| /* |
| * Copyright © 2012 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| /** @file elk_fs_copy_propagation.cpp |
| * |
| * Support for global copy propagation in two passes: A local pass that does |
| * intra-block copy (and constant) propagation, and a global pass that uses |
| * dataflow analysis on the copies available at the end of each block to re-do |
| * local copy propagation with more copies available. |
| * |
| * See Muchnick's Advanced Compiler Design and Implementation, section |
| * 12.5 (p356). |
| */ |
| |
| #include "util/bitset.h" |
| #include "util/u_math.h" |
| #include "util/rb_tree.h" |
| #include "elk_fs.h" |
| #include "elk_fs_live_variables.h" |
| #include "elk_cfg.h" |
| #include "elk_eu.h" |
| |
| using namespace elk; |
| |
| namespace { /* avoid conflict with opt_copy_propagation_elements */ |
| struct acp_entry { |
| struct rb_node by_dst; |
| struct rb_node by_src; |
| elk_fs_reg dst; |
| elk_fs_reg src; |
| unsigned global_idx; |
| unsigned size_written; |
| unsigned size_read; |
| enum elk_opcode opcode; |
| bool is_partial_write; |
| bool force_writemask_all; |
| }; |
| |
| /** |
| * Compare two acp_entry::src.nr |
| * |
| * This is intended to be used as the comparison function for rb_tree. |
| */ |
| static int |
| cmp_entry_dst_entry_dst(const struct rb_node *a_node, const struct rb_node *b_node) |
| { |
| const struct acp_entry *a_entry = |
| rb_node_data(struct acp_entry, a_node, by_dst); |
| |
| const struct acp_entry *b_entry = |
| rb_node_data(struct acp_entry, b_node, by_dst); |
| |
| return a_entry->dst.nr - b_entry->dst.nr; |
| } |
| |
| static int |
| cmp_entry_dst_nr(const struct rb_node *a_node, const void *b_key) |
| { |
| const struct acp_entry *a_entry = |
| rb_node_data(struct acp_entry, a_node, by_dst); |
| |
| return a_entry->dst.nr - (uintptr_t) b_key; |
| } |
| |
| static int |
| cmp_entry_src_entry_src(const struct rb_node *a_node, const struct rb_node *b_node) |
| { |
| const struct acp_entry *a_entry = |
| rb_node_data(struct acp_entry, a_node, by_src); |
| |
| const struct acp_entry *b_entry = |
| rb_node_data(struct acp_entry, b_node, by_src); |
| |
| return a_entry->src.nr - b_entry->src.nr; |
| } |
| |
| /** |
| * Compare an acp_entry::src.nr with a raw nr. |
| * |
| * This is intended to be used as the comparison function for rb_tree. |
| */ |
| static int |
| cmp_entry_src_nr(const struct rb_node *a_node, const void *b_key) |
| { |
| const struct acp_entry *a_entry = |
| rb_node_data(struct acp_entry, a_node, by_src); |
| |
| return a_entry->src.nr - (uintptr_t) b_key; |
| } |
| |
| class acp_forward_iterator { |
| public: |
| acp_forward_iterator(struct rb_node *n, unsigned offset) |
| : curr(n), next(nullptr), offset(offset) |
| { |
| next = rb_node_next_or_null(curr); |
| } |
| |
| acp_forward_iterator &operator++() |
| { |
| curr = next; |
| next = rb_node_next_or_null(curr); |
| |
| return *this; |
| } |
| |
| bool operator!=(const acp_forward_iterator &other) const |
| { |
| return curr != other.curr; |
| } |
| |
| struct acp_entry *operator*() const |
| { |
| /* This open-codes part of rb_node_data. */ |
| return curr != NULL ? (struct acp_entry *)(((char *)curr) - offset) |
| : NULL; |
| } |
| |
| private: |
| struct rb_node *curr; |
| struct rb_node *next; |
| unsigned offset; |
| }; |
| |
| struct acp { |
| DECLARE_LINEAR_ALLOC_CXX_OPERATORS(acp); |
| |
| struct rb_tree by_dst; |
| struct rb_tree by_src; |
| |
| acp() |
| { |
| rb_tree_init(&by_dst); |
| rb_tree_init(&by_src); |
| } |
| |
| acp_forward_iterator begin() |
| { |
| return acp_forward_iterator(rb_tree_first(&by_src), |
| rb_tree_offsetof(struct acp_entry, by_src, 0)); |
| } |
| |
| const acp_forward_iterator end() const |
| { |
| return acp_forward_iterator(nullptr, 0); |
| } |
| |
| unsigned length() |
| { |
| unsigned l = 0; |
| |
| for (rb_node *iter = rb_tree_first(&by_src); |
| iter != NULL; iter = rb_node_next(iter)) |
| l++; |
| |
| return l; |
| } |
| |
| void add(acp_entry *entry) |
| { |
| rb_tree_insert(&by_dst, &entry->by_dst, cmp_entry_dst_entry_dst); |
| rb_tree_insert(&by_src, &entry->by_src, cmp_entry_src_entry_src); |
| } |
| |
| void remove(acp_entry *entry) |
| { |
| rb_tree_remove(&by_dst, &entry->by_dst); |
| rb_tree_remove(&by_src, &entry->by_src); |
| } |
| |
| acp_forward_iterator find_by_src(unsigned nr) |
| { |
| struct rb_node *rbn = rb_tree_search(&by_src, |
| (void *)(uintptr_t) nr, |
| cmp_entry_src_nr); |
| |
| return acp_forward_iterator(rbn, rb_tree_offsetof(struct acp_entry, |
| by_src, rbn)); |
| } |
| |
| acp_forward_iterator find_by_dst(unsigned nr) |
| { |
| struct rb_node *rbn = rb_tree_search(&by_dst, |
| (void *)(uintptr_t) nr, |
| cmp_entry_dst_nr); |
| |
| return acp_forward_iterator(rbn, rb_tree_offsetof(struct acp_entry, |
| by_dst, rbn)); |
| } |
| }; |
| |
| struct block_data { |
| /** |
| * Which entries in the fs_copy_prop_dataflow acp table are live at the |
| * start of this block. This is the useful output of the analysis, since |
| * it lets us plug those into the local copy propagation on the second |
| * pass. |
| */ |
| BITSET_WORD *livein; |
| |
| /** |
| * Which entries in the fs_copy_prop_dataflow acp table are live at the end |
| * of this block. This is done in initial setup from the per-block acps |
| * returned by the first local copy prop pass. |
| */ |
| BITSET_WORD *liveout; |
| |
| /** |
| * Which entries in the fs_copy_prop_dataflow acp table are generated by |
| * instructions in this block which reach the end of the block without |
| * being killed. |
| */ |
| BITSET_WORD *copy; |
| |
| /** |
| * Which entries in the fs_copy_prop_dataflow acp table are killed over the |
| * course of this block. |
| */ |
| BITSET_WORD *kill; |
| |
| /** |
| * Which entries in the fs_copy_prop_dataflow acp table are guaranteed to |
| * have a fully uninitialized destination at the end of this block. |
| */ |
| BITSET_WORD *undef; |
| |
| /** |
| * Which entries in the fs_copy_prop_dataflow acp table can the |
| * start of this block be reached from. Note that this is a weaker |
| * condition than livein. |
| */ |
| BITSET_WORD *reachin; |
| |
| /** |
| * Which entries in the fs_copy_prop_dataflow acp table are |
| * overwritten by an instruction with channel masks inconsistent |
| * with the copy instruction (e.g. due to force_writemask_all). |
| * Such an overwrite can cause the copy entry to become invalid |
| * even if the copy instruction is subsequently re-executed for any |
| * given channel i, since the execution of the overwrite for |
| * channel i may corrupt other channels j!=i inactive for the |
| * subsequent copy. |
| */ |
| BITSET_WORD *exec_mismatch; |
| }; |
| |
| class fs_copy_prop_dataflow |
| { |
| public: |
| fs_copy_prop_dataflow(linear_ctx *lin_ctx, elk_cfg_t *cfg, |
| const fs_live_variables &live, |
| struct acp *out_acp); |
| |
| void setup_initial_values(); |
| void run(); |
| |
| void dump_block_data() const UNUSED; |
| |
| elk_cfg_t *cfg; |
| const fs_live_variables &live; |
| |
| acp_entry **acp; |
| int num_acp; |
| int bitset_words; |
| |
| struct block_data *bd; |
| }; |
| } /* anonymous namespace */ |
| |
| fs_copy_prop_dataflow::fs_copy_prop_dataflow(linear_ctx *lin_ctx, elk_cfg_t *cfg, |
| const fs_live_variables &live, |
| struct acp *out_acp) |
| : cfg(cfg), live(live) |
| { |
| bd = linear_zalloc_array(lin_ctx, struct block_data, cfg->num_blocks); |
| |
| num_acp = 0; |
| foreach_block (block, cfg) |
| num_acp += out_acp[block->num].length(); |
| |
| bitset_words = BITSET_WORDS(num_acp); |
| |
| foreach_block (block, cfg) { |
| bd[block->num].livein = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); |
| bd[block->num].liveout = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); |
| bd[block->num].copy = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); |
| bd[block->num].kill = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); |
| bd[block->num].undef = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); |
| bd[block->num].reachin = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); |
| bd[block->num].exec_mismatch = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); |
| } |
| |
| acp = linear_zalloc_array(lin_ctx, struct acp_entry *, num_acp); |
| |
| int next_acp = 0; |
| foreach_block (block, cfg) { |
| for (auto iter = out_acp[block->num].begin(); |
| iter != out_acp[block->num].end(); ++iter) { |
| acp[next_acp] = *iter; |
| |
| (*iter)->global_idx = next_acp; |
| |
| /* opt_copy_propagation_local populates out_acp with copies created |
| * in a block which are still live at the end of the block. This |
| * is exactly what we want in the COPY set. |
| */ |
| BITSET_SET(bd[block->num].copy, next_acp); |
| |
| next_acp++; |
| } |
| } |
| |
| assert(next_acp == num_acp); |
| |
| setup_initial_values(); |
| run(); |
| } |
| |
| /** |
| * Like reg_offset, but register must be VGRF or FIXED_GRF. |
| */ |
| static inline unsigned |
| grf_reg_offset(const elk_fs_reg &r) |
| { |
| return (r.file == VGRF ? 0 : r.nr) * REG_SIZE + |
| r.offset + |
| (r.file == FIXED_GRF ? r.subnr : 0); |
| } |
| |
| /** |
| * Like regions_overlap, but register must be VGRF or FIXED_GRF. |
| */ |
| static inline bool |
| grf_regions_overlap(const elk_fs_reg &r, unsigned dr, const elk_fs_reg &s, unsigned ds) |
| { |
| return reg_space(r) == reg_space(s) && |
| !(grf_reg_offset(r) + dr <= grf_reg_offset(s) || |
| grf_reg_offset(s) + ds <= grf_reg_offset(r)); |
| } |
| |
| /** |
| * Set up initial values for each of the data flow sets, prior to running |
| * the fixed-point algorithm. |
| */ |
| void |
| fs_copy_prop_dataflow::setup_initial_values() |
| { |
| /* Initialize the COPY and KILL sets. */ |
| { |
| struct acp acp_table; |
| |
| /* First, get all the KILLs for instructions which overwrite ACP |
| * destinations. |
| */ |
| for (int i = 0; i < num_acp; i++) |
| acp_table.add(acp[i]); |
| |
| foreach_block (block, cfg) { |
| foreach_inst_in_block(elk_fs_inst, inst, block) { |
| if (inst->dst.file != VGRF && |
| inst->dst.file != FIXED_GRF) |
| continue; |
| |
| for (auto iter = acp_table.find_by_src(inst->dst.nr); |
| iter != acp_table.end() && (*iter)->src.nr == inst->dst.nr; |
| ++iter) { |
| if (grf_regions_overlap(inst->dst, inst->size_written, |
| (*iter)->src, (*iter)->size_read)) { |
| BITSET_SET(bd[block->num].kill, (*iter)->global_idx); |
| if (inst->force_writemask_all && !(*iter)->force_writemask_all) |
| BITSET_SET(bd[block->num].exec_mismatch, (*iter)->global_idx); |
| } |
| } |
| |
| if (inst->dst.file != VGRF) |
| continue; |
| |
| for (auto iter = acp_table.find_by_dst(inst->dst.nr); |
| iter != acp_table.end() && (*iter)->dst.nr == inst->dst.nr; |
| ++iter) { |
| if (grf_regions_overlap(inst->dst, inst->size_written, |
| (*iter)->dst, (*iter)->size_written)) { |
| BITSET_SET(bd[block->num].kill, (*iter)->global_idx); |
| if (inst->force_writemask_all && !(*iter)->force_writemask_all) |
| BITSET_SET(bd[block->num].exec_mismatch, (*iter)->global_idx); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Populate the initial values for the livein and liveout sets. For the |
| * block at the start of the program, livein = 0 and liveout = copy. |
| * For the others, set liveout and livein to ~0 (the universal set). |
| */ |
| foreach_block (block, cfg) { |
| if (block->parents.is_empty()) { |
| for (int i = 0; i < bitset_words; i++) { |
| bd[block->num].livein[i] = 0u; |
| bd[block->num].liveout[i] = bd[block->num].copy[i]; |
| } |
| } else { |
| for (int i = 0; i < bitset_words; i++) { |
| bd[block->num].liveout[i] = ~0u; |
| bd[block->num].livein[i] = ~0u; |
| } |
| } |
| } |
| |
| /* Initialize the undef set. */ |
| foreach_block (block, cfg) { |
| for (int i = 0; i < num_acp; i++) { |
| BITSET_SET(bd[block->num].undef, i); |
| for (unsigned off = 0; off < acp[i]->size_written; off += REG_SIZE) { |
| if (BITSET_TEST(live.block_data[block->num].defout, |
| live.var_from_reg(byte_offset(acp[i]->dst, off)))) |
| BITSET_CLEAR(bd[block->num].undef, i); |
| } |
| } |
| } |
| } |
| |
| /** |
| * Walk the set of instructions in the block, marking which entries in the acp |
| * are killed by the block. |
| */ |
| void |
| fs_copy_prop_dataflow::run() |
| { |
| bool progress; |
| |
| do { |
| progress = false; |
| |
| foreach_block (block, cfg) { |
| if (block->parents.is_empty()) |
| continue; |
| |
| for (int i = 0; i < bitset_words; i++) { |
| const BITSET_WORD old_liveout = bd[block->num].liveout[i]; |
| const BITSET_WORD old_reachin = bd[block->num].reachin[i]; |
| BITSET_WORD livein_from_any_block = 0; |
| |
| /* Update livein for this block. If a copy is live out of all |
| * parent blocks, it's live coming in to this block. |
| */ |
| bd[block->num].livein[i] = ~0u; |
| foreach_list_typed(elk_bblock_link, parent_link, link, &block->parents) { |
| elk_bblock_t *parent = parent_link->block; |
| /* Consider ACP entries with a known-undefined destination to |
| * be available from the parent. This is valid because we're |
| * free to set the undefined variable equal to the source of |
| * the ACP entry without breaking the application's |
| * expectations, since the variable is undefined. |
| */ |
| bd[block->num].livein[i] &= (bd[parent->num].liveout[i] | |
| bd[parent->num].undef[i]); |
| livein_from_any_block |= bd[parent->num].liveout[i]; |
| |
| /* Update reachin for this block. If the end of any |
| * parent block is reachable from the copy, the start |
| * of this block is reachable from it as well. |
| */ |
| bd[block->num].reachin[i] |= (bd[parent->num].reachin[i] | |
| bd[parent->num].copy[i]); |
| } |
| |
| /* Limit to the set of ACP entries that can possibly be available |
| * at the start of the block, since propagating from a variable |
| * which is guaranteed to be undefined (rather than potentially |
| * undefined for some dynamic control-flow paths) doesn't seem |
| * particularly useful. |
| */ |
| bd[block->num].livein[i] &= livein_from_any_block; |
| |
| /* Update liveout for this block. */ |
| bd[block->num].liveout[i] = |
| bd[block->num].copy[i] | (bd[block->num].livein[i] & |
| ~bd[block->num].kill[i]); |
| |
| if (old_liveout != bd[block->num].liveout[i] || |
| old_reachin != bd[block->num].reachin[i]) |
| progress = true; |
| } |
| } |
| } while (progress); |
| |
| /* Perform a second fixed-point pass in order to propagate the |
| * exec_mismatch bitsets. Note that this requires an accurate |
| * value of the reachin bitsets as input, which isn't available |
| * until the end of the first propagation pass, so this loop cannot |
| * be folded into the previous one. |
| */ |
| do { |
| progress = false; |
| |
| foreach_block (block, cfg) { |
| for (int i = 0; i < bitset_words; i++) { |
| const BITSET_WORD old_exec_mismatch = bd[block->num].exec_mismatch[i]; |
| |
| /* Update exec_mismatch for this block. If the end of a |
| * parent block is reachable by an overwrite with |
| * inconsistent execution masking, the start of this block |
| * is reachable by such an overwrite as well. |
| */ |
| foreach_list_typed(elk_bblock_link, parent_link, link, &block->parents) { |
| elk_bblock_t *parent = parent_link->block; |
| bd[block->num].exec_mismatch[i] |= (bd[parent->num].exec_mismatch[i] & |
| bd[parent->num].reachin[i]); |
| } |
| |
| /* Only consider overwrites with inconsistent execution |
| * masking if they are reachable from the copy, since |
| * overwrites unreachable from a copy are harmless to that |
| * copy. |
| */ |
| bd[block->num].exec_mismatch[i] &= bd[block->num].reachin[i]; |
| if (old_exec_mismatch != bd[block->num].exec_mismatch[i]) |
| progress = true; |
| } |
| } |
| } while (progress); |
| } |
| |
| void |
| fs_copy_prop_dataflow::dump_block_data() const |
| { |
| foreach_block (block, cfg) { |
| fprintf(stderr, "Block %d [%d, %d] (parents ", block->num, |
| block->start_ip, block->end_ip); |
| foreach_list_typed(elk_bblock_link, link, link, &block->parents) { |
| elk_bblock_t *parent = link->block; |
| fprintf(stderr, "%d ", parent->num); |
| } |
| fprintf(stderr, "):\n"); |
| fprintf(stderr, " livein = 0x"); |
| for (int i = 0; i < bitset_words; i++) |
| fprintf(stderr, "%08x", bd[block->num].livein[i]); |
| fprintf(stderr, ", liveout = 0x"); |
| for (int i = 0; i < bitset_words; i++) |
| fprintf(stderr, "%08x", bd[block->num].liveout[i]); |
| fprintf(stderr, ",\n copy = 0x"); |
| for (int i = 0; i < bitset_words; i++) |
| fprintf(stderr, "%08x", bd[block->num].copy[i]); |
| fprintf(stderr, ", kill = 0x"); |
| for (int i = 0; i < bitset_words; i++) |
| fprintf(stderr, "%08x", bd[block->num].kill[i]); |
| fprintf(stderr, "\n"); |
| } |
| } |
| |
| static bool |
| is_logic_op(enum elk_opcode opcode) |
| { |
| return (opcode == ELK_OPCODE_AND || |
| opcode == ELK_OPCODE_OR || |
| opcode == ELK_OPCODE_XOR || |
| opcode == ELK_OPCODE_NOT); |
| } |
| |
| static bool |
| can_take_stride(elk_fs_inst *inst, elk_reg_type dst_type, |
| unsigned arg, unsigned stride, |
| const struct elk_compiler *compiler) |
| { |
| const struct intel_device_info *devinfo = compiler->devinfo; |
| |
| if (stride > 4) |
| return false; |
| |
| /* Bail if the channels of the source need to be aligned to the byte offset |
| * of the corresponding channel of the destination, and the provided stride |
| * would break this restriction. |
| */ |
| if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) && |
| !(type_sz(inst->src[arg].type) * stride == |
| type_sz(dst_type) * inst->dst.stride || |
| stride == 0)) |
| return false; |
| |
| /* 3-source instructions can only be Align16, which restricts what strides |
| * they can take. They can only take a stride of 1 (the usual case), or 0 |
| * with a special "repctrl" bit. But the repctrl bit doesn't work for |
| * 64-bit datatypes, so if the source type is 64-bit then only a stride of |
| * 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page |
| * 944: |
| * |
| * This is applicable to 32b datatypes and 16b datatype. 64b datatypes |
| * cannot use the replicate control. |
| */ |
| if (inst->elk_is_3src(compiler)) { |
| if (type_sz(inst->src[arg].type) > 4) |
| return stride == 1; |
| else |
| return stride == 1 || stride == 0; |
| } |
| |
| /* From the Broadwell PRM, Volume 2a "Command Reference - Instructions", |
| * page 391 ("Extended Math Function"): |
| * |
| * The following restrictions apply for align1 mode: Scalar source is |
| * supported. Source and destination horizontal stride must be the |
| * same. |
| * |
| * From the Haswell PRM Volume 2b "Command Reference - Instructions", page |
| * 134 ("Extended Math Function"): |
| * |
| * Scalar source is supported. Source and destination horizontal stride |
| * must be 1. |
| * |
| * and similar language exists for IVB and SNB. Pre-SNB, math instructions |
| * are sends, so the sources are moved to MRF's and there are no |
| * restrictions. |
| */ |
| if (inst->is_math()) { |
| if (devinfo->ver == 6 || devinfo->ver == 7) { |
| assert(inst->dst.stride == 1); |
| return stride == 1 || stride == 0; |
| } else if (devinfo->ver >= 8) { |
| return stride == inst->dst.stride || stride == 0; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool |
| instruction_requires_packed_data(elk_fs_inst *inst) |
| { |
| switch (inst->opcode) { |
| case ELK_FS_OPCODE_DDX_FINE: |
| case ELK_FS_OPCODE_DDX_COARSE: |
| case ELK_FS_OPCODE_DDY_FINE: |
| case ELK_FS_OPCODE_DDY_COARSE: |
| case ELK_SHADER_OPCODE_QUAD_SWIZZLE: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool |
| try_copy_propagate(const elk_compiler *compiler, elk_fs_inst *inst, |
| acp_entry *entry, int arg, |
| const elk::simple_allocator &alloc) |
| { |
| if (inst->src[arg].file != VGRF) |
| return false; |
| |
| const struct intel_device_info *devinfo = compiler->devinfo; |
| |
| assert(entry->src.file == VGRF || entry->src.file == UNIFORM || |
| entry->src.file == ATTR || entry->src.file == FIXED_GRF); |
| |
| /* Avoid propagating a LOAD_PAYLOAD instruction into another if there is a |
| * good chance that we'll be able to eliminate the latter through register |
| * coalescing. If only part of the sources of the second LOAD_PAYLOAD can |
| * be simplified through copy propagation we would be making register |
| * coalescing impossible, ending up with unnecessary copies in the program. |
| * This is also the case for is_multi_copy_payload() copies that can only |
| * be coalesced when the instruction is lowered into a sequence of MOVs. |
| * |
| * Worse -- In cases where the ACP entry was the result of CSE combining |
| * multiple LOAD_PAYLOAD subexpressions, propagating the first LOAD_PAYLOAD |
| * into the second would undo the work of CSE, leading to an infinite |
| * optimization loop. Avoid this by detecting LOAD_PAYLOAD copies from CSE |
| * temporaries which should match is_coalescing_payload(). |
| */ |
| if (entry->opcode == ELK_SHADER_OPCODE_LOAD_PAYLOAD && |
| (is_coalescing_payload(alloc, inst) || is_multi_copy_payload(inst))) |
| return false; |
| |
| assert(entry->dst.file == VGRF); |
| if (inst->src[arg].nr != entry->dst.nr) |
| return false; |
| |
| /* Bail if inst is reading a range that isn't contained in the range |
| * that entry is writing. |
| */ |
| if (!region_contained_in(inst->src[arg], inst->size_read(arg), |
| entry->dst, entry->size_written)) |
| return false; |
| |
| /* Send messages with EOT set are restricted to use g112-g127 (and we |
| * sometimes need g127 for other purposes), so avoid copy propagating |
| * anything that would make it impossible to satisfy that restriction. |
| */ |
| if (inst->eot) { |
| /* Avoid propagating a FIXED_GRF register, as that's already pinned. */ |
| if (entry->src.file == FIXED_GRF) |
| return false; |
| |
| /* We might be propagating from a large register, while the SEND only |
| * is reading a portion of it (say the .A channel in an RGBA value). |
| * We need to pin both split SEND sources in g112-g126/127, so only |
| * allow this if the registers aren't too large. |
| */ |
| if (inst->opcode == ELK_SHADER_OPCODE_SEND && entry->src.file == VGRF) { |
| unsigned prop_src_size = alloc.sizes[entry->src.nr]; |
| if (prop_src_size > 15) |
| return false; |
| } |
| } |
| |
| /* Avoid propagating odd-numbered FIXED_GRF registers into the first source |
| * of a LINTERP instruction on platforms where the PLN instruction has |
| * register alignment restrictions. |
| */ |
| if (devinfo->has_pln && devinfo->ver <= 6 && |
| entry->src.file == FIXED_GRF && (entry->src.nr & 1) && |
| inst->opcode == ELK_FS_OPCODE_LINTERP && arg == 0) |
| return false; |
| |
| /* we can't generally copy-propagate UD negations because we |
| * can end up accessing the resulting values as signed integers |
| * instead. See also resolve_ud_negate() and comment in |
| * elk_fs_generator::generate_code. |
| */ |
| if (entry->src.type == ELK_REGISTER_TYPE_UD && |
| entry->src.negate) |
| return false; |
| |
| bool has_source_modifiers = entry->src.abs || entry->src.negate; |
| |
| if (has_source_modifiers && !inst->can_do_source_mods(devinfo)) |
| return false; |
| |
| /* Reject cases that would violate register regioning restrictions. */ |
| if ((entry->src.file == UNIFORM || !entry->src.is_contiguous()) && |
| ((devinfo->ver == 6 && inst->is_math()) || |
| inst->is_send_from_grf() || |
| inst->uses_indirect_addressing())) { |
| return false; |
| } |
| |
| if (has_source_modifiers && |
| inst->opcode == ELK_SHADER_OPCODE_GFX4_SCRATCH_WRITE) |
| return false; |
| |
| /* Some instructions implemented in the generator backend, such as |
| * derivatives, assume that their operands are packed so we can't |
| * generally propagate strided regions to them. |
| */ |
| const unsigned entry_stride = (entry->src.file == FIXED_GRF ? 1 : |
| entry->src.stride); |
| if (instruction_requires_packed_data(inst) && entry_stride != 1) |
| return false; |
| |
| const elk_reg_type dst_type = (has_source_modifiers && |
| entry->dst.type != inst->src[arg].type) ? |
| entry->dst.type : inst->dst.type; |
| |
| /* Bail if the result of composing both strides would exceed the |
| * hardware limit. |
| */ |
| if (!can_take_stride(inst, dst_type, arg, |
| entry_stride * inst->src[arg].stride, |
| compiler)) |
| return false; |
| |
| /* From the Cherry Trail/Braswell PRMs, Volume 7: 3D Media GPGPU: |
| * EU Overview |
| * Register Region Restrictions |
| * Special Requirements for Handling Double Precision Data Types : |
| * |
| * "When source or destination datatype is 64b or operation is integer |
| * DWord multiply, regioning in Align1 must follow these rules: |
| * |
| * 1. Source and Destination horizontal stride must be aligned to the |
| * same qword. |
| * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride. |
| * 3. Source and Destination offset must be the same, except the case |
| * of scalar source." |
| * |
| * Most of this is already checked in can_take_stride(), we're only left |
| * with checking 3. |
| */ |
| if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) && |
| entry_stride != 0 && |
| (reg_offset(inst->dst) % REG_SIZE) != (reg_offset(entry->src) % REG_SIZE)) |
| return false; |
| |
| /* Bail if the source FIXED_GRF region of the copy cannot be trivially |
| * composed with the source region of the instruction -- E.g. because the |
| * copy uses some extended stride greater than 4 not supported natively by |
| * the hardware as a horizontal stride, or because instruction compression |
| * could require us to use a vertical stride shorter than a GRF. |
| */ |
| if (entry->src.file == FIXED_GRF && |
| (inst->src[arg].stride > 4 || |
| inst->dst.component_size(inst->exec_size) > |
| inst->src[arg].component_size(inst->exec_size))) |
| return false; |
| |
| /* Bail if the instruction type is larger than the execution type of the |
| * copy, what implies that each channel is reading multiple channels of the |
| * destination of the copy, and simply replacing the sources would give a |
| * program with different semantics. |
| */ |
| if ((type_sz(entry->dst.type) < type_sz(inst->src[arg].type) || |
| entry->is_partial_write) && |
| inst->opcode != ELK_OPCODE_MOV) { |
| return false; |
| } |
| |
| /* Bail if the result of composing both strides cannot be expressed |
| * as another stride. This avoids, for example, trying to transform |
| * this: |
| * |
| * MOV (8) rX<1>UD rY<0;1,0>UD |
| * FOO (8) ... rX<8;8,1>UW |
| * |
| * into this: |
| * |
| * FOO (8) ... rY<0;1,0>UW |
| * |
| * Which would have different semantics. |
| */ |
| if (entry_stride != 1 && |
| (inst->src[arg].stride * |
| type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0) |
| return false; |
| |
| /* Since semantics of source modifiers are type-dependent we need to |
| * ensure that the meaning of the instruction remains the same if we |
| * change the type. If the sizes of the types are different the new |
| * instruction will read a different amount of data than the original |
| * and the semantics will always be different. |
| */ |
| if (has_source_modifiers && |
| entry->dst.type != inst->src[arg].type && |
| (!inst->can_change_types() || |
| type_sz(entry->dst.type) != type_sz(inst->src[arg].type))) |
| return false; |
| |
| if (devinfo->ver >= 8 && (entry->src.negate || entry->src.abs) && |
| is_logic_op(inst->opcode)) { |
| return false; |
| } |
| |
| /* Save the offset of inst->src[arg] relative to entry->dst for it to be |
| * applied later. |
| */ |
| const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset; |
| |
| /* Fold the copy into the instruction consuming it. */ |
| inst->src[arg].file = entry->src.file; |
| inst->src[arg].nr = entry->src.nr; |
| inst->src[arg].subnr = entry->src.subnr; |
| inst->src[arg].offset = entry->src.offset; |
| |
| /* Compose the strides of both regions. */ |
| if (entry->src.file == FIXED_GRF) { |
| if (inst->src[arg].stride) { |
| const unsigned orig_width = 1 << entry->src.width; |
| const unsigned reg_width = REG_SIZE / (type_sz(inst->src[arg].type) * |
| inst->src[arg].stride); |
| inst->src[arg].width = cvt(MIN2(orig_width, reg_width)) - 1; |
| inst->src[arg].hstride = cvt(inst->src[arg].stride); |
| inst->src[arg].vstride = inst->src[arg].hstride + inst->src[arg].width; |
| } else { |
| inst->src[arg].vstride = inst->src[arg].hstride = |
| inst->src[arg].width = 0; |
| } |
| |
| inst->src[arg].stride = 1; |
| |
| /* Hopefully no Align16 around here... */ |
| assert(entry->src.swizzle == ELK_SWIZZLE_XYZW); |
| inst->src[arg].swizzle = entry->src.swizzle; |
| } else { |
| inst->src[arg].stride *= entry->src.stride; |
| } |
| |
| /* Compute the first component of the copy that the instruction is |
| * reading, and the base byte offset within that component. |
| */ |
| assert((entry->dst.offset % REG_SIZE == 0 || inst->opcode == ELK_OPCODE_MOV) && |
| entry->dst.stride == 1); |
| const unsigned component = rel_offset / type_sz(entry->dst.type); |
| const unsigned suboffset = rel_offset % type_sz(entry->dst.type); |
| |
| /* Calculate the byte offset at the origin of the copy of the given |
| * component and suboffset. |
| */ |
| inst->src[arg] = byte_offset(inst->src[arg], |
| component * entry_stride * type_sz(entry->src.type) + suboffset); |
| |
| if (has_source_modifiers) { |
| if (entry->dst.type != inst->src[arg].type) { |
| /* We are propagating source modifiers from a MOV with a different |
| * type. If we got here, then we can just change the source and |
| * destination types of the instruction and keep going. |
| */ |
| for (int i = 0; i < inst->sources; i++) { |
| inst->src[i].type = entry->dst.type; |
| } |
| inst->dst.type = entry->dst.type; |
| } |
| |
| if (!inst->src[arg].abs) { |
| inst->src[arg].abs = entry->src.abs; |
| inst->src[arg].negate ^= entry->src.negate; |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| static bool |
| try_constant_propagate(const elk_compiler *compiler, elk_fs_inst *inst, |
| acp_entry *entry, int arg) |
| { |
| const struct intel_device_info *devinfo = compiler->devinfo; |
| bool progress = false; |
| |
| if (type_sz(entry->src.type) > 4) |
| return false; |
| |
| if (inst->src[arg].file != VGRF) |
| return false; |
| |
| assert(entry->dst.file == VGRF); |
| if (inst->src[arg].nr != entry->dst.nr) |
| return false; |
| |
| /* Bail if inst is reading a range that isn't contained in the range |
| * that entry is writing. |
| */ |
| if (!region_contained_in(inst->src[arg], inst->size_read(arg), |
| entry->dst, entry->size_written)) |
| return false; |
| |
| /* If the size of the use type is larger than the size of the entry |
| * type, the entry doesn't contain all of the data that the user is |
| * trying to use. |
| */ |
| if (type_sz(inst->src[arg].type) > type_sz(entry->dst.type)) |
| return false; |
| |
| elk_fs_reg val = entry->src; |
| |
| /* If the size of the use type is smaller than the size of the entry, |
| * clamp the value to the range of the use type. This enables constant |
| * copy propagation in cases like |
| * |
| * |
| * mov(8) g12<1>UD 0x0000000cUD |
| * ... |
| * mul(8) g47<1>D g86<8,8,1>D g12<16,8,2>W |
| */ |
| if (type_sz(inst->src[arg].type) < type_sz(entry->dst.type)) { |
| if (type_sz(inst->src[arg].type) != 2 || type_sz(entry->dst.type) != 4) |
| return false; |
| |
| assert(inst->src[arg].subnr == 0 || inst->src[arg].subnr == 2); |
| |
| /* When subnr is 0, we want the lower 16-bits, and when it's 2, we |
| * want the upper 16-bits. No other values of subnr are valid for a |
| * UD source. |
| */ |
| const uint16_t v = inst->src[arg].subnr == 2 ? val.ud >> 16 : val.ud; |
| |
| val.ud = v | (uint32_t(v) << 16); |
| } |
| |
| val.type = inst->src[arg].type; |
| |
| if (inst->src[arg].abs) { |
| if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) || |
| !elk_abs_immediate(val.type, &val.as_elk_reg())) { |
| return false; |
| } |
| } |
| |
| if (inst->src[arg].negate) { |
| if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) || |
| !elk_negate_immediate(val.type, &val.as_elk_reg())) { |
| return false; |
| } |
| } |
| |
| switch (inst->opcode) { |
| case ELK_OPCODE_MOV: |
| case ELK_SHADER_OPCODE_LOAD_PAYLOAD: |
| case ELK_FS_OPCODE_PACK: |
| inst->src[arg] = val; |
| progress = true; |
| break; |
| |
| case ELK_SHADER_OPCODE_POW: |
| /* Allow constant propagation into src1 (except on Gen 6 which |
| * doesn't support scalar source math), and let constant combining |
| * promote the constant on Gen < 8. |
| */ |
| if (devinfo->ver == 6) |
| break; |
| |
| if (arg == 1) { |
| inst->src[arg] = val; |
| progress = true; |
| } |
| break; |
| |
| case ELK_OPCODE_SUBB: |
| if (arg == 1) { |
| inst->src[arg] = val; |
| progress = true; |
| } |
| break; |
| |
| case ELK_OPCODE_MACH: |
| case ELK_OPCODE_MUL: |
| case ELK_SHADER_OPCODE_MULH: |
| case ELK_OPCODE_ADD: |
| case ELK_OPCODE_XOR: |
| case ELK_OPCODE_ADDC: |
| if (arg == 1) { |
| inst->src[arg] = val; |
| progress = true; |
| } else if (arg == 0 && inst->src[1].file != IMM) { |
| /* Don't copy propagate the constant in situations like |
| * |
| * mov(8) g8<1>D 0x7fffffffD |
| * mul(8) g16<1>D g8<8,8,1>D g15<16,8,2>W |
| * |
| * On platforms that only have a 32x16 multiplier, this will |
| * result in lowering the multiply to |
| * |
| * mul(8) g15<1>D g14<8,8,1>D 0xffffUW |
| * mul(8) g16<1>D g14<8,8,1>D 0x7fffUW |
| * add(8) g15.1<2>UW g15.1<16,8,2>UW g16<16,8,2>UW |
| * |
| * On Gfx8 and Gfx9, which have the full 32x32 multiplier, it |
| * results in |
| * |
| * mul(8) g16<1>D g15<16,8,2>W 0x7fffffffD |
| * |
| * Volume 2a of the Skylake PRM says: |
| * |
| * When multiplying a DW and any lower precision integer, the |
| * DW operand must on src0. |
| */ |
| if (inst->opcode == ELK_OPCODE_MUL && |
| type_sz(inst->src[1].type) < 4 && |
| type_sz(val.type) == 4) |
| break; |
| |
| /* Fit this constant in by commuting the operands. |
| * Exception: we can't do this for 32-bit integer MUL/MACH |
| * because it's asymmetric. |
| * |
| * The BSpec says for Broadwell that |
| * |
| * "When multiplying DW x DW, the dst cannot be accumulator." |
| * |
| * Integer MUL with a non-accumulator destination will be lowered |
| * by lower_integer_multiplication(), so don't restrict it. |
| */ |
| if (((inst->opcode == ELK_OPCODE_MUL && |
| inst->dst.is_accumulator()) || |
| inst->opcode == ELK_OPCODE_MACH) && |
| (inst->src[1].type == ELK_REGISTER_TYPE_D || |
| inst->src[1].type == ELK_REGISTER_TYPE_UD)) |
| break; |
| inst->src[0] = inst->src[1]; |
| inst->src[1] = val; |
| progress = true; |
| } |
| break; |
| |
| case ELK_OPCODE_CMP: |
| case ELK_OPCODE_IF: |
| if (arg == 1) { |
| inst->src[arg] = val; |
| progress = true; |
| } else if (arg == 0 && inst->src[1].file != IMM) { |
| enum elk_conditional_mod new_cmod; |
| |
| new_cmod = elk_swap_cmod(inst->conditional_mod); |
| if (new_cmod != ELK_CONDITIONAL_NONE) { |
| /* Fit this constant in by swapping the operands and |
| * flipping the test |
| */ |
| inst->src[0] = inst->src[1]; |
| inst->src[1] = val; |
| inst->conditional_mod = new_cmod; |
| progress = true; |
| } |
| } |
| break; |
| |
| case ELK_OPCODE_SEL: |
| if (arg == 1) { |
| inst->src[arg] = val; |
| progress = true; |
| } else if (arg == 0) { |
| if (inst->src[1].file != IMM && |
| (inst->conditional_mod == ELK_CONDITIONAL_NONE || |
| /* Only GE and L are commutative. */ |
| inst->conditional_mod == ELK_CONDITIONAL_GE || |
| inst->conditional_mod == ELK_CONDITIONAL_L)) { |
| inst->src[0] = inst->src[1]; |
| inst->src[1] = val; |
| |
| /* If this was predicated, flipping operands means |
| * we also need to flip the predicate. |
| */ |
| if (inst->conditional_mod == ELK_CONDITIONAL_NONE) { |
| inst->predicate_inverse = |
| !inst->predicate_inverse; |
| } |
| } else { |
| inst->src[0] = val; |
| } |
| |
| progress = true; |
| } |
| break; |
| |
| case ELK_FS_OPCODE_FB_WRITE_LOGICAL: |
| /* The omask source of ELK_FS_OPCODE_FB_WRITE_LOGICAL is |
| * bit-cast using a strided region so they cannot be immediates. |
| */ |
| if (arg != FB_WRITE_LOGICAL_SRC_OMASK) { |
| inst->src[arg] = val; |
| progress = true; |
| } |
| break; |
| |
| case ELK_SHADER_OPCODE_INT_QUOTIENT: |
| case ELK_SHADER_OPCODE_INT_REMAINDER: |
| /* Allow constant propagation into either source (except on Gen 6 |
| * which doesn't support scalar source math). Constant combining |
| * promote the src1 constant on Gen < 8, and it will promote the src0 |
| * constant on all platforms. |
| */ |
| if (devinfo->ver == 6) |
| break; |
| |
| FALLTHROUGH; |
| case ELK_OPCODE_AND: |
| case ELK_OPCODE_ASR: |
| case ELK_OPCODE_BFE: |
| case ELK_OPCODE_BFI1: |
| case ELK_OPCODE_BFI2: |
| case ELK_OPCODE_SHL: |
| case ELK_OPCODE_SHR: |
| case ELK_OPCODE_OR: |
| case ELK_SHADER_OPCODE_TEX_LOGICAL: |
| case ELK_SHADER_OPCODE_TXD_LOGICAL: |
| case ELK_SHADER_OPCODE_TXF_LOGICAL: |
| case ELK_SHADER_OPCODE_TXL_LOGICAL: |
| case ELK_SHADER_OPCODE_TXS_LOGICAL: |
| case ELK_FS_OPCODE_TXB_LOGICAL: |
| case ELK_SHADER_OPCODE_TXF_CMS_LOGICAL: |
| case ELK_SHADER_OPCODE_TXF_CMS_W_LOGICAL: |
| case ELK_SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL: |
| case ELK_SHADER_OPCODE_TXF_UMS_LOGICAL: |
| case ELK_SHADER_OPCODE_TXF_MCS_LOGICAL: |
| case ELK_SHADER_OPCODE_LOD_LOGICAL: |
| case ELK_SHADER_OPCODE_TG4_LOGICAL: |
| case ELK_SHADER_OPCODE_TG4_OFFSET_LOGICAL: |
| case ELK_SHADER_OPCODE_SAMPLEINFO_LOGICAL: |
| case ELK_SHADER_OPCODE_IMAGE_SIZE_LOGICAL: |
| case ELK_SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL: |
| case ELK_SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL: |
| case ELK_SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL: |
| case ELK_SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: |
| case ELK_SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL: |
| case ELK_SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL: |
| case ELK_SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL: |
| case ELK_SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL: |
| case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: |
| case ELK_SHADER_OPCODE_BROADCAST: |
| case ELK_OPCODE_MAD: |
| case ELK_OPCODE_LRP: |
| case ELK_FS_OPCODE_PACK_HALF_2x16_SPLIT: |
| case ELK_SHADER_OPCODE_SHUFFLE: |
| inst->src[arg] = val; |
| progress = true; |
| break; |
| |
| default: |
| break; |
| } |
| |
| return progress; |
| } |
| |
| static bool |
| can_propagate_from(elk_fs_inst *inst) |
| { |
| return (inst->opcode == ELK_OPCODE_MOV && |
| inst->dst.file == VGRF && |
| ((inst->src[0].file == VGRF && |
| !grf_regions_overlap(inst->dst, inst->size_written, |
| inst->src[0], inst->size_read(0))) || |
| inst->src[0].file == ATTR || |
| inst->src[0].file == UNIFORM || |
| inst->src[0].file == IMM || |
| (inst->src[0].file == FIXED_GRF && |
| inst->src[0].is_contiguous())) && |
| inst->src[0].type == inst->dst.type && |
| !inst->saturate && |
| /* Subset of !is_partial_write() conditions. */ |
| !inst->predicate && inst->dst.is_contiguous()) || |
| is_identity_payload(FIXED_GRF, inst); |
| } |
| |
| /* Walks a basic block and does copy propagation on it using the acp |
| * list. |
| */ |
| static bool |
| opt_copy_propagation_local(const elk_compiler *compiler, linear_ctx *lin_ctx, |
| elk_bblock_t *block, struct acp &acp, |
| const elk::simple_allocator &alloc) |
| { |
| bool progress = false; |
| |
| foreach_inst_in_block(elk_fs_inst, inst, block) { |
| /* Try propagating into this instruction. */ |
| bool instruction_progress = false; |
| for (int i = inst->sources - 1; i >= 0; i--) { |
| if (inst->src[i].file != VGRF) |
| continue; |
| |
| for (auto iter = acp.find_by_dst(inst->src[i].nr); |
| iter != acp.end() && (*iter)->dst.nr == inst->src[i].nr; |
| ++iter) { |
| if ((*iter)->src.file == IMM) { |
| if (try_constant_propagate(compiler, inst, *iter, i)) { |
| instruction_progress = true; |
| break; |
| } |
| } else { |
| if (try_copy_propagate(compiler, inst, *iter, i, alloc)) { |
| instruction_progress = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| if (instruction_progress) { |
| progress = true; |
| |
| /* If only one of the sources of a 2-source, commutative instruction (e.g., |
| * AND) is immediate, it must be src1. If both are immediate, opt_algebraic |
| * should fold it away. |
| */ |
| if (inst->sources == 2 && inst->is_commutative() && |
| inst->src[0].file == IMM && inst->src[1].file != IMM) { |
| const auto src1 = inst->src[1]; |
| inst->src[1] = inst->src[0]; |
| inst->src[0] = src1; |
| } |
| } |
| |
| /* kill the destination from the ACP */ |
| if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) { |
| for (auto iter = acp.find_by_dst(inst->dst.nr); |
| iter != acp.end() && (*iter)->dst.nr == inst->dst.nr; |
| ++iter) { |
| if (grf_regions_overlap((*iter)->dst, (*iter)->size_written, |
| inst->dst, inst->size_written)) |
| acp.remove(*iter); |
| } |
| |
| for (auto iter = acp.find_by_src(inst->dst.nr); |
| iter != acp.end() && (*iter)->src.nr == inst->dst.nr; |
| ++iter) { |
| /* Make sure we kill the entry if this instruction overwrites |
| * _any_ of the registers that it reads |
| */ |
| if (grf_regions_overlap((*iter)->src, (*iter)->size_read, |
| inst->dst, inst->size_written)) |
| acp.remove(*iter); |
| } |
| } |
| |
| /* If this instruction's source could potentially be folded into the |
| * operand of another instruction, add it to the ACP. |
| */ |
| if (can_propagate_from(inst)) { |
| acp_entry *entry = linear_zalloc(lin_ctx, acp_entry); |
| entry->dst = inst->dst; |
| entry->src = inst->src[0]; |
| entry->size_written = inst->size_written; |
| for (unsigned i = 0; i < inst->sources; i++) |
| entry->size_read += inst->size_read(i); |
| entry->opcode = inst->opcode; |
| entry->is_partial_write = inst->is_partial_write(); |
| entry->force_writemask_all = inst->force_writemask_all; |
| acp.add(entry); |
| } else if (inst->opcode == ELK_SHADER_OPCODE_LOAD_PAYLOAD && |
| inst->dst.file == VGRF) { |
| int offset = 0; |
| for (int i = 0; i < inst->sources; i++) { |
| int effective_width = i < inst->header_size ? 8 : inst->exec_size; |
| const unsigned size_written = effective_width * |
| type_sz(inst->src[i].type); |
| if (inst->src[i].file == VGRF || |
| (inst->src[i].file == FIXED_GRF && |
| inst->src[i].is_contiguous())) { |
| const elk_reg_type t = i < inst->header_size ? |
| ELK_REGISTER_TYPE_UD : inst->src[i].type; |
| elk_fs_reg dst = byte_offset(retype(inst->dst, t), offset); |
| if (!dst.equals(inst->src[i])) { |
| acp_entry *entry = linear_zalloc(lin_ctx, acp_entry); |
| entry->dst = dst; |
| entry->src = retype(inst->src[i], t); |
| entry->size_written = size_written; |
| entry->size_read = inst->size_read(i); |
| entry->opcode = inst->opcode; |
| entry->force_writemask_all = inst->force_writemask_all; |
| acp.add(entry); |
| } |
| } |
| offset += size_written; |
| } |
| } |
| } |
| |
| return progress; |
| } |
| |
| bool |
| elk_fs_visitor::opt_copy_propagation() |
| { |
| bool progress = false; |
| void *copy_prop_ctx = ralloc_context(NULL); |
| linear_ctx *lin_ctx = linear_context(copy_prop_ctx); |
| struct acp *out_acp = new (lin_ctx) acp[cfg->num_blocks]; |
| |
| const fs_live_variables &live = live_analysis.require(); |
| |
| /* First, walk through each block doing local copy propagation and getting |
| * the set of copies available at the end of the block. |
| */ |
| foreach_block (block, cfg) { |
| progress = opt_copy_propagation_local(compiler, lin_ctx, block, |
| out_acp[block->num], alloc) || progress; |
| |
| /* If the destination of an ACP entry exists only within this block, |
| * then there's no need to keep it for dataflow analysis. We can delete |
| * it from the out_acp table and avoid growing the bitsets any bigger |
| * than we absolutely have to. |
| * |
| * Because nothing in opt_copy_propagation_local touches the block |
| * start/end IPs and opt_copy_propagation_local is incapable of |
| * extending the live range of an ACP destination beyond the block, |
| * it's safe to use the liveness information in this way. |
| */ |
| for (auto iter = out_acp[block->num].begin(); |
| iter != out_acp[block->num].end(); ++iter) { |
| assert((*iter)->dst.file == VGRF); |
| if (block->start_ip <= live.vgrf_start[(*iter)->dst.nr] && |
| live.vgrf_end[(*iter)->dst.nr] <= block->end_ip) { |
| out_acp[block->num].remove(*iter); |
| } |
| } |
| } |
| |
| /* Do dataflow analysis for those available copies. */ |
| fs_copy_prop_dataflow dataflow(lin_ctx, cfg, live, out_acp); |
| |
| /* Next, re-run local copy propagation, this time with the set of copies |
| * provided by the dataflow analysis available at the start of a block. |
| */ |
| foreach_block (block, cfg) { |
| struct acp in_acp; |
| |
| for (int i = 0; i < dataflow.num_acp; i++) { |
| if (BITSET_TEST(dataflow.bd[block->num].livein, i) && |
| !BITSET_TEST(dataflow.bd[block->num].exec_mismatch, i)) { |
| struct acp_entry *entry = dataflow.acp[i]; |
| in_acp.add(entry); |
| } |
| } |
| |
| progress = opt_copy_propagation_local(compiler, lin_ctx, block, |
| in_acp, alloc) || |
| progress; |
| } |
| |
| ralloc_free(copy_prop_ctx); |
| |
| if (progress) |
| invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW | |
| DEPENDENCY_INSTRUCTION_DETAIL); |
| |
| return progress; |
| } |