCENTRIC_MODE_COUNT; ++i) { |
| if (!(wm_prog_data->barycentric_interp_modes & BITFIELD_BIT(i))) |
| continue; |
| |
| /* The sample mode will always be the top bit set in the perspective |
| * or non-perspective section. In the case where no SAMPLE mode was |
| * requested, elk_wm_prog_data_barycentric_modes() will swap out the top |
| * mode for SAMPLE so this works regardless of whether SAMPLE was |
| * requested or not. |
| */ |
| int sample_mode; |
| if (BITFIELD_BIT(i) & ELK_BARYCENTRIC_NONPERSPECTIVE_BITS) { |
| sample_mode = util_last_bit(wm_prog_data->barycentric_interp_modes & |
| ELK_BARYCENTRIC_NONPERSPECTIVE_BITS) - 1; |
| } else { |
| sample_mode = util_last_bit(wm_prog_data->barycentric_interp_modes & |
| ELK_BARYCENTRIC_PERSPECTIVE_BITS) - 1; |
| } |
| assert(wm_prog_data->barycentric_interp_modes & |
| BITFIELD_BIT(sample_mode)); |
| |
| if (i == sample_mode) |
| continue; |
| |
| uint8_t *barys = fs_payload().barycentric_coord_reg[i]; |
| |
| uint8_t *sample_barys = fs_payload().barycentric_coord_reg[sample_mode]; |
| assert(barys[0] && sample_barys[0]); |
| |
| if (!loaded_flag) { |
| check_dynamic_msaa_flag(ubld, wm_prog_data, |
| INTEL_MSAA_FLAG_PERSAMPLE_INTERP); |
| } |
| |
| for (unsigned j = 0; j < dispatch_width / 8; j++) { |
| set_predicate( |
| ELK_PREDICATE_NORMAL, |
| ubld.MOV(elk_vec8_grf(barys[j / 2] + (j % 2) * 2, 0), |
| elk_vec8_grf(sample_barys[j / 2] + (j % 2) * 2, 0))); |
| } |
| } |
| } |
| |
| for (int i = 0; i < ELK_BARYCENTRIC_MODE_COUNT; ++i) { |
| this->delta_xy[i] = fetch_barycentric_reg( |
| bld, fs_payload().barycentric_coord_reg[i]); |
| } |
| |
| uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes & |
| (1 << ELK_BARYCENTRIC_PERSPECTIVE_CENTROID | |
| 1 << ELK_BARYCENTRIC_NONPERSPECTIVE_CENTROID); |
| |
| if (elk_needs_unlit_centroid_workaround(devinfo) && centroid_modes) { |
| /* Get the pixel/sample mask into f0 so that we know which |
| * pixels are lit. Then, for each channel that is unlit, |
| * replace the centroid data with non-centroid data. |
| */ |
| for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) { |
| bld.exec_all().group(1, 0) |
| .MOV(retype(elk_flag_reg(0, i), ELK_REGISTER_TYPE_UW), |
| retype(elk_vec1_grf(1 + i, 7), ELK_REGISTER_TYPE_UW)); |
| } |
| |
| for (int i = 0; i < ELK_BARYCENTRIC_MODE_COUNT; ++i) { |
| if (!(centroid_modes & (1 << i))) |
| continue; |
| |
| const elk_fs_reg centroid_delta_xy = delta_xy[i]; |
| const elk_fs_reg &pixel_delta_xy = delta_xy[i - 1]; |
| |
| delta_xy[i] = bld.vgrf(ELK_REGISTER_TYPE_F, 2); |
| |
| for (unsigned c = 0; c < 2; c++) { |
| for (unsigned q = 0; q < dispatch_width / 8; q++) { |
| set_predicate(ELK_PREDICATE_NORMAL, |
| bld.quarter(q).SEL( |
| quarter(offset(delta_xy[i], bld, c), q), |
| quarter(offset(centroid_delta_xy, bld, c), q), |
| quarter(offset(pixel_delta_xy, bld, c), q))); |
| } |
| } |
| } |
| } |
| } |
| |
| static enum elk_conditional_mod |
| cond_for_alpha_func(enum compare_func func) |
| { |
| switch(func) { |
| case COMPARE_FUNC_GREATER: |
| return ELK_CONDITIONAL_G; |
| case COMPARE_FUNC_GEQUAL: |
| return ELK_CONDITIONAL_GE; |
| case COMPARE_FUNC_LESS: |
| return ELK_CONDITIONAL_L; |
| case COMPARE_FUNC_LEQUAL: |
| return ELK_CONDITIONAL_LE; |
| case COMPARE_FUNC_EQUAL: |
| return ELK_CONDITIONAL_EQ; |
| case COMPARE_FUNC_NOTEQUAL: |
| return ELK_CONDITIONAL_NEQ; |
| default: |
| unreachable("Not reached"); |
| } |
| } |
| |
| /** |
| * Alpha test support for when we compile it into the shader instead |
| * of using the normal fixed-function alpha test. |
| */ |
| void |
| elk_fs_visitor::emit_alpha_test() |
| { |
| assert(stage == MESA_SHADER_FRAGMENT); |
| elk_wm_prog_key *key = (elk_wm_prog_key*) this->key; |
| const fs_builder bld = fs_builder(this).at_end(); |
| const fs_builder abld = bld.annotate("Alpha test"); |
| |
| elk_fs_inst *cmp; |
| if (key->alpha_test_func == COMPARE_FUNC_ALWAYS) |
| return; |
| |
| if (key->alpha_test_func == COMPARE_FUNC_NEVER) { |
| /* f0.1 = 0 */ |
| elk_fs_reg some_reg = elk_fs_reg(retype(elk_vec8_grf(0, 0), |
| ELK_REGISTER_TYPE_UW)); |
| cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg, |
| ELK_CONDITIONAL_NEQ); |
| } else { |
| /* RT0 alpha */ |
| elk_fs_reg color = offset(outputs[0], bld, 3); |
| |
| /* f0.1 &= func(color, ref) */ |
| cmp = abld.CMP(bld.null_reg_f(), color, elk_imm_f(key->alpha_test_ref), |
| cond_for_alpha_func(key->alpha_test_func)); |
| } |
| cmp->predicate = ELK_PREDICATE_NORMAL; |
| cmp->flag_subreg = 1; |
| } |
| |
| elk_fs_inst * |
| elk_fs_visitor::emit_single_fb_write(const fs_builder &bld, |
| elk_fs_reg color0, elk_fs_reg color1, |
| elk_fs_reg src0_alpha, unsigned components) |
| { |
| assert(stage == MESA_SHADER_FRAGMENT); |
| struct elk_wm_prog_data *prog_data = elk_wm_prog_data(this->prog_data); |
| |
| /* Hand over gl_FragDepth or the payload depth. */ |
| const elk_fs_reg dst_depth = fetch_payload_reg(bld, fs_payload().dest_depth_reg); |
| elk_fs_reg src_depth; |
| |
| if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { |
| src_depth = frag_depth; |
| } else if (source_depth_to_render_target) { |
| /* If we got here, we're in one of those strange Gen4-5 cases where |
| * we're forced to pass the source depth, unmodified, to the FB write. |
| * In this case, we don't want to use pixel_z because we may not have |
| * set up interpolation. It's also perfectly safe because it only |
| * happens on old hardware (no coarse interpolation) and this is |
| * explicitly the pass-through case. |
| */ |
| assert(devinfo->ver <= 5); |
| src_depth = fetch_payload_reg(bld, fs_payload().source_depth_reg); |
| } |
| |
| const elk_fs_reg sources[] = { |
| color0, color1, src0_alpha, src_depth, dst_depth, |
| (prog_data->uses_omask ? sample_mask : elk_fs_reg()), |
| elk_imm_ud(components) |
| }; |
| assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS); |
| elk_fs_inst *write = bld.emit(ELK_FS_OPCODE_FB_WRITE_LOGICAL, elk_fs_reg(), |
| sources, ARRAY_SIZE(sources)); |
| |
| if (prog_data->uses_kill) { |
| write->predicate = ELK_PREDICATE_NORMAL; |
| write->flag_subreg = sample_mask_flag_subreg(*this); |
| } |
| |
| return write; |
| } |
| |
| void |
| elk_fs_visitor::do_emit_fb_writes(int nr_color_regions, bool replicate_alpha) |
| { |
| const fs_builder bld = fs_builder(this).at_end(); |
| elk_fs_inst *inst = NULL; |
| |
| for (int target = 0; target < nr_color_regions; target++) { |
| /* Skip over outputs that weren't written. */ |
| if (this->outputs[target].file == BAD_FILE) |
| continue; |
| |
| const fs_builder abld = bld.annotate( |
| ralloc_asprintf(this->mem_ctx, "FB write target %d", target)); |
| |
| elk_fs_reg src0_alpha; |
| if (devinfo->ver >= 6 && replicate_alpha && target != 0) |
| src0_alpha = offset(outputs[0], bld, 3); |
| |
| inst = emit_single_fb_write(abld, this->outputs[target], |
| this->dual_src_output, src0_alpha, 4); |
| inst->target = target; |
| } |
| |
| if (inst == NULL) { |
| /* Even if there's no color buffers enabled, we still need to send |
| * alpha out the pipeline to our null renderbuffer to support |
| * alpha-testing, alpha-to-coverage, and so on. |
| */ |
| /* FINISHME: Factor out this frequently recurring pattern into a |
| * helper function. |
| */ |
| const elk_fs_reg srcs[] = { reg_undef, reg_undef, |
| reg_undef, offset(this->outputs[0], bld, 3) }; |
| const elk_fs_reg tmp = bld.vgrf(ELK_REGISTER_TYPE_UD, 4); |
| bld.LOAD_PAYLOAD(tmp, srcs, 4, 0); |
| |
| inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4); |
| inst->target = 0; |
| } |
| |
| inst->last_rt = true; |
| inst->eot = true; |
| } |
| |
| void |
| elk_fs_visitor::emit_fb_writes() |
| { |
| assert(stage == MESA_SHADER_FRAGMENT); |
| struct elk_wm_prog_data *prog_data = elk_wm_prog_data(this->prog_data); |
| elk_wm_prog_key *key = (elk_wm_prog_key*) this->key; |
| |
| if (source_depth_to_render_target && devinfo->ver == 6) { |
| /* For outputting oDepth on gfx6, SIMD8 writes have to be used. This |
| * would require SIMD8 moves of each half to message regs, e.g. by using |
| * the SIMD lowering pass. Unfortunately this is more difficult than it |
| * sounds because the SIMD8 single-source message lacks channel selects |
| * for the second and third subspans. |
| */ |
| limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n"); |
| } |
| |
| /* ANV doesn't know about sample mask output during the wm key creation |
| * so we compute if we need replicate alpha and emit alpha to coverage |
| * workaround here. |
| */ |
| const bool replicate_alpha = key->alpha_test_replicate_alpha || |
| (key->nr_color_regions > 1 && key->alpha_to_coverage && |
| (sample_mask.file == BAD_FILE || devinfo->ver == 6)); |
| |
| prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE && |
| this->outputs[0].file != BAD_FILE); |
| assert(!prog_data->dual_src_blend || key->nr_color_regions == 1); |
| |
| do_emit_fb_writes(key->nr_color_regions, replicate_alpha); |
| } |
| |
| void |
| elk_fs_visitor::emit_urb_writes(const elk_fs_reg &gs_vertex_count) |
| { |
| int slot, urb_offset, length; |
| int starting_urb_offset = 0; |
| const struct elk_vue_prog_data *vue_prog_data = |
| elk_vue_prog_data(this->prog_data); |
| const struct elk_vs_prog_key *vs_key = |
| (const struct elk_vs_prog_key *) this->key; |
| const struct intel_vue_map *vue_map = &vue_prog_data->vue_map; |
| bool flush; |
| elk_fs_reg sources[8]; |
| elk_fs_reg urb_handle; |
| |
| switch (stage) { |
| case MESA_SHADER_VERTEX: |
| urb_handle = vs_payload().urb_handles; |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| urb_handle = tes_payload().urb_output; |
| break; |
| case MESA_SHADER_GEOMETRY: |
| urb_handle = gs_payload().urb_handles; |
| break; |
| default: |
| unreachable("invalid stage"); |
| } |
| |
| const fs_builder bld = fs_builder(this).at_end(); |
| |
| elk_fs_reg per_slot_offsets; |
| |
| if (stage == MESA_SHADER_GEOMETRY) { |
| const struct elk_gs_prog_data *gs_prog_data = |
| elk_gs_prog_data(this->prog_data); |
| |
| /* We need to increment the Global Offset to skip over the control data |
| * header and the extra "Vertex Count" field (1 HWord) at the beginning |
| * of the VUE. We're counting in OWords, so the units are doubled. |
| */ |
| starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords; |
| if (gs_prog_data->static_vertex_count == -1) |
| starting_urb_offset += 2; |
| |
| /* The URB offset is in 128-bit units, so we need to multiply by 2 */ |
| const int output_vertex_size_owords = |
| gs_prog_data->output_vertex_size_hwords * 2; |
| |
| if (gs_vertex_count.file == IMM) { |
| per_slot_offsets = elk_imm_ud(output_vertex_size_owords * |
| gs_vertex_count.ud); |
| } else { |
| per_slot_offsets = vgrf(glsl_uint_type()); |
| bld.MUL(per_slot_offsets, gs_vertex_count, |
| elk_imm_ud(output_vertex_size_owords)); |
| } |
| } |
| |
| length = 0; |
| urb_offset = starting_urb_offset; |
| flush = false; |
| |
| /* SSO shaders can have VUE slots allocated which are never actually |
| * written to, so ignore them when looking for the last (written) slot. |
| */ |
| int last_slot = vue_map->num_slots - 1; |
| while (last_slot > 0 && |
| (vue_map->slot_to_varying[last_slot] == ELK_VARYING_SLOT_PAD || |
| outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) { |
| last_slot--; |
| } |
| |
| bool urb_written = false; |
| for (slot = 0; slot < vue_map->num_slots; slot++) { |
| int varying = vue_map->slot_to_varying[slot]; |
| switch (varying) { |
| case VARYING_SLOT_PSIZ: { |
| /* The point size varying slot is the vue header and is always in the |
| * vue map. If anything in the header is going to be read back by HW, |
| * we need to initialize it, in particular the viewport & layer |
| * values. |
| * |
| * SKL PRMs, Volume 7: 3D-Media-GPGPU, Vertex URB Entry (VUE) |
| * Formats: |
| * |
| * "VUEs are written in two ways: |
| * |
| * - At the top of the 3D Geometry pipeline, the VF's |
| * InputAssembly function creates VUEs and initializes them |
| * from data extracted from Vertex Buffers as well as |
| * internally generated data. |
| * |
| * - VS, GS, HS and DS threads can compute, format, and write |
| * new VUEs as thread output." |
| * |
| * "Software must ensure that any VUEs subject to readback by the |
| * 3D pipeline start with a valid Vertex Header. This extends to |
| * all VUEs with the following exceptions: |
| * |
| * - If the VS function is enabled, the VF-written VUEs are not |
| * required to have Vertex Headers, as the VS-incoming |
| * vertices are guaranteed to be consumed by the VS (i.e., |
| * the VS thread is responsible for overwriting the input |
| * vertex data). |
| * |
| * - If the GS FF is enabled, neither VF-written VUEs nor VS |
| * thread-generated VUEs are required to have Vertex Headers, |
| * as the GS will consume all incoming vertices. |
| * |
| * - If Rendering is disabled, VertexHeaders are not required |
| * anywhere." |
| */ |
| |
| elk_fs_reg zero(VGRF, alloc.allocate(dispatch_width / 8), |
| ELK_REGISTER_TYPE_UD); |
| bld.MOV(zero, elk_imm_ud(0u)); |
| |
| if (vue_map->slots_valid & VARYING_BIT_PRIMITIVE_SHADING_RATE && |
| this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE].file != BAD_FILE) { |
| sources[length++] = this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE]; |
| } else if (devinfo->has_coarse_pixel_primitive_and_cb) { |
| uint32_t one_fp16 = 0x3C00; |
| elk_fs_reg one_by_one_fp16(VGRF, alloc.allocate(dispatch_width / 8), |
| ELK_REGISTER_TYPE_UD); |
| bld.MOV(one_by_one_fp16, elk_imm_ud((one_fp16 << 16) | one_fp16)); |
| sources[length++] = one_by_one_fp16; |
| } else { |
| sources[length++] = zero; |
| } |
| |
| if (vue_map->slots_valid & VARYING_BIT_LAYER) |
| sources[length++] = this->outputs[VARYING_SLOT_LAYER]; |
| else |
| sources[length++] = zero; |
| |
| if (vue_map->slots_valid & VARYING_BIT_VIEWPORT) |
| sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT]; |
| else |
| sources[length++] = zero; |
| |
| if (vue_map->slots_valid & VARYING_BIT_PSIZ) |
| sources[length++] = this->outputs[VARYING_SLOT_PSIZ]; |
| else |
| sources[length++] = zero; |
| break; |
| } |
| case ELK_VARYING_SLOT_NDC: |
| case VARYING_SLOT_EDGE: |
| unreachable("unexpected scalar vs output"); |
| break; |
| |
| default: |
| /* gl_Position is always in the vue map, but isn't always written by |
| * the shader. Other varyings (clip distances) get added to the vue |
| * map but don't always get written. In those cases, the |
| * corresponding this->output[] slot will be invalid we and can skip |
| * the urb write for the varying. If we've already queued up a vue |
| * slot for writing we flush a mlen 5 urb write, otherwise we just |
| * advance the urb_offset. |
| */ |
| if (varying == ELK_VARYING_SLOT_PAD || |
| this->outputs[varying].file == BAD_FILE) { |
| if (length > 0) |
| flush = true; |
| else |
| urb_offset++; |
| break; |
| } |
| |
| if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color && |
| (varying == VARYING_SLOT_COL0 || |
| varying == VARYING_SLOT_COL1 || |
| varying == VARYING_SLOT_BFC0 || |
| varying == VARYING_SLOT_BFC1)) { |
| /* We need to clamp these guys, so do a saturating MOV into a |
| * temp register and use that for the payload. |
| */ |
| for (int i = 0; i < 4; i++) { |
| elk_fs_reg reg = elk_fs_reg(VGRF, alloc.allocate(dispatch_width / 8), |
| outputs[varying].type); |
| elk_fs_reg src = offset(this->outputs[varying], bld, i); |
| set_saturate(true, bld.MOV(reg, src)); |
| sources[length++] = reg; |
| } |
| } else { |
| int slot_offset = 0; |
| |
| /* When using Primitive Replication, there may be multiple slots |
| * assigned to POS. |
| */ |
| if (varying == VARYING_SLOT_POS) |
| slot_offset = slot - vue_map->varying_to_slot[VARYING_SLOT_POS]; |
| |
| for (unsigned i = 0; i < 4; i++) { |
| sources[length++] = offset(this->outputs[varying], bld, |
| i + (slot_offset * 4)); |
| } |
| } |
| break; |
| } |
| |
| const fs_builder abld = bld.annotate("URB write"); |
| |
| /* If we've queued up 8 registers of payload (2 VUE slots), if this is |
| * the last slot or if we need to flush (see BAD_FILE varying case |
| * above), emit a URB write send now to flush out the data. |
| */ |
| if (length == 8 || (length > 0 && slot == last_slot)) |
| flush = true; |
| if (flush) { |
| elk_fs_reg srcs[URB_LOGICAL_NUM_SRCS]; |
| |
| srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle; |
| srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = per_slot_offsets; |
| srcs[URB_LOGICAL_SRC_DATA] = elk_fs_reg(VGRF, |
| alloc.allocate((dispatch_width / 8) * length), |
| ELK_REGISTER_TYPE_F); |
| srcs[URB_LOGICAL_SRC_COMPONENTS] = elk_imm_ud(length); |
| abld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], sources, length, 0); |
| |
| elk_fs_inst *inst = abld.emit(ELK_SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, |
| srcs, ARRAY_SIZE(srcs)); |
| |
| inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY; |
| |
| inst->offset = urb_offset; |
| urb_offset = starting_urb_offset + slot + 1; |
| length = 0; |
| flush = false; |
| urb_written = true; |
| } |
| } |
| |
| /* If we don't have any valid slots to write, just do a minimal urb write |
| * send to terminate the shader. This includes 1 slot of undefined data, |
| * because it's invalid to write 0 data: |
| * |
| * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions - |
| * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read > |
| * Write Data Payload: |
| * |
| * "The write data payload can be between 1 and 8 message phases long." |
| */ |
| if (!urb_written) { |
| /* For GS, just turn EmitVertex() into a no-op. We don't want it to |
| * end the thread, and emit_gs_thread_end() already emits a SEND with |
| * EOT at the end of the program for us. |
| */ |
| if (stage == MESA_SHADER_GEOMETRY) |
| return; |
| |
| elk_fs_reg uniform_urb_handle = elk_fs_reg(VGRF, alloc.allocate(dispatch_width / 8), |
| ELK_REGISTER_TYPE_UD); |
| elk_fs_reg payload = elk_fs_reg(VGRF, alloc.allocate(dispatch_width / 8), |
| ELK_REGISTER_TYPE_UD); |
| |
| bld.exec_all().MOV(uniform_urb_handle, urb_handle); |
| |
| elk_fs_reg srcs[URB_LOGICAL_NUM_SRCS]; |
| srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle; |
| srcs[URB_LOGICAL_SRC_DATA] = payload; |
| srcs[URB_LOGICAL_SRC_COMPONENTS] = elk_imm_ud(1); |
| |
| elk_fs_inst *inst = bld.emit(ELK_SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, |
| srcs, ARRAY_SIZE(srcs)); |
| inst->eot = true; |
| inst->offset = 1; |
| return; |
| } |
| } |
| |
| void |
| elk_fs_visitor::emit_urb_fence() |
| { |
| const fs_builder bld = fs_builder(this).at_end(); |
| elk_fs_reg dst = bld.vgrf(ELK_REGISTER_TYPE_UD); |
| elk_fs_inst *fence = bld.emit(ELK_SHADER_OPCODE_MEMORY_FENCE, dst, |
| elk_vec8_grf(0, 0), |
| elk_imm_ud(true), |
| elk_imm_ud(0)); |
| fence->sfid = ELK_SFID_URB; |
| fence->desc = lsc_fence_msg_desc(devinfo, LSC_FENCE_LOCAL, |
| LSC_FLUSH_TYPE_NONE, true); |
| |
| bld.exec_all().group(1, 0).emit(ELK_FS_OPCODE_SCHEDULING_FENCE, |
| bld.null_reg_ud(), |
| &dst, |
| 1); |
| } |
| |
| void |
| elk_fs_visitor::emit_cs_terminate() |
| { |
| assert(devinfo->ver >= 7); |
| const fs_builder bld = fs_builder(this).at_end(); |
| |
| /* We can't directly send from g0, since sends with EOT have to use |
| * g112-127. So, copy it to a virtual register, The register allocator will |
| * make sure it uses the appropriate register range. |
| */ |
| struct elk_reg g0 = retype(elk_vec8_grf(0, 0), ELK_REGISTER_TYPE_UD); |
| elk_fs_reg payload = elk_fs_reg(VGRF, alloc.allocate(1), ELK_REGISTER_TYPE_UD); |
| bld.group(8, 0).exec_all().MOV(payload, g0); |
| |
| /* Send a message to the thread spawner to terminate the thread. */ |
| elk_fs_inst *inst = bld.exec_all() |
| .emit(ELK_CS_OPCODE_CS_TERMINATE, reg_undef, payload); |
| inst->eot = true; |
| } |
| |
| elk_fs_visitor::elk_fs_visitor(const struct elk_compiler *compiler, |
| const struct elk_compile_params *params, |
| const elk_base_prog_key *key, |
| struct elk_stage_prog_data *prog_data, |
| const nir_shader *shader, |
| unsigned dispatch_width, |
| bool needs_register_pressure, |
| bool debug_enabled) |
| : elk_backend_shader(compiler, params, shader, prog_data, debug_enabled), |
| key(key), gs_compile(NULL), prog_data(prog_data), |
| live_analysis(this), regpressure_analysis(this), |
| performance_analysis(this), |
| needs_register_pressure(needs_register_pressure), |
| dispatch_width(dispatch_width), |
| api_subgroup_size(elk_nir_api_subgroup_size(shader, dispatch_width)) |
| { |
| init(); |
| } |
| |
| elk_fs_visitor::elk_fs_visitor(const struct elk_compiler *compiler, |
| const struct elk_compile_params *params, |
| const elk_wm_prog_key *key, |
| struct elk_wm_prog_data *prog_data, |
| const nir_shader *shader, |
| unsigned dispatch_width, |
| bool needs_register_pressure, |
| bool debug_enabled) |
| : elk_backend_shader(compiler, params, shader, &prog_data->base, |
| debug_enabled), |
| key(&key->base), gs_compile(NULL), prog_data(&prog_data->base), |
| live_analysis(this), regpressure_analysis(this), |
| performance_analysis(this), |
| needs_register_pressure(needs_register_pressure), |
| dispatch_width(dispatch_width), |
| api_subgroup_size(elk_nir_api_subgroup_size(shader, dispatch_width)) |
| { |
| init(); |
| assert(api_subgroup_size == 0 || |
| api_subgroup_size == 8 || |
| api_subgroup_size == 16 || |
| api_subgroup_size == 32); |
| } |
| |
| elk_fs_visitor::elk_fs_visitor(const struct elk_compiler *compiler, |
| const struct elk_compile_params *params, |
| struct elk_gs_compile *c, |
| struct elk_gs_prog_data *prog_data, |
| const nir_shader *shader, |
| bool needs_register_pressure, |
| bool debug_enabled) |
| : elk_backend_shader(compiler, params, shader, &prog_data->base.base, |
| debug_enabled), |
| key(&c->key.base), gs_compile(c), |
| prog_data(&prog_data->base.base), |
| live_analysis(this), regpressure_analysis(this), |
| performance_analysis(this), |
| needs_register_pressure(needs_register_pressure), |
| dispatch_width(8), |
| api_subgroup_size(elk_nir_api_subgroup_size(shader, dispatch_width)) |
| { |
| init(); |
| assert(api_subgroup_size == 0 || |
| api_subgroup_size == 8 || |
| api_subgroup_size == 16 || |
| api_subgroup_size == 32); |
| } |
| |
| void |
| elk_fs_visitor::init() |
| { |
| if (key) |
| this->key_tex = &key->tex; |
| else |
| this->key_tex = NULL; |
| |
| this->max_dispatch_width = 32; |
| this->prog_data = this->stage_prog_data; |
| |
| this->failed = false; |
| this->fail_msg = NULL; |
| |
| this->payload_ = NULL; |
| this->source_depth_to_render_target = false; |
| this->runtime_check_aads_emit = false; |
| this->first_non_payload_grf = 0; |
| this->max_grf = devinfo->ver >= 7 ? GFX7_MRF_HACK_START : ELK_MAX_GRF; |
| |
| this->uniforms = 0; |
| this->last_scratch = 0; |
| this->push_constant_loc = NULL; |
| |
| memset(&this->shader_stats, 0, sizeof(this->shader_stats)); |
| |
| this->grf_used = 0; |
| this->spilled_any_registers = false; |
| } |
| |
| elk_fs_visitor::~elk_fs_visitor() |
| { |
| delete this->payload_; |
| } |