blob: 1ef4342e066caa2e37564543bad0d1d6d031e3b3 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file elk_fs.cpp
*
* This file drives the GLSL IR -> LIR translation, contains the
* optimizations on the LIR, and drives the generation of native code
* from the LIR.
*/
#include "elk_eu.h"
#include "elk_fs.h"
#include "elk_fs_builder.h"
#include "elk_fs_live_variables.h"
#include "elk_nir.h"
#include "elk_vec4_gs_visitor.h"
#include "elk_cfg.h"
#include "elk_dead_control_flow.h"
#include "elk_private.h"
#include "../intel_nir.h"
#include "shader_enums.h"
#include "dev/intel_debug.h"
#include "dev/intel_wa.h"
#include "compiler/glsl_types.h"
#include "compiler/nir/nir_builder.h"
#include "util/u_math.h"
#include <memory>
using namespace elk;
static unsigned get_lowered_simd_width(const elk_fs_visitor *shader,
const elk_fs_inst *inst);
void
elk_fs_inst::init(enum elk_opcode opcode, uint8_t exec_size, const elk_fs_reg &dst,
const elk_fs_reg *src, unsigned sources)
{
memset((void*)this, 0, sizeof(*this));
this->src = new elk_fs_reg[MAX2(sources, 3)];
for (unsigned i = 0; i < sources; i++)
this->src[i] = src[i];
this->opcode = opcode;
this->dst = dst;
this->sources = sources;
this->exec_size = exec_size;
this->base_mrf = -1;
assert(dst.file != IMM && dst.file != UNIFORM);
assert(this->exec_size != 0);
this->conditional_mod = ELK_CONDITIONAL_NONE;
/* This will be the case for almost all instructions. */
switch (dst.file) {
case VGRF:
case ARF:
case FIXED_GRF:
case MRF:
case ATTR:
this->size_written = dst.component_size(exec_size);
break;
case BAD_FILE:
this->size_written = 0;
break;
case IMM:
case UNIFORM:
unreachable("Invalid destination register file");
}
this->writes_accumulator = false;
}
elk_fs_inst::elk_fs_inst()
{
init(ELK_OPCODE_NOP, 8, dst, NULL, 0);
}
elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_size)
{
init(opcode, exec_size, reg_undef, NULL, 0);
}
elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_size, const elk_fs_reg &dst)
{
init(opcode, exec_size, dst, NULL, 0);
}
elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_size, const elk_fs_reg &dst,
const elk_fs_reg &src0)
{
const elk_fs_reg src[1] = { src0 };
init(opcode, exec_size, dst, src, 1);
}
elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_size, const elk_fs_reg &dst,
const elk_fs_reg &src0, const elk_fs_reg &src1)
{
const elk_fs_reg src[2] = { src0, src1 };
init(opcode, exec_size, dst, src, 2);
}
elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_size, const elk_fs_reg &dst,
const elk_fs_reg &src0, const elk_fs_reg &src1, const elk_fs_reg &src2)
{
const elk_fs_reg src[3] = { src0, src1, src2 };
init(opcode, exec_size, dst, src, 3);
}
elk_fs_inst::elk_fs_inst(enum elk_opcode opcode, uint8_t exec_width, const elk_fs_reg &dst,
const elk_fs_reg src[], unsigned sources)
{
init(opcode, exec_width, dst, src, sources);
}
elk_fs_inst::elk_fs_inst(const elk_fs_inst &that)
{
memcpy((void*)this, &that, sizeof(that));
this->src = new elk_fs_reg[MAX2(that.sources, 3)];
for (unsigned i = 0; i < that.sources; i++)
this->src[i] = that.src[i];
}
elk_fs_inst::~elk_fs_inst()
{
delete[] this->src;
}
void
elk_fs_inst::resize_sources(uint8_t num_sources)
{
if (this->sources != num_sources) {
elk_fs_reg *src = new elk_fs_reg[MAX2(num_sources, 3)];
for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
src[i] = this->src[i];
delete[] this->src;
this->src = src;
this->sources = num_sources;
}
}
void
elk_fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
const elk_fs_reg &dst,
const elk_fs_reg &surface,
const elk_fs_reg &surface_handle,
const elk_fs_reg &varying_offset,
uint32_t const_offset,
uint8_t alignment,
unsigned components)
{
assert(components <= 4);
/* We have our constant surface use a pitch of 4 bytes, so our index can
* be any component of a vector, and then we load 4 contiguous
* components starting from that. TODO: Support loading fewer than 4.
*/
elk_fs_reg total_offset = vgrf(glsl_uint_type());
bld.ADD(total_offset, varying_offset, elk_imm_ud(const_offset));
/* The pull load message will load a vec4 (16 bytes). If we are loading
* a double this means we are only loading 2 elements worth of data.
* We also want to use a 32-bit data type for the dst of the load operation
* so other parts of the driver don't get confused about the size of the
* result.
*/
elk_fs_reg vec4_result = bld.vgrf(ELK_REGISTER_TYPE_F, 4);
elk_fs_reg srcs[PULL_VARYING_CONSTANT_SRCS];
srcs[PULL_VARYING_CONSTANT_SRC_SURFACE] = surface;
srcs[PULL_VARYING_CONSTANT_SRC_SURFACE_HANDLE] = surface_handle;
srcs[PULL_VARYING_CONSTANT_SRC_OFFSET] = total_offset;
srcs[PULL_VARYING_CONSTANT_SRC_ALIGNMENT] = elk_imm_ud(alignment);
elk_fs_inst *inst = bld.emit(ELK_FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
vec4_result, srcs, PULL_VARYING_CONSTANT_SRCS);
inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
elk_shuffle_from_32bit_read(bld, dst, vec4_result, 0, components);
}
/**
* A helper for MOV generation for fixing up broken hardware SEND dependency
* handling.
*/
void
elk_fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
{
/* The caller always wants uncompressed to emit the minimal extra
* dependencies, and to avoid having to deal with aligning its regs to 2.
*/
const fs_builder ubld = bld.annotate("send dependency resolve")
.quarter(0);
ubld.MOV(ubld.null_reg_f(), elk_fs_reg(VGRF, grf, ELK_REGISTER_TYPE_F));
}
bool
elk_fs_inst::is_send_from_grf() const
{
switch (opcode) {
case ELK_SHADER_OPCODE_SEND:
case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
case ELK_SHADER_OPCODE_INTERLOCK:
case ELK_SHADER_OPCODE_MEMORY_FENCE:
case ELK_SHADER_OPCODE_BARRIER:
return true;
case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
return src[1].file == VGRF;
case ELK_FS_OPCODE_FB_WRITE:
return src[0].file == VGRF;
default:
return false;
}
}
bool
elk_fs_inst::is_control_source(unsigned arg) const
{
switch (opcode) {
case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
case ELK_FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
return arg == 0;
case ELK_SHADER_OPCODE_BROADCAST:
case ELK_SHADER_OPCODE_SHUFFLE:
case ELK_SHADER_OPCODE_QUAD_SWIZZLE:
case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
return arg == 1;
case ELK_SHADER_OPCODE_MOV_INDIRECT:
case ELK_SHADER_OPCODE_CLUSTER_BROADCAST:
case ELK_SHADER_OPCODE_TEX:
case ELK_FS_OPCODE_TXB:
case ELK_SHADER_OPCODE_TXD:
case ELK_SHADER_OPCODE_TXF:
case ELK_SHADER_OPCODE_TXF_LZ:
case ELK_SHADER_OPCODE_TXF_CMS:
case ELK_SHADER_OPCODE_TXF_CMS_W:
case ELK_SHADER_OPCODE_TXF_UMS:
case ELK_SHADER_OPCODE_TXF_MCS:
case ELK_SHADER_OPCODE_TXL:
case ELK_SHADER_OPCODE_TXL_LZ:
case ELK_SHADER_OPCODE_TXS:
case ELK_SHADER_OPCODE_LOD:
case ELK_SHADER_OPCODE_TG4:
case ELK_SHADER_OPCODE_TG4_OFFSET:
case ELK_SHADER_OPCODE_SAMPLEINFO:
return arg == 1 || arg == 2;
case ELK_SHADER_OPCODE_SEND:
return arg == 0;
default:
return false;
}
}
bool
elk_fs_inst::is_payload(unsigned arg) const
{
switch (opcode) {
case ELK_FS_OPCODE_FB_WRITE:
case ELK_VEC4_OPCODE_UNTYPED_ATOMIC:
case ELK_VEC4_OPCODE_UNTYPED_SURFACE_READ:
case ELK_VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case ELK_SHADER_OPCODE_INTERLOCK:
case ELK_SHADER_OPCODE_MEMORY_FENCE:
case ELK_SHADER_OPCODE_BARRIER:
case ELK_SHADER_OPCODE_TEX:
case ELK_FS_OPCODE_TXB:
case ELK_SHADER_OPCODE_TXD:
case ELK_SHADER_OPCODE_TXF:
case ELK_SHADER_OPCODE_TXF_LZ:
case ELK_SHADER_OPCODE_TXF_CMS:
case ELK_SHADER_OPCODE_TXF_CMS_W:
case ELK_SHADER_OPCODE_TXF_UMS:
case ELK_SHADER_OPCODE_TXF_MCS:
case ELK_SHADER_OPCODE_TXL:
case ELK_SHADER_OPCODE_TXL_LZ:
case ELK_SHADER_OPCODE_TXS:
case ELK_SHADER_OPCODE_LOD:
case ELK_SHADER_OPCODE_TG4:
case ELK_SHADER_OPCODE_TG4_OFFSET:
case ELK_SHADER_OPCODE_SAMPLEINFO:
return arg == 0;
case ELK_SHADER_OPCODE_SEND:
return arg == 1;
default:
return false;
}
}
/**
* Returns true if this instruction's sources and destinations cannot
* safely be the same register.
*
* In most cases, a register can be written over safely by the same
* instruction that is its last use. For a single instruction, the
* sources are dereferenced before writing of the destination starts
* (naturally).
*
* However, there are a few cases where this can be problematic:
*
* - Virtual opcodes that translate to multiple instructions in the
* code generator: if src == dst and one instruction writes the
* destination before a later instruction reads the source, then
* src will have been clobbered.
*
* - SIMD16 compressed instructions with certain regioning (see below).
*
* The register allocator uses this information to set up conflicts between
* GRF sources and the destination.
*/
bool
elk_fs_inst::has_source_and_destination_hazard() const
{
switch (opcode) {
case ELK_FS_OPCODE_PACK_HALF_2x16_SPLIT:
/* Multiple partial writes to the destination */
return true;
case ELK_SHADER_OPCODE_SHUFFLE:
/* This instruction returns an arbitrary channel from the source and
* gets split into smaller instructions in the generator. It's possible
* that one of the instructions will read from a channel corresponding
* to an earlier instruction.
*/
case ELK_SHADER_OPCODE_SEL_EXEC:
/* This is implemented as
*
* mov(16) g4<1>D 0D { align1 WE_all 1H };
* mov(16) g4<1>D g5<8,8,1>D { align1 1H }
*
* Because the source is only read in the second instruction, the first
* may stomp all over it.
*/
return true;
case ELK_SHADER_OPCODE_QUAD_SWIZZLE:
switch (src[1].ud) {
case ELK_SWIZZLE_XXXX:
case ELK_SWIZZLE_YYYY:
case ELK_SWIZZLE_ZZZZ:
case ELK_SWIZZLE_WWWW:
case ELK_SWIZZLE_XXZZ:
case ELK_SWIZZLE_YYWW:
case ELK_SWIZZLE_XYXY:
case ELK_SWIZZLE_ZWZW:
/* These can be implemented as a single Align1 region on all
* platforms, so there's never a hazard between source and
* destination. C.f. elk_fs_generator::generate_quad_swizzle().
*/
return false;
default:
return !is_uniform(src[0]);
}
default:
/* The SIMD16 compressed instruction
*
* add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
*
* is actually decoded in hardware as:
*
* add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
* add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
*
* Which is safe. However, if we have uniform accesses
* happening, we get into trouble:
*
* add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
* add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
*
* Now our destination for the first instruction overwrote the
* second instruction's src0, and we get garbage for those 8
* pixels. There's a similar issue for the pre-gfx6
* pixel_x/pixel_y, which are registers of 16-bit values and thus
* would get stomped by the first decode as well.
*/
if (exec_size == 16) {
for (int i = 0; i < sources; i++) {
if (src[i].file == VGRF && (src[i].stride == 0 ||
src[i].type == ELK_REGISTER_TYPE_UW ||
src[i].type == ELK_REGISTER_TYPE_W ||
src[i].type == ELK_REGISTER_TYPE_UB ||
src[i].type == ELK_REGISTER_TYPE_B)) {
return true;
}
}
}
return false;
}
}
bool
elk_fs_inst::can_do_source_mods(const struct intel_device_info *devinfo) const
{
if (devinfo->ver == 6 && is_math())
return false;
if (is_send_from_grf())
return false;
return elk_backend_instruction::can_do_source_mods();
}
bool
elk_fs_inst::can_do_cmod()
{
if (!elk_backend_instruction::can_do_cmod())
return false;
/* The accumulator result appears to get used for the conditional modifier
* generation. When negating a UD value, there is a 33rd bit generated for
* the sign in the accumulator value, so now you can't check, for example,
* equality with a 32-bit value. See piglit fs-op-neg-uvec4.
*/
for (unsigned i = 0; i < sources; i++) {
if (elk_reg_type_is_unsigned_integer(src[i].type) && src[i].negate)
return false;
}
return true;
}
bool
elk_fs_inst::can_change_types() const
{
return dst.type == src[0].type &&
!src[0].abs && !src[0].negate && !saturate && src[0].file != ATTR &&
(opcode == ELK_OPCODE_MOV ||
(opcode == ELK_OPCODE_SEL &&
dst.type == src[1].type &&
predicate != ELK_PREDICATE_NONE &&
!src[1].abs && !src[1].negate && src[1].file != ATTR));
}
void
elk_fs_reg::init()
{
memset((void*)this, 0, sizeof(*this));
type = ELK_REGISTER_TYPE_UD;
stride = 1;
}
/** Generic unset register constructor. */
elk_fs_reg::elk_fs_reg()
{
init();
this->file = BAD_FILE;
}
elk_fs_reg::elk_fs_reg(struct ::elk_reg reg) :
elk_backend_reg(reg)
{
this->offset = 0;
this->stride = 1;
if (this->file == IMM &&
(this->type != ELK_REGISTER_TYPE_V &&
this->type != ELK_REGISTER_TYPE_UV &&
this->type != ELK_REGISTER_TYPE_VF)) {
this->stride = 0;
}
}
bool
elk_fs_reg::equals(const elk_fs_reg &r) const
{
return (this->elk_backend_reg::equals(r) &&
stride == r.stride);
}
bool
elk_fs_reg::negative_equals(const elk_fs_reg &r) const
{
return (this->elk_backend_reg::negative_equals(r) &&
stride == r.stride);
}
bool
elk_fs_reg::is_contiguous() const
{
switch (file) {
case ARF:
case FIXED_GRF:
return hstride == ELK_HORIZONTAL_STRIDE_1 &&
vstride == width + hstride;
case MRF:
case VGRF:
case ATTR:
return stride == 1;
case UNIFORM:
case IMM:
case BAD_FILE:
return true;
}
unreachable("Invalid register file");
}
unsigned
elk_fs_reg::component_size(unsigned width) const
{
if (file == ARF || file == FIXED_GRF) {
const unsigned w = MIN2(width, 1u << this->width);
const unsigned h = width >> this->width;
const unsigned vs = vstride ? 1 << (vstride - 1) : 0;
const unsigned hs = hstride ? 1 << (hstride - 1) : 0;
assert(w > 0);
return ((MAX2(1, h) - 1) * vs + (w - 1) * hs + 1) * type_sz(type);
} else {
return MAX2(width * stride, 1) * type_sz(type);
}
}
void
elk_fs_visitor::vfail(const char *format, va_list va)
{
char *msg;
if (failed)
return;
failed = true;
msg = ralloc_vasprintf(mem_ctx, format, va);
msg = ralloc_asprintf(mem_ctx, "SIMD%d %s compile failed: %s\n",
dispatch_width, _mesa_shader_stage_to_abbrev(stage), msg);
this->fail_msg = msg;
if (unlikely(debug_enabled)) {
fprintf(stderr, "%s", msg);
}
}
void
elk_fs_visitor::fail(const char *format, ...)
{
va_list va;
va_start(va, format);
vfail(format, va);
va_end(va);
}
/**
* Mark this program as impossible to compile with dispatch width greater
* than n.
*
* During the SIMD8 compile (which happens first), we can detect and flag
* things that are unsupported in SIMD16+ mode, so the compiler can skip the
* SIMD16+ compile altogether.
*
* During a compile of dispatch width greater than n (if one happens anyway),
* this just calls fail().
*/
void
elk_fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
{
if (dispatch_width > n) {
fail("%s", msg);
} else {
max_dispatch_width = MIN2(max_dispatch_width, n);
elk_shader_perf_log(compiler, log_data,
"Shader dispatch width limited to SIMD%d: %s\n",
n, msg);
}
}
/**
* Returns true if the instruction has a flag that means it won't
* update an entire destination register.
*
* For example, dead code elimination and live variable analysis want to know
* when a write to a variable screens off any preceding values that were in
* it.
*/
bool
elk_fs_inst::is_partial_write() const
{
if (this->predicate && !this->predicate_trivial &&
this->opcode != ELK_OPCODE_SEL)
return true;
if (this->dst.offset % REG_SIZE != 0)
return true;
/* SEND instructions always write whole registers */
if (this->opcode == ELK_SHADER_OPCODE_SEND)
return false;
/* Special case UNDEF since a lot of places in the backend do things like this :
*
* fs_builder ubld = bld.exec_all().group(1, 0);
* elk_fs_reg tmp = ubld.vgrf(ELK_REGISTER_TYPE_UD);
* ubld.UNDEF(tmp); <- partial write, even if the whole register is concerned
*/
if (this->opcode == ELK_SHADER_OPCODE_UNDEF) {
assert(this->dst.is_contiguous());
return this->size_written < 32;
}
return this->exec_size * type_sz(this->dst.type) < 32 ||
!this->dst.is_contiguous();
}
unsigned
elk_fs_inst::components_read(unsigned i) const
{
/* Return zero if the source is not present. */
if (src[i].file == BAD_FILE)
return 0;
switch (opcode) {
case ELK_FS_OPCODE_LINTERP:
if (i == 0)
return 2;
else
return 1;
case ELK_FS_OPCODE_PIXEL_X:
case ELK_FS_OPCODE_PIXEL_Y:
assert(i < 2);
if (i == 0)
return 2;
else
return 1;
case ELK_FS_OPCODE_FB_WRITE_LOGICAL:
assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
/* First/second FB write color. */
if (i < 2)
return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
else
return 1;
case ELK_SHADER_OPCODE_TEX_LOGICAL:
case ELK_SHADER_OPCODE_TXD_LOGICAL:
case ELK_SHADER_OPCODE_TXF_LOGICAL:
case ELK_SHADER_OPCODE_TXL_LOGICAL:
case ELK_SHADER_OPCODE_TXS_LOGICAL:
case ELK_SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
case ELK_FS_OPCODE_TXB_LOGICAL:
case ELK_SHADER_OPCODE_TXF_CMS_LOGICAL:
case ELK_SHADER_OPCODE_TXF_CMS_W_LOGICAL:
case ELK_SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
case ELK_SHADER_OPCODE_TXF_UMS_LOGICAL:
case ELK_SHADER_OPCODE_TXF_MCS_LOGICAL:
case ELK_SHADER_OPCODE_LOD_LOGICAL:
case ELK_SHADER_OPCODE_TG4_LOGICAL:
case ELK_SHADER_OPCODE_TG4_OFFSET_LOGICAL:
case ELK_SHADER_OPCODE_SAMPLEINFO_LOGICAL:
assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM &&
src[TEX_LOGICAL_SRC_RESIDENCY].file == IMM);
/* Texture coordinates. */
if (i == TEX_LOGICAL_SRC_COORDINATE)
return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
/* Texture derivatives. */
else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
opcode == ELK_SHADER_OPCODE_TXD_LOGICAL)
return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
/* Texture offset. */
else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
return 2;
/* MCS */
else if (i == TEX_LOGICAL_SRC_MCS) {
if (opcode == ELK_SHADER_OPCODE_TXF_CMS_W_LOGICAL)
return 2;
else if (opcode == ELK_SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL)
return 4;
else
return 1;
} else
return 1;
case ELK_SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
case ELK_SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
/* Surface coordinates. */
if (i == SURFACE_LOGICAL_SRC_ADDRESS)
return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
/* Surface operation source (ignored for reads). */
else if (i == SURFACE_LOGICAL_SRC_DATA)
return 0;
else
return 1;
case ELK_SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
case ELK_SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
/* Surface coordinates. */
if (i == SURFACE_LOGICAL_SRC_ADDRESS)
return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
/* Surface operation source. */
else if (i == SURFACE_LOGICAL_SRC_DATA)
return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
else
return 1;
case ELK_SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
case ELK_SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
case ELK_SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
assert(src[A64_LOGICAL_ARG].file == IMM);
return 1;
case ELK_SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
assert(src[A64_LOGICAL_ARG].file == IMM);
if (i == A64_LOGICAL_SRC) { /* data to write */
const unsigned comps = src[A64_LOGICAL_ARG].ud / exec_size;
assert(comps > 0);
return comps;
} else {
return 1;
}
case ELK_SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
return 1;
case ELK_SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL:
assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
if (i == SURFACE_LOGICAL_SRC_DATA) {
const unsigned comps = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud / exec_size;
assert(comps > 0);
return comps;
} else {
return 1;
}
case ELK_SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
assert(src[A64_LOGICAL_ARG].file == IMM);
return i == A64_LOGICAL_SRC ? src[A64_LOGICAL_ARG].ud : 1;
case ELK_SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
assert(src[A64_LOGICAL_ARG].file == IMM);
return i == A64_LOGICAL_SRC ?
lsc_op_num_data_values(src[A64_LOGICAL_ARG].ud) : 1;
case ELK_SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
case ELK_SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
/* Scattered logical opcodes use the following params:
* src[0] Surface coordinates
* src[1] Surface operation source (ignored for reads)
* src[2] Surface
* src[3] IMM with always 1 dimension.
* src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
*/
assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
case ELK_SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
case ELK_SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
return 1;
case ELK_SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
case ELK_SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
/* Surface coordinates. */
if (i == SURFACE_LOGICAL_SRC_ADDRESS)
return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
/* Surface operation source. */
else if (i == SURFACE_LOGICAL_SRC_DATA)
return lsc_op_num_data_values(op);
else
return 1;
}
case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
return (i == 0 ? 2 : 1);
case ELK_SHADER_OPCODE_URB_WRITE_LOGICAL:
assert(src[URB_LOGICAL_SRC_COMPONENTS].file == IMM);
if (i == URB_LOGICAL_SRC_DATA)
return src[URB_LOGICAL_SRC_COMPONENTS].ud;
else
return 1;
default:
return 1;
}
}
unsigned
elk_fs_inst::size_read(int arg) const
{
switch (opcode) {
case ELK_SHADER_OPCODE_SEND:
if (arg == 1) {
return mlen * REG_SIZE;
}
break;
case ELK_FS_OPCODE_FB_WRITE:
case ELK_FS_OPCODE_REP_FB_WRITE:
if (arg == 0) {
if (base_mrf >= 0)
return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
else
return mlen * REG_SIZE;
}
break;
case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
if (arg == 0)
return mlen * REG_SIZE;
break;
case ELK_FS_OPCODE_SET_SAMPLE_ID:
if (arg == 1)
return 1;
break;
case ELK_FS_OPCODE_LINTERP:
if (arg == 1)
return 16;
break;
case ELK_SHADER_OPCODE_LOAD_PAYLOAD:
if (arg < this->header_size)
return retype(src[arg], ELK_REGISTER_TYPE_UD).component_size(8);
break;
case ELK_CS_OPCODE_CS_TERMINATE:
case ELK_SHADER_OPCODE_BARRIER:
return REG_SIZE;
case ELK_SHADER_OPCODE_MOV_INDIRECT:
if (arg == 0) {
assert(src[2].file == IMM);
return src[2].ud;
}
break;
case ELK_SHADER_OPCODE_TEX:
case ELK_FS_OPCODE_TXB:
case ELK_SHADER_OPCODE_TXD:
case ELK_SHADER_OPCODE_TXF:
case ELK_SHADER_OPCODE_TXF_LZ:
case ELK_SHADER_OPCODE_TXF_CMS:
case ELK_SHADER_OPCODE_TXF_CMS_W:
case ELK_SHADER_OPCODE_TXF_UMS:
case ELK_SHADER_OPCODE_TXF_MCS:
case ELK_SHADER_OPCODE_TXL:
case ELK_SHADER_OPCODE_TXL_LZ:
case ELK_SHADER_OPCODE_TXS:
case ELK_SHADER_OPCODE_LOD:
case ELK_SHADER_OPCODE_TG4:
case ELK_SHADER_OPCODE_TG4_OFFSET:
case ELK_SHADER_OPCODE_SAMPLEINFO:
if (arg == 0 && src[0].file == VGRF)
return mlen * REG_SIZE;
break;
default:
break;
}
switch (src[arg].file) {
case UNIFORM:
case IMM:
return components_read(arg) * type_sz(src[arg].type);
case BAD_FILE:
case ARF:
case FIXED_GRF:
case VGRF:
case ATTR:
return components_read(arg) * src[arg].component_size(exec_size);
case MRF:
unreachable("MRF registers are not allowed as sources");
}
return 0;
}
namespace {
unsigned
predicate_width(const intel_device_info *devinfo, elk_predicate predicate)
{
switch (predicate) {
case ELK_PREDICATE_NONE: return 1;
case ELK_PREDICATE_NORMAL: return 1;
case ELK_PREDICATE_ALIGN1_ANY2H: return 2;
case ELK_PREDICATE_ALIGN1_ALL2H: return 2;
case ELK_PREDICATE_ALIGN1_ANY4H: return 4;
case ELK_PREDICATE_ALIGN1_ALL4H: return 4;
case ELK_PREDICATE_ALIGN1_ANY8H: return 8;
case ELK_PREDICATE_ALIGN1_ALL8H: return 8;
case ELK_PREDICATE_ALIGN1_ANY16H: return 16;
case ELK_PREDICATE_ALIGN1_ALL16H: return 16;
case ELK_PREDICATE_ALIGN1_ANY32H: return 32;
case ELK_PREDICATE_ALIGN1_ALL32H: return 32;
default: unreachable("Unsupported predicate");
}
}
/* Return the subset of flag registers that an instruction could
* potentially read or write based on the execution controls and flag
* subregister number of the instruction.
*/
unsigned
flag_mask(const elk_fs_inst *inst, unsigned width)
{
assert(util_is_power_of_two_nonzero(width));
const unsigned start = (inst->flag_subreg * 16 + inst->group) &
~(width - 1);
const unsigned end = start + ALIGN(inst->exec_size, width);
return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
}
unsigned
bit_mask(unsigned n)
{
return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
}
unsigned
flag_mask(const elk_fs_reg &r, unsigned sz)
{
if (r.file == ARF) {
const unsigned start = (r.nr - ELK_ARF_FLAG) * 4 + r.subnr;
const unsigned end = start + sz;
return bit_mask(end) & ~bit_mask(start);
} else {
return 0;
}
}
}
unsigned
elk_fs_inst::flags_read(const intel_device_info *devinfo) const
{
if (predicate == ELK_PREDICATE_ALIGN1_ANYV ||
predicate == ELK_PREDICATE_ALIGN1_ALLV) {
/* The vertical predication modes combine corresponding bits from
* f0.0 and f1.0 on Gfx7+, and f0.0 and f0.1 on older hardware.
*/
const unsigned shift = devinfo->ver >= 7 ? 4 : 2;
return flag_mask(this, 1) << shift | flag_mask(this, 1);
} else if (predicate) {
return flag_mask(this, predicate_width(devinfo, predicate));
} else {
unsigned mask = 0;
for (int i = 0; i < sources; i++) {
mask |= flag_mask(src[i], size_read(i));
}
return mask;
}
}
unsigned
elk_fs_inst::flags_written(const intel_device_info *devinfo) const
{
/* On Gfx4 and Gfx5, sel.l (for min) and sel.ge (for max) are implemented
* using a separate cmpn and sel instruction. This lowering occurs in
* fs_vistor::lower_minmax which is called very, very late.
*/
if ((conditional_mod && ((opcode != ELK_OPCODE_SEL || devinfo->ver <= 5) &&
opcode != ELK_OPCODE_CSEL &&
opcode != ELK_OPCODE_IF &&
opcode != ELK_OPCODE_WHILE)) ||
opcode == ELK_FS_OPCODE_FB_WRITE) {
return flag_mask(this, 1);
} else if (opcode == ELK_SHADER_OPCODE_FIND_LIVE_CHANNEL ||
opcode == ELK_SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL ||
opcode == ELK_FS_OPCODE_LOAD_LIVE_CHANNELS) {
return flag_mask(this, 32);
} else {
return flag_mask(dst, size_written);
}
}
/**
* Returns how many MRFs an FS opcode will write over.
*
* Note that this is not the 0 or 1 implied writes in an actual gen
* instruction -- the FS opcodes often generate MOVs in addition.
*/
unsigned
elk_fs_inst::implied_mrf_writes() const
{
if (mlen == 0)
return 0;
if (base_mrf == -1)
return 0;
switch (opcode) {
case ELK_SHADER_OPCODE_RCP:
case ELK_SHADER_OPCODE_RSQ:
case ELK_SHADER_OPCODE_SQRT:
case ELK_SHADER_OPCODE_EXP2:
case ELK_SHADER_OPCODE_LOG2:
case ELK_SHADER_OPCODE_SIN:
case ELK_SHADER_OPCODE_COS:
return 1 * exec_size / 8;
case ELK_SHADER_OPCODE_POW:
case ELK_SHADER_OPCODE_INT_QUOTIENT:
case ELK_SHADER_OPCODE_INT_REMAINDER:
return 2 * exec_size / 8;
case ELK_SHADER_OPCODE_TEX:
case ELK_FS_OPCODE_TXB:
case ELK_SHADER_OPCODE_TXD:
case ELK_SHADER_OPCODE_TXF:
case ELK_SHADER_OPCODE_TXF_CMS:
case ELK_SHADER_OPCODE_TXF_MCS:
case ELK_SHADER_OPCODE_TG4:
case ELK_SHADER_OPCODE_TG4_OFFSET:
case ELK_SHADER_OPCODE_TXL:
case ELK_SHADER_OPCODE_TXS:
case ELK_SHADER_OPCODE_LOD:
case ELK_SHADER_OPCODE_SAMPLEINFO:
return 1;
case ELK_FS_OPCODE_FB_WRITE:
case ELK_FS_OPCODE_REP_FB_WRITE:
return src[0].file == BAD_FILE ? 0 : 2;
case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
case ELK_SHADER_OPCODE_GFX4_SCRATCH_READ:
return 1;
case ELK_FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
return mlen;
case ELK_SHADER_OPCODE_GFX4_SCRATCH_WRITE:
return mlen;
default:
unreachable("not reached");
}
}
bool
elk_fs_inst::has_sampler_residency() const
{
switch (opcode) {
case ELK_SHADER_OPCODE_TEX_LOGICAL:
case ELK_FS_OPCODE_TXB_LOGICAL:
case ELK_SHADER_OPCODE_TXL_LOGICAL:
case ELK_SHADER_OPCODE_TXD_LOGICAL:
case ELK_SHADER_OPCODE_TXF_LOGICAL:
case ELK_SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
case ELK_SHADER_OPCODE_TXF_CMS_W_LOGICAL:
case ELK_SHADER_OPCODE_TXF_CMS_LOGICAL:
case ELK_SHADER_OPCODE_TXS_LOGICAL:
case ELK_SHADER_OPCODE_TG4_OFFSET_LOGICAL:
case ELK_SHADER_OPCODE_TG4_LOGICAL:
assert(src[TEX_LOGICAL_SRC_RESIDENCY].file == IMM);
return src[TEX_LOGICAL_SRC_RESIDENCY].ud != 0;
default:
return false;
}
}
elk_fs_reg
elk_fs_visitor::vgrf(const glsl_type *const type)
{
int reg_width = dispatch_width / 8;
return elk_fs_reg(VGRF,
alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
elk_type_for_base_type(type));
}
elk_fs_reg::elk_fs_reg(enum elk_reg_file file, unsigned nr)
{
init();
this->file = file;
this->nr = nr;
this->type = ELK_REGISTER_TYPE_F;
this->stride = (file == UNIFORM ? 0 : 1);
}
elk_fs_reg::elk_fs_reg(enum elk_reg_file file, unsigned nr, enum elk_reg_type type)
{
init();
this->file = file;
this->nr = nr;
this->type = type;
this->stride = (file == UNIFORM ? 0 : 1);
}
/* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
* This brings in those uniform definitions
*/
void
elk_fs_visitor::import_uniforms(elk_fs_visitor *v)
{
this->push_constant_loc = v->push_constant_loc;
this->uniforms = v->uniforms;
}
enum elk_barycentric_mode
elk_barycentric_mode(nir_intrinsic_instr *intr)
{
const glsl_interp_mode mode =
(enum glsl_interp_mode) nir_intrinsic_interp_mode(intr);
/* Barycentric modes don't make sense for flat inputs. */
assert(mode != INTERP_MODE_FLAT);
unsigned bary;
switch (intr->intrinsic) {
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_at_offset:
bary = ELK_BARYCENTRIC_PERSPECTIVE_PIXEL;
break;
case nir_intrinsic_load_barycentric_centroid:
bary = ELK_BARYCENTRIC_PERSPECTIVE_CENTROID;
break;
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_at_sample:
bary = ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE;
break;
default:
unreachable("invalid intrinsic");
}
if (mode == INTERP_MODE_NOPERSPECTIVE)
bary += 3;
return (enum elk_barycentric_mode) bary;
}
/**
* Turn one of the two CENTROID barycentric modes into PIXEL mode.
*/
static enum elk_barycentric_mode
centroid_to_pixel(enum elk_barycentric_mode bary)
{
assert(bary == ELK_BARYCENTRIC_PERSPECTIVE_CENTROID ||
bary == ELK_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
return (enum elk_barycentric_mode) ((unsigned) bary - 1);
}
/**
* Walk backwards from the end of the program looking for a URB write that
* isn't in control flow, and mark it with EOT.
*
* Return true if successful or false if a separate EOT write is needed.
*/
bool
elk_fs_visitor::mark_last_urb_write_with_eot()
{
foreach_in_list_reverse(elk_fs_inst, prev, &this->instructions) {
if (prev->opcode == ELK_SHADER_OPCODE_URB_WRITE_LOGICAL) {
prev->eot = true;
/* Delete now dead instructions. */
foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
if (dead == prev)
break;
dead->remove();
}
return true;
} else if (prev->is_control_flow() || prev->has_side_effects()) {
break;
}
}
return false;
}
void
elk_fs_visitor::emit_gs_thread_end()
{
assert(stage == MESA_SHADER_GEOMETRY);
struct elk_gs_prog_data *gs_prog_data = elk_gs_prog_data(prog_data);
if (gs_compile->control_data_header_size_bits > 0) {
emit_gs_control_data_bits(this->final_gs_vertex_count);
}
const fs_builder abld = fs_builder(this).at_end().annotate("thread end");
elk_fs_inst *inst;
if (gs_prog_data->static_vertex_count != -1) {
/* Try and tag the last URB write with EOT instead of emitting a whole
* separate write just to finish the thread.
*/
if (mark_last_urb_write_with_eot())
return;
elk_fs_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = gs_payload().urb_handles;
srcs[URB_LOGICAL_SRC_COMPONENTS] = elk_imm_ud(0);
inst = abld.emit(ELK_SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
srcs, ARRAY_SIZE(srcs));
} else {
elk_fs_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = gs_payload().urb_handles;
srcs[URB_LOGICAL_SRC_DATA] = this->final_gs_vertex_count;
srcs[URB_LOGICAL_SRC_COMPONENTS] = elk_imm_ud(1);
inst = abld.emit(ELK_SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
srcs, ARRAY_SIZE(srcs));
}
inst->eot = true;
inst->offset = 0;
}
void
elk_fs_visitor::assign_curb_setup()
{
unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
unsigned ubo_push_length = 0;
unsigned ubo_push_start[4];
for (int i = 0; i < 4; i++) {
ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
ubo_push_length += stage_prog_data->ubo_ranges[i].length;
}
prog_data->curb_read_length = uniform_push_length + ubo_push_length;
uint64_t used = 0;
/* Map the offsets in the UNIFORM file to fixed HW regs. */
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
for (unsigned int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == UNIFORM) {
int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
int constant_nr;
if (inst->src[i].nr >= UBO_START) {
/* constant_nr is in 32-bit units, the rest are in bytes */
constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
inst->src[i].offset / 4;
} else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
constant_nr = push_constant_loc[uniform_nr];
} else {
/* Section 5.11 of the OpenGL 4.1 spec says:
* "Out-of-bounds reads return undefined values, which include
* values from other variables of the active program or zero."
* Just return the first push constant.
*/
constant_nr = 0;
}
assert(constant_nr / 8 < 64);
used |= BITFIELD64_BIT(constant_nr / 8);
struct elk_reg elk_reg = elk_vec1_grf(payload().num_regs +
constant_nr / 8,
constant_nr % 8);
elk_reg.abs = inst->src[i].abs;
elk_reg.negate = inst->src[i].negate;
assert(inst->src[i].stride == 0);
inst->src[i] = byte_offset(
retype(elk_reg, inst->src[i].type),
inst->src[i].offset % 4);
}
}
}
uint64_t want_zero = used & stage_prog_data->zero_push_reg;
if (want_zero) {
fs_builder ubld = fs_builder(this, 8).exec_all().at(
cfg->first_block(), cfg->first_block()->start());
/* push_reg_mask_param is in 32-bit units */
unsigned mask_param = stage_prog_data->push_reg_mask_param;
struct elk_reg mask = elk_vec1_grf(payload().num_regs + mask_param / 8,
mask_param % 8);
elk_fs_reg b32;
for (unsigned i = 0; i < 64; i++) {
if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) {
elk_fs_reg shifted = ubld.vgrf(ELK_REGISTER_TYPE_W, 2);
ubld.SHL(horiz_offset(shifted, 8),
byte_offset(retype(mask, ELK_REGISTER_TYPE_W), i / 8),
elk_imm_v(0x01234567));
ubld.SHL(shifted, horiz_offset(shifted, 8), elk_imm_w(8));
fs_builder ubld16 = ubld.group(16, 0);
b32 = ubld16.vgrf(ELK_REGISTER_TYPE_D);
ubld16.group(16, 0).ASR(b32, shifted, elk_imm_w(15));
}
if (want_zero & BITFIELD64_BIT(i)) {
assert(i < prog_data->curb_read_length);
struct elk_reg push_reg =
retype(elk_vec8_grf(payload().num_regs + i, 0),
ELK_REGISTER_TYPE_D);
ubld.AND(push_reg, push_reg, component(b32, i % 16));
}
}
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
}
/* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
this->first_non_payload_grf = payload().num_regs + prog_data->curb_read_length;
}
/*
* Build up an array of indices into the urb_setup array that
* references the active entries of the urb_setup array.
* Used to accelerate walking the active entries of the urb_setup array
* on each upload.
*/
void
elk_compute_urb_setup_index(struct elk_wm_prog_data *wm_prog_data)
{
/* Make sure uint8_t is sufficient */
STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff);
uint8_t index = 0;
for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) {
if (wm_prog_data->urb_setup[attr] >= 0) {
wm_prog_data->urb_setup_attribs[index++] = attr;
}
}
wm_prog_data->urb_setup_attribs_count = index;
}
static void
calculate_urb_setup(const struct intel_device_info *devinfo,
const struct elk_wm_prog_key *key,
struct elk_wm_prog_data *prog_data,
const nir_shader *nir)
{
memset(prog_data->urb_setup, -1, sizeof(prog_data->urb_setup));
memset(prog_data->urb_setup_channel, 0, sizeof(prog_data->urb_setup_channel));
int urb_next = 0; /* in vec4s */
const uint64_t inputs_read =
nir->info.inputs_read & ~nir->info.per_primitive_inputs;
/* Figure out where each of the incoming setup attributes lands. */
if (devinfo->ver >= 6) {
assert(!nir->info.per_primitive_inputs);
uint64_t vue_header_bits =
VARYING_BIT_PSIZ | VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT;
uint64_t unique_fs_attrs = inputs_read & ELK_FS_VARYING_INPUT_MASK;
/* VUE header fields all live in the same URB slot, so we pass them
* as a single FS input attribute. We want to only count them once.
*/
if (inputs_read & vue_header_bits) {
unique_fs_attrs &= ~vue_header_bits;
unique_fs_attrs |= VARYING_BIT_PSIZ;
}
if (util_bitcount64(unique_fs_attrs) <= 16) {
/* The SF/SBE pipeline stage can do arbitrary rearrangement of the
* first 16 varying inputs, so we can put them wherever we want.
* Just put them in order.
*
* This is useful because it means that (a) inputs not used by the
* fragment shader won't take up valuable register space, and (b) we
* won't have to recompile the fragment shader if it gets paired with
* a different vertex (or geometry) shader.
*
* VUE header fields share the same FS input attribute.
*/
if (inputs_read & vue_header_bits) {
if (inputs_read & VARYING_BIT_PSIZ)
prog_data->urb_setup[VARYING_SLOT_PSIZ] = urb_next;
if (inputs_read & VARYING_BIT_LAYER)
prog_data->urb_setup[VARYING_SLOT_LAYER] = urb_next;
if (inputs_read & VARYING_BIT_VIEWPORT)
prog_data->urb_setup[VARYING_SLOT_VIEWPORT] = urb_next;
urb_next++;
}
for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
if (inputs_read & ELK_FS_VARYING_INPUT_MASK & ~vue_header_bits &
BITFIELD64_BIT(i)) {
prog_data->urb_setup[i] = urb_next++;
}
}
} else {
/* We have enough input varyings that the SF/SBE pipeline stage can't
* arbitrarily rearrange them to suit our whim; we have to put them
* in an order that matches the output of the previous pipeline stage
* (geometry or vertex shader).
*/
/* Re-compute the VUE map here in the case that the one coming from
* geometry has more than one position slot (used for Primitive
* Replication).
*/
struct intel_vue_map prev_stage_vue_map;
elk_compute_vue_map(devinfo, &prev_stage_vue_map,
key->input_slots_valid,
nir->info.separate_shader ?
INTEL_VUE_LAYOUT_SEPARATE :
INTEL_VUE_LAYOUT_FIXED, 1);
int first_slot =
elk_compute_first_urb_slot_required(inputs_read,
&prev_stage_vue_map);
assert(prev_stage_vue_map.num_slots <= first_slot + 32);
for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
slot++) {
int varying = prev_stage_vue_map.slot_to_varying[slot];
if (varying != ELK_VARYING_SLOT_PAD &&
(inputs_read & ELK_FS_VARYING_INPUT_MASK &
BITFIELD64_BIT(varying))) {
prog_data->urb_setup[varying] = slot - first_slot;
}
}
urb_next = prev_stage_vue_map.num_slots - first_slot;
}
} else {
/* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
/* Point size is packed into the header, not as a general attribute */
if (i == VARYING_SLOT_PSIZ)
continue;
if (key->input_slots_valid & BITFIELD64_BIT(i)) {
/* The back color slot is skipped when the front color is
* also written to. In addition, some slots can be
* written in the vertex shader and not read in the
* fragment shader. So the register number must always be
* incremented, mapped or not.
*/
if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
prog_data->urb_setup[i] = urb_next;
urb_next++;
}
}
/*
* It's a FS only attribute, and we did interpolation for this attribute
* in SF thread. So, count it here, too.
*
* See compile_sf_prog() for more info.
*/
if (inputs_read & VARYING_BIT_PNTC)
prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
}
prog_data->num_varying_inputs = urb_next - prog_data->num_per_primitive_inputs;
prog_data->inputs = inputs_read;
elk_compute_urb_setup_index(prog_data);
}
void
elk_fs_visitor::assign_urb_setup()
{
assert(stage == MESA_SHADER_FRAGMENT);
struct elk_wm_prog_data *prog_data = elk_wm_prog_data(this->prog_data);
int urb_start = payload().num_regs + prog_data->base.curb_read_length;
/* Offset all the urb_setup[] index by the actual position of the
* setup regs, now that the location of the constants has been chosen.
*/
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == ATTR) {
/* ATTR elk_fs_reg::nr in the FS is in units of logical scalar
* inputs each of which consumes 16B on Gfx4-Gfx12. In
* single polygon mode this leads to the following layout
* of the vertex setup plane parameters in the ATTR
* register file:
*
* elk_fs_reg::nr Input Comp0 Comp1 Comp2 Comp3
* 0 Attr0.x a1-a0 a2-a0 N/A a0
* 1 Attr0.y a1-a0 a2-a0 N/A a0
* 2 Attr0.z a1-a0 a2-a0 N/A a0
* 3 Attr0.w a1-a0 a2-a0 N/A a0
* 4 Attr1.x a1-a0 a2-a0 N/A a0
* ...
*/
const unsigned param_width = 1;
/* Size of a single scalar component of a plane parameter
* in bytes.
*/
const unsigned chan_sz = 4;
struct elk_reg reg;
/* Calculate the base register on the thread payload of
* either the block of vertex setup data or the block of
* per-primitive constant data depending on whether we're
* accessing a primitive or vertex input. Also calculate
* the index of the input within that block.
*/
const bool per_prim = inst->src[i].nr < prog_data->num_per_primitive_inputs;
const unsigned base = urb_start +
(per_prim ? 0 :
ALIGN(prog_data->num_per_primitive_inputs / 2,
reg_unit(devinfo)));
const unsigned idx = per_prim ? inst->src[i].nr :
inst->src[i].nr - prog_data->num_per_primitive_inputs;
/* Translate the offset within the param_width-wide
* representation described above into an offset and a
* grf, which contains the plane parameters for the first
* polygon processed by the thread.
*
* Earlier platforms and per-primitive block pack 2 logical
* input components per 32B register.
*/
const unsigned grf = base + idx / 2;
assert(inst->src[i].offset / param_width < REG_SIZE / 2);
const unsigned delta = (idx % 2) * (REG_SIZE / 2) +
inst->src[i].offset / (param_width * chan_sz) * chan_sz +
inst->src[i].offset % chan_sz;
reg = byte_offset(retype(elk_vec8_grf(grf, 0), inst->src[i].type),
delta);
const unsigned width = inst->src[i].stride == 0 ?
1 : MIN2(inst->exec_size, 8);
reg = stride(reg, width * inst->src[i].stride,
width, inst->src[i].stride);
reg.abs = inst->src[i].abs;
reg.negate = inst->src[i].negate;
inst->src[i] = reg;
}
}
}
/* Each attribute is 4 setup channels, each of which is half a reg,
* but they may be replicated multiple times for multipolygon
* dispatch.
*/
this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
/* Unlike regular attributes, per-primitive attributes have all 4 channels
* in the same slot, so each GRF can store two slots.
*/
assert(prog_data->num_per_primitive_inputs % 2 == 0);
this->first_non_payload_grf += prog_data->num_per_primitive_inputs / 2;
}
void
elk_fs_visitor::convert_attr_sources_to_hw_regs(elk_fs_inst *inst)
{
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == ATTR) {
assert(inst->src[i].nr == 0);
int grf = payload().num_regs +
prog_data->curb_read_length +
inst->src[i].offset / REG_SIZE;
/* As explained at elk_reg_from_fs_reg, From the Haswell PRM:
*
* VertStride must be used to cross GRF register boundaries. This
* rule implies that elements within a 'Width' cannot cross GRF
* boundaries.
*
* So, for registers that are large enough, we have to split the exec
* size in two and trust the compression state to sort it out.
*/
unsigned total_size = inst->exec_size *
inst->src[i].stride *
type_sz(inst->src[i].type);
assert(total_size <= 2 * REG_SIZE);
const unsigned exec_size =
(total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
struct elk_reg reg =
stride(byte_offset(retype(elk_vec8_grf(grf, 0), inst->src[i].type),
inst->src[i].offset % REG_SIZE),
exec_size * inst->src[i].stride,
width, inst->src[i].stride);
reg.abs = inst->src[i].abs;
reg.negate = inst->src[i].negate;
inst->src[i] = reg;
}
}
}
void
elk_fs_visitor::assign_vs_urb_setup()
{
struct elk_vs_prog_data *vs_prog_data = elk_vs_prog_data(prog_data);
assert(stage == MESA_SHADER_VERTEX);
/* Each attribute is 4 regs. */
this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
assert(vs_prog_data->base.urb_read_length <= 15);
/* Rewrite all ATTR file references to the hw grf that they land in. */
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
convert_attr_sources_to_hw_regs(inst);
}
}
void
elk_fs_visitor::assign_tcs_urb_setup()
{
assert(stage == MESA_SHADER_TESS_CTRL);
/* Rewrite all ATTR file references to HW_REGs. */
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
convert_attr_sources_to_hw_regs(inst);
}
}
void
elk_fs_visitor::assign_tes_urb_setup()
{
assert(stage == MESA_SHADER_TESS_EVAL);
struct elk_vue_prog_data *vue_prog_data = elk_vue_prog_data(prog_data);
first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
/* Rewrite all ATTR file references to HW_REGs. */
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
convert_attr_sources_to_hw_regs(inst);
}
}
void
elk_fs_visitor::assign_gs_urb_setup()
{
assert(stage == MESA_SHADER_GEOMETRY);
struct elk_vue_prog_data *vue_prog_data = elk_vue_prog_data(prog_data);
first_non_payload_grf +=
8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
/* Rewrite all ATTR file references to GRFs. */
convert_attr_sources_to_hw_regs(inst);
}
}
/**
* Split large virtual GRFs into separate components if we can.
*
* This pass aggressively splits VGRFs into as small a chunks as possible,
* down to single registers if it can. If no VGRFs can be split, we return
* false so this pass can safely be used inside an optimization loop. We
* want to split, because virtual GRFs are what we register allocate and
* spill (due to contiguousness requirements for some instructions), and
* they're what we naturally generate in the codegen process, but most
* virtual GRFs don't actually need to be contiguous sets of GRFs. If we
* split, we'll end up with reduced live intervals and better dead code
* elimination and coalescing.
*/
bool
elk_fs_visitor::split_virtual_grfs()
{
/* Compact the register file so we eliminate dead vgrfs. This
* only defines split points for live registers, so if we have
* too large dead registers they will hit assertions later.
*/
compact_virtual_grfs();
unsigned num_vars = this->alloc.count;
/* Count the total number of registers */
unsigned reg_count = 0;
unsigned *vgrf_to_reg = new unsigned[num_vars];
for (unsigned i = 0; i < num_vars; i++) {
vgrf_to_reg[i] = reg_count;
reg_count += alloc.sizes[i];
}
/* An array of "split points". For each register slot, this indicates
* if this slot can be separated from the previous slot. Every time an
* instruction uses multiple elements of a register (as a source or
* destination), we mark the used slots as inseparable. Then we go
* through and split the registers into the smallest pieces we can.
*/
bool *split_points = new bool[reg_count];
memset(split_points, 0, reg_count * sizeof(*split_points));
/* Mark all used registers as fully splittable */
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
if (inst->dst.file == VGRF) {
unsigned reg = vgrf_to_reg[inst->dst.nr];
for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
split_points[reg + j] = true;
}
for (unsigned i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF) {
unsigned reg = vgrf_to_reg[inst->src[i].nr];
for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
split_points[reg + j] = true;
}
}
}
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
/* We fix up undef instructions later */
if (inst->opcode == ELK_SHADER_OPCODE_UNDEF) {
assert(inst->dst.file == VGRF);
continue;
}
if (inst->dst.file == VGRF) {
unsigned reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
for (unsigned j = 1; j < regs_written(inst); j++)
split_points[reg + j] = false;
}
for (unsigned i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF) {
unsigned reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
for (unsigned j = 1; j < regs_read(inst, i); j++)
split_points[reg + j] = false;
}
}
}
/* Bitset of which registers have been split */
bool *vgrf_has_split = new bool[num_vars];
memset(vgrf_has_split, 0, num_vars * sizeof(*vgrf_has_split));
unsigned *new_virtual_grf = new unsigned[reg_count];
unsigned *new_reg_offset = new unsigned[reg_count];
unsigned reg = 0;
bool has_splits = false;
for (unsigned i = 0; i < num_vars; i++) {
/* The first one should always be 0 as a quick sanity check. */
assert(split_points[reg] == false);
/* j = 0 case */
new_reg_offset[reg] = 0;
reg++;
unsigned offset = 1;
/* j > 0 case */
for (unsigned j = 1; j < alloc.sizes[i]; j++) {
/* If this is a split point, reset the offset to 0 and allocate a
* new virtual GRF for the previous offset many registers
*/
if (split_points[reg]) {
has_splits = true;
vgrf_has_split[i] = true;
assert(offset <= MAX_VGRF_SIZE(devinfo));
unsigned grf = alloc.allocate(offset);
for (unsigned k = reg - offset; k < reg; k++)
new_virtual_grf[k] = grf;
offset = 0;
}
new_reg_offset[reg] = offset;
offset++;
reg++;
}
/* The last one gets the original register number */
assert(offset <= MAX_VGRF_SIZE(devinfo));
alloc.sizes[i] = offset;
for (unsigned k = reg - offset; k < reg; k++)
new_virtual_grf[k] = i;
}
assert(reg == reg_count);
bool progress;
if (!has_splits) {
progress = false;
goto cleanup;
}
foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) {
if (inst->opcode == ELK_SHADER_OPCODE_UNDEF) {
assert(inst->dst.file == VGRF);
if (vgrf_has_split[inst->dst.nr]) {
const fs_builder ibld(this, block, inst);
assert(inst->size_written % REG_SIZE == 0);
unsigned reg_offset = inst->dst.offset / REG_SIZE;
unsigned size_written = 0;
while (size_written < inst->size_written) {
reg = vgrf_to_reg[inst->dst.nr] + reg_offset + size_written / REG_SIZE;
elk_fs_inst *undef =
ibld.UNDEF(
byte_offset(elk_fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type),
new_reg_offset[reg] * REG_SIZE));
undef->size_written =
MIN2(inst->size_written - size_written, undef->size_written);
assert(undef->size_written % REG_SIZE == 0);
size_written += undef->size_written;
}
inst->remove(block);
} else {
reg = vgrf_to_reg[inst->dst.nr];
assert(new_reg_offset[reg] == 0);
assert(new_virtual_grf[reg] == inst->dst.nr);
}
continue;
}
if (inst->dst.file == VGRF) {
reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
if (vgrf_has_split[inst->dst.nr]) {
inst->dst.nr = new_virtual_grf[reg];
inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
inst->dst.offset % REG_SIZE;
assert(new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
} else {
assert(new_reg_offset[reg] == inst->dst.offset / REG_SIZE);
assert(new_virtual_grf[reg] == inst->dst.nr);
}
}
for (unsigned i = 0; i < inst->sources; i++) {
if (inst->src[i].file != VGRF)
continue;
reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
if (vgrf_has_split[inst->src[i].nr]) {
inst->src[i].nr = new_virtual_grf[reg];
inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
inst->src[i].offset % REG_SIZE;
assert(new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
} else {
assert(new_reg_offset[reg] == inst->src[i].offset / REG_SIZE);
assert(new_virtual_grf[reg] == inst->src[i].nr);
}
}
}
invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
progress = true;
cleanup:
delete[] split_points;
delete[] vgrf_has_split;
delete[] new_virtual_grf;
delete[] new_reg_offset;
delete[] vgrf_to_reg;
return progress;
}
/**
* Remove unused virtual GRFs and compact the vgrf_* arrays.
*
* During code generation, we create tons of temporary variables, many of
* which get immediately killed and are never used again. Yet, in later
* optimization and analysis passes, such as compute_live_intervals, we need
* to loop over all the virtual GRFs. Compacting them can save a lot of
* overhead.
*/
bool
elk_fs_visitor::compact_virtual_grfs()
{
bool progress = false;
int *remap_table = new int[this->alloc.count];
memset(remap_table, -1, this->alloc.count * sizeof(int));
/* Mark which virtual GRFs are used. */
foreach_block_and_inst(block, const elk_fs_inst, inst, cfg) {
if (inst->dst.file == VGRF)
remap_table[inst->dst.nr] = 0;
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF)
remap_table[inst->src[i].nr] = 0;
}
}
/* Compact the GRF arrays. */
int new_index = 0;
for (unsigned i = 0; i < this->alloc.count; i++) {
if (remap_table[i] == -1) {
/* We just found an unused register. This means that we are
* actually going to compact something.
*/
progress = true;
} else {
remap_table[i] = new_index;
alloc.sizes[new_index] = alloc.sizes[i];
invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
++new_index;
}
}
this->alloc.count = new_index;
/* Patch all the instructions to use the newly renumbered registers */
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
if (inst->dst.file == VGRF)
inst->dst.nr = remap_table[inst->dst.nr];
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF)
inst->src[i].nr = remap_table[inst->src[i].nr];
}
}
/* Patch all the references to delta_xy, since they're used in register
* allocation. If they're unused, switch them to BAD_FILE so we don't
* think some random VGRF is delta_xy.
*/
for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
if (delta_xy[i].file == VGRF) {
if (remap_table[delta_xy[i].nr] != -1) {
delta_xy[i].nr = remap_table[delta_xy[i].nr];
} else {
delta_xy[i].file = BAD_FILE;
}
}
}
delete[] remap_table;
return progress;
}
int
elk_get_subgroup_id_param_index(const intel_device_info *devinfo,
const elk_stage_prog_data *prog_data)
{
if (prog_data->nr_params == 0)
return -1;
/* The local thread id is always the last parameter in the list */
uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
if (last_param == ELK_PARAM_BUILTIN_SUBGROUP_ID)
return prog_data->nr_params - 1;
return -1;
}
/**
* Assign UNIFORM file registers to either push constants or pull constants.
*
* We allow a fragment shader to have more than the specified minimum
* maximum number of fragment shader uniform components (64). If
* there are too many of these, they'd fill up all of register space.
* So, this will push some of them out to the pull constant buffer and
* update the program to load them.
*/
void
elk_fs_visitor::assign_constant_locations()
{
/* Only the first compile gets to decide on locations. */
if (push_constant_loc)
return;
push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
for (unsigned u = 0; u < uniforms; u++)
push_constant_loc[u] = u;
/* Now that we know how many regular uniforms we'll push, reduce the
* UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
*/
/* For gen4/5:
* Only allow 16 registers (128 uniform components) as push constants.
*
* If changing this value, note the limitation about total_regs in
* elk_curbe.c/crocus_state.c
*/
const unsigned max_push_length = compiler->devinfo->ver < 6 ? 16 : 64;
unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
for (int i = 0; i < 4; i++) {
struct elk_ubo_range *range = &prog_data->ubo_ranges[i];
if (push_length + range->length > max_push_length)
range->length = max_push_length - push_length;
push_length += range->length;
}
assert(push_length <= max_push_length);
}
bool
elk_fs_visitor::get_pull_locs(const elk_fs_reg &src,
unsigned *out_surf_index,
unsigned *out_pull_index)
{
assert(src.file == UNIFORM);
if (src.nr < UBO_START)
return false;
const struct elk_ubo_range *range =
&prog_data->ubo_ranges[src.nr - UBO_START];
/* If this access is in our (reduced) range, use the push data. */
if (src.offset / 32 < range->length)
return false;
*out_surf_index = range->block;
*out_pull_index = (32 * range->start + src.offset) / 4;
prog_data->has_ubo_pull = true;
return true;
}
/**
* Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
* or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
*/
bool
elk_fs_visitor::lower_constant_loads()
{
unsigned index, pull_index;
bool progress = false;
foreach_block_and_inst_safe (block, elk_fs_inst, inst, cfg) {
/* Set up the annotation tracking for new generated instructions. */
const fs_builder ibld(this, block, inst);
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file != UNIFORM)
continue;
/* We'll handle this case later */
if (inst->opcode == ELK_SHADER_OPCODE_MOV_INDIRECT && i == 0)
continue;
if (!get_pull_locs(inst->src[i], &index, &pull_index))
continue;
assert(inst->src[i].stride == 0);
const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
const elk_fs_reg dst = ubld.vgrf(ELK_REGISTER_TYPE_UD);
const unsigned base = pull_index * 4;
elk_fs_reg srcs[PULL_UNIFORM_CONSTANT_SRCS];
srcs[PULL_UNIFORM_CONSTANT_SRC_SURFACE] = elk_imm_ud(index);
srcs[PULL_UNIFORM_CONSTANT_SRC_OFFSET] = elk_imm_ud(base & ~(block_sz - 1));
srcs[PULL_UNIFORM_CONSTANT_SRC_SIZE] = elk_imm_ud(block_sz);
ubld.emit(ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, dst,
srcs, PULL_UNIFORM_CONSTANT_SRCS);
/* Rewrite the instruction to use the temporary VGRF. */
inst->src[i].file = VGRF;
inst->src[i].nr = dst.nr;
inst->src[i].offset = (base & (block_sz - 1)) +
inst->src[i].offset % 4;
progress = true;
}
if (inst->opcode == ELK_SHADER_OPCODE_MOV_INDIRECT &&
inst->src[0].file == UNIFORM) {
if (!get_pull_locs(inst->src[0], &index, &pull_index))
continue;
VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
elk_imm_ud(index),
elk_fs_reg() /* surface_handle */,
inst->src[1],
pull_index * 4, 4, 1);
inst->remove(block);
progress = true;
}
}
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
return progress;
}
static uint64_t
src_as_uint(const elk_fs_reg &src)
{
assert(src.file == IMM);
switch (src.type) {
case ELK_REGISTER_TYPE_W:
return (uint64_t)(int16_t)(src.ud & 0xffff);
case ELK_REGISTER_TYPE_UW:
return (uint64_t)(uint16_t)(src.ud & 0xffff);
case ELK_REGISTER_TYPE_D:
return (uint64_t)src.d;
case ELK_REGISTER_TYPE_UD:
return (uint64_t)src.ud;
case ELK_REGISTER_TYPE_Q:
return src.d64;
case ELK_REGISTER_TYPE_UQ:
return src.u64;
default:
unreachable("Invalid integer type.");
}
}
static elk_fs_reg
elk_imm_for_type(uint64_t value, enum elk_reg_type type)
{
switch (type) {
case ELK_REGISTER_TYPE_W:
return elk_imm_w(value);
case ELK_REGISTER_TYPE_UW:
return elk_imm_uw(value);
case ELK_REGISTER_TYPE_D:
return elk_imm_d(value);
case ELK_REGISTER_TYPE_UD:
return elk_imm_ud(value);
case ELK_REGISTER_TYPE_Q:
return elk_imm_d(value);
case ELK_REGISTER_TYPE_UQ:
return elk_imm_uq(value);
default:
unreachable("Invalid integer type.");
}
}
bool
elk_fs_visitor::opt_algebraic()
{
bool progress = false;
foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) {
switch (inst->opcode) {
case ELK_OPCODE_MOV:
if (!devinfo->has_64bit_float &&
inst->dst.type == ELK_REGISTER_TYPE_DF) {
assert(inst->dst.type == inst->src[0].type);
assert(!inst->saturate);
assert(!inst->src[0].abs);
assert(!inst->src[0].negate);
const elk::fs_builder ibld(this, block, inst);
if (!inst->is_partial_write())
ibld.emit_undef_for_dst(inst);
ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_F, 1),
subscript(inst->src[0], ELK_REGISTER_TYPE_F, 1));
ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_F, 0),
subscript(inst->src[0], ELK_REGISTER_TYPE_F, 0));
inst->remove(block);
progress = true;
}
if (!devinfo->has_64bit_int &&
(inst->dst.type == ELK_REGISTER_TYPE_UQ ||
inst->dst.type == ELK_REGISTER_TYPE_Q)) {
assert(inst->dst.type == inst->src[0].type);
assert(!inst->saturate);
assert(!inst->src[0].abs);
assert(!inst->src[0].negate);
const elk::fs_builder ibld(this, block, inst);
if (!inst->is_partial_write())
ibld.emit_undef_for_dst(inst);
ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 1),
subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 1));
ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 0),
subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0));
inst->remove(block);
progress = true;
}
if ((inst->conditional_mod == ELK_CONDITIONAL_Z ||
inst->conditional_mod == ELK_CONDITIONAL_NZ) &&
inst->dst.is_null() &&
(inst->src[0].abs || inst->src[0].negate)) {
inst->src[0].abs = false;
inst->src[0].negate = false;
progress = true;
break;
}
if (inst->src[0].file != IMM)
break;
if (inst->saturate) {
/* Full mixed-type saturates don't happen. However, we can end up
* with things like:
*
* mov.sat(8) g21<1>DF -1F
*
* Other mixed-size-but-same-base-type cases may also be possible.
*/
if (inst->dst.type != inst->src[0].type &&
inst->dst.type != ELK_REGISTER_TYPE_DF &&
inst->src[0].type != ELK_REGISTER_TYPE_F)
unreachable("unimplemented: saturate mixed types");
if (elk_saturate_immediate(inst->src[0].type,
&inst->src[0].as_elk_reg())) {
inst->saturate = false;
progress = true;
}
}
break;
case ELK_OPCODE_MUL:
if (inst->src[1].file != IMM)
continue;
if (elk_reg_type_is_floating_point(inst->src[1].type))
break;
/* From the BDW PRM, Vol 2a, "mul - Multiply":
*
* "When multiplying integer datatypes, if src0 is DW and src1
* is W, irrespective of the destination datatype, the
* accumulator maintains full 48-bit precision."
* ...
* "When multiplying integer data types, if one of the sources
* is a DW, the resulting full precision data is stored in
* the accumulator."
*
* There are also similar notes in earlier PRMs.
*
* The MOV instruction can copy the bits of the source, but it
* does not clear the higher bits of the accumulator. So, because
* we might use the full accumulator in the MUL/MACH macro, we
* shouldn't replace such MULs with MOVs.
*/
if ((elk_reg_type_to_size(inst->src[0].type) == 4 ||
elk_reg_type_to_size(inst->src[1].type) == 4) &&
(inst->dst.is_accumulator() ||
inst->writes_accumulator_implicitly(devinfo)))
break;
/* a * 1.0 = a */
if (inst->src[1].is_one()) {
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
inst->src[1] = reg_undef;
progress = true;
break;
}
/* a * -1.0 = -a */
if (inst->src[1].is_negative_one()) {
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
inst->src[0].negate = !inst->src[0].negate;
inst->src[1] = reg_undef;
progress = true;
break;
}
break;
case ELK_OPCODE_ADD:
if (inst->src[1].file != IMM)
continue;
if (elk_reg_type_is_integer(inst->src[1].type) &&
inst->src[1].is_zero()) {
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
inst->src[1] = reg_undef;
progress = true;
break;
}
if (inst->src[0].file == IMM) {
assert(inst->src[0].type == ELK_REGISTER_TYPE_F);
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
inst->src[0].f += inst->src[1].f;
inst->src[1] = reg_undef;
progress = true;
break;
}
break;
case ELK_OPCODE_AND:
if (inst->src[0].file == IMM && inst->src[1].file == IMM) {
const uint64_t src0 = src_as_uint(inst->src[0]);
const uint64_t src1 = src_as_uint(inst->src[1]);
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
inst->src[0] = elk_imm_for_type(src0 & src1, inst->dst.type);
inst->src[1] = reg_undef;
progress = true;
break;
}
break;
case ELK_OPCODE_OR:
if (inst->src[0].file == IMM && inst->src[1].file == IMM) {
const uint64_t src0 = src_as_uint(inst->src[0]);
const uint64_t src1 = src_as_uint(inst->src[1]);
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
inst->src[0] = elk_imm_for_type(src0 | src1, inst->dst.type);
inst->src[1] = reg_undef;
progress = true;
break;
}
if (inst->src[0].equals(inst->src[1]) ||
inst->src[1].is_zero()) {
/* On Gfx8+, the OR instruction can have a source modifier that
* performs logical not on the operand. Cases of 'OR r0, ~r1, 0'
* or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
*/
if (inst->src[0].negate) {
inst->opcode = ELK_OPCODE_NOT;
inst->sources = 1;
inst->src[0].negate = false;
} else {
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
}
inst->src[1] = reg_undef;
progress = true;
break;
}
break;
case ELK_OPCODE_CMP:
if ((inst->conditional_mod == ELK_CONDITIONAL_Z ||
inst->conditional_mod == ELK_CONDITIONAL_NZ) &&
inst->src[1].is_zero() &&
(inst->src[0].abs || inst->src[0].negate)) {
inst->src[0].abs = false;
inst->src[0].negate = false;
progress = true;
break;
}
break;
case ELK_OPCODE_SEL:
if (!devinfo->has_64bit_float &&
!devinfo->has_64bit_int &&
(inst->dst.type == ELK_REGISTER_TYPE_DF ||
inst->dst.type == ELK_REGISTER_TYPE_UQ ||
inst->dst.type == ELK_REGISTER_TYPE_Q)) {
assert(inst->dst.type == inst->src[0].type);
assert(!inst->saturate);
assert(!inst->src[0].abs && !inst->src[0].negate);
assert(!inst->src[1].abs && !inst->src[1].negate);
const elk::fs_builder ibld(this, block, inst);
if (!inst->is_partial_write())
ibld.emit_undef_for_dst(inst);
set_predicate(inst->predicate,
ibld.SEL(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 0),
subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0),
subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 0)));
set_predicate(inst->predicate,
ibld.SEL(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 1),
subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 1),
subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 1)));
inst->remove(block);
progress = true;
}
if (inst->src[0].equals(inst->src[1]) &&
(!elk_reg_type_is_floating_point(inst->dst.type) ||
inst->conditional_mod == ELK_CONDITIONAL_NONE)) {
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
inst->src[1] = reg_undef;
inst->predicate = ELK_PREDICATE_NONE;
inst->predicate_inverse = false;
inst->conditional_mod = ELK_CONDITIONAL_NONE;
progress = true;
} else if (inst->saturate && inst->src[1].file == IMM) {
switch (inst->conditional_mod) {
case ELK_CONDITIONAL_LE:
case ELK_CONDITIONAL_L:
switch (inst->src[1].type) {
case ELK_REGISTER_TYPE_F:
if (inst->src[1].f >= 1.0f) {
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
inst->src[1] = reg_undef;
inst->conditional_mod = ELK_CONDITIONAL_NONE;
progress = true;
}
break;
default:
break;
}
break;
case ELK_CONDITIONAL_GE:
case ELK_CONDITIONAL_G:
switch (inst->src[1].type) {
case ELK_REGISTER_TYPE_F:
if (inst->src[1].f <= 0.0f) {
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
inst->src[1] = reg_undef;
inst->conditional_mod = ELK_CONDITIONAL_NONE;
progress = true;
}
break;
default:
break;
}
break;
default:
break;
}
}
break;
case ELK_OPCODE_MAD:
if (inst->src[0].type != ELK_REGISTER_TYPE_F ||
inst->src[1].type != ELK_REGISTER_TYPE_F ||
inst->src[2].type != ELK_REGISTER_TYPE_F)
break;
if (inst->src[1].is_one()) {
inst->opcode = ELK_OPCODE_ADD;
inst->sources = 2;
inst->src[1] = inst->src[2];
inst->src[2] = reg_undef;
progress = true;
} else if (inst->src[2].is_one()) {
inst->opcode = ELK_OPCODE_ADD;
inst->sources = 2;
inst->src[2] = reg_undef;
progress = true;
}
break;
case ELK_OPCODE_SHL:
if (inst->src[0].file == IMM && inst->src[1].file == IMM) {
/* It's not currently possible to generate this, and this constant
* folding does not handle it.
*/
assert(!inst->saturate);
elk_fs_reg result;
switch (type_sz(inst->src[0].type)) {
case 2:
result = elk_imm_uw(0x0ffff & (inst->src[0].ud << (inst->src[1].ud & 0x1f)));
break;
case 4:
result = elk_imm_ud(inst->src[0].ud << (inst->src[1].ud & 0x1f));
break;
case 8:
result = elk_imm_uq(inst->src[0].u64 << (inst->src[1].ud & 0x3f));
break;
default:
/* Just in case a future platform re-enables B or UB types. */
unreachable("Invalid source size.");
}
inst->opcode = ELK_OPCODE_MOV;
inst->src[0] = retype(result, inst->dst.type);
inst->src[1] = reg_undef;
inst->sources = 1;
progress = true;
}
break;
case ELK_SHADER_OPCODE_BROADCAST:
if (is_uniform(inst->src[0])) {
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
inst->force_writemask_all = true;
progress = true;
} else if (inst->src[1].file == IMM) {
inst->opcode = ELK_OPCODE_MOV;
/* It's possible that the selected component will be too large and
* overflow the register. This can happen if someone does a
* readInvocation() from GLSL or SPIR-V and provides an OOB
* invocationIndex. If this happens and we some how manage
* to constant fold it in and get here, then component() may cause
* us to start reading outside of the VGRF which will lead to an
* assert later. Instead, just let it wrap around if it goes over
* exec_size.
*/
const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
inst->src[0] = component(inst->src[0], comp);
inst->sources = 1;
inst->force_writemask_all = true;
progress = true;
}
break;
case ELK_SHADER_OPCODE_SHUFFLE:
if (is_uniform(inst->src[0])) {
inst->opcode = ELK_OPCODE_MOV;
inst->sources = 1;
progress = true;
} else if (inst->src[1].file == IMM) {
inst->opcode = ELK_OPCODE_MOV;
inst->src[0] = component(inst->src[0],
inst->src[1].ud);
inst->sources = 1;
progress = true;
}
break;
default:
break;
}
/* Ensure that the correct source has the immediate value. 2-source
* instructions must have the immediate in src[1]. On Gfx12 and later,
* some 3-source instructions can have the immediate in src[0] or
* src[2]. It's complicated, so don't mess with 3-source instructions
* here.
*/
if (progress && inst->sources == 2 && inst->is_commutative()) {
if (inst->src[0].file == IMM) {
elk_fs_reg tmp = inst->src[1];
inst->src[1] = inst->src[0];
inst->src[0] = tmp;
}
}
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
DEPENDENCY_INSTRUCTION_DETAIL);
return progress;
}
static unsigned
load_payload_sources_read_for_size(elk_fs_inst *lp, unsigned size_read)
{
assert(lp->opcode == ELK_SHADER_OPCODE_LOAD_PAYLOAD);
assert(size_read >= lp->header_size * REG_SIZE);
unsigned i;
unsigned size = lp->header_size * REG_SIZE;
for (i = lp->header_size; size < size_read && i < lp->sources; i++)
size += lp->exec_size * type_sz(lp->src[i].type);
/* Size read must cover exactly a subset of sources. */
assert(size == size_read);
return i;
}
/**
* Optimize sample messages that have constant zero values for the trailing
* parameters. We can just reduce the message length for these
* instructions instead of reserving a register for it. Trailing parameters
* that aren't sent default to zero anyway. This will cause the dead code
* eliminator to remove the MOV instruction that would otherwise be emitted to
* set up the zero value.
*/
bool
elk_fs_visitor::opt_zero_samples()
{
/* Implementation supports only SENDs, so applicable to Gfx7+ only. */
assert(devinfo->ver >= 7);
bool progress = false;
foreach_block_and_inst(block, elk_fs_inst, send, cfg) {
if (send->opcode != ELK_SHADER_OPCODE_SEND ||
send->sfid != ELK_SFID_SAMPLER)
continue;
/* Wa_14012688258:
*
* Don't trim zeros at the end of payload for sample operations
* in cube and cube arrays.
*/
if (send->keep_payload_trailing_zeros)
continue;
elk_fs_inst *lp = (elk_fs_inst *) send->prev;
if (lp->is_head_sentinel() || lp->opcode != ELK_SHADER_OPCODE_LOAD_PAYLOAD)
continue;
/* How much of the payload are actually read by this SEND. */
const unsigned params =
load_payload_sources_read_for_size(lp, send->mlen * REG_SIZE);
/* We don't want to remove the message header or the first parameter.
* Removing the first parameter is not allowed, see the Haswell PRM
* volume 7, page 149:
*
* "Parameter 0 is required except for the sampleinfo message, which
* has no parameter 0"
*/
const unsigned first_param_idx = lp->header_size;
unsigned zero_size = 0;
for (unsigned i = params - 1; i > first_param_idx; i--) {
if (lp->src[i].file != BAD_FILE && !lp->src[i].is_zero())
break;
zero_size += lp->exec_size * type_sz(lp->src[i].type) * lp->dst.stride;
}
const unsigned zero_len = zero_size / (reg_unit(devinfo) * REG_SIZE);
if (zero_len > 0) {
send->mlen -= zero_len;
progress = true;
}
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
return progress;
}
/**
* Remove redundant or useless halts.
*
* For example, we can eliminate halts in the following sequence:
*
* halt (redundant with the next halt)
* halt (useless; jumps to the next instruction)
* halt-target
*/
bool
elk_fs_visitor::opt_redundant_halt()
{
bool progress = false;
unsigned halt_count = 0;
elk_fs_inst *halt_target = NULL;
elk_bblock_t *halt_target_block = NULL;
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
if (inst->opcode == ELK_OPCODE_HALT)
halt_count++;
if (inst->opcode == ELK_SHADER_OPCODE_HALT_TARGET) {
halt_target = inst;
halt_target_block = block;
break;
}
}
if (!halt_target) {
assert(halt_count == 0);
return false;
}
/* Delete any HALTs immediately before the halt target. */
for (elk_fs_inst *prev = (elk_fs_inst *) halt_target->prev;
!prev->is_head_sentinel() && prev->opcode == ELK_OPCODE_HALT;
prev = (elk_fs_inst *) halt_target->prev) {
prev->remove(halt_target_block);
halt_count--;
progress = true;
}
if (halt_count == 0) {
halt_target->remove(halt_target_block);
progress = true;
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
return progress;
}
/**
* Compute a bitmask with GRF granularity with a bit set for each GRF starting
* from \p r.offset which overlaps the region starting at \p s.offset and
* spanning \p ds bytes.
*/
static inline unsigned
mask_relative_to(const elk_fs_reg &r, const elk_fs_reg &s, unsigned ds)
{
const int rel_offset = reg_offset(s) - reg_offset(r);
const int shift = rel_offset / REG_SIZE;
const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
assert(reg_space(r) == reg_space(s) &&
shift >= 0 && shift < int(8 * sizeof(unsigned)));
return ((1 << n) - 1) << shift;
}
bool
elk_fs_visitor::compute_to_mrf()
{
bool progress = false;
int next_ip = 0;
/* No MRFs on Gen >= 7. */
if (devinfo->ver >= 7)
return false;
const fs_live_variables &live = live_analysis.require();
foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) {
int ip = next_ip;
next_ip++;
if (inst->opcode != ELK_OPCODE_MOV ||
inst->is_partial_write() ||
inst->dst.file != MRF || inst->src[0].file != VGRF ||
inst->dst.type != inst->src[0].type ||
inst->src[0].abs || inst->src[0].negate ||
!inst->src[0].is_contiguous() ||
inst->src[0].offset % REG_SIZE != 0)
continue;
/* Can't compute-to-MRF this GRF if someone else was going to
* read it later.
*/
if (live.vgrf_end[inst->src[0].nr] > ip)
continue;
/* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
* things that computed the value of all GRFs of the source region. The
* regs_left bitset keeps track of the registers we haven't yet found a
* generating instruction for.
*/
unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
foreach_inst_in_block_reverse_starting_from(elk_fs_inst, scan_inst, inst) {
if (regions_overlap(scan_inst->dst, scan_inst->size_written,
inst->src[0], inst->size_read(0))) {
/* Found the last thing to write our reg we want to turn
* into a compute-to-MRF.
*/
/* If this one instruction didn't populate all the
* channels, bail. We might be able to rewrite everything
* that writes that reg, but it would require smarter
* tracking.
*/
if (scan_inst->is_partial_write())
break;
/* Handling things not fully contained in the source of the copy
* would need us to understand coalescing out more than one MOV at
* a time.
*/
if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
inst->src[0], inst->size_read(0)))
break;
/* SEND instructions can't have MRF as a destination. */
if (scan_inst->mlen)
break;
if (devinfo->ver == 6) {
/* gfx6 math instructions must have the destination be
* GRF, so no compute-to-MRF for them.
*/
if (scan_inst->is_math()) {
break;
}
}
/* Clear the bits for any registers this instruction overwrites. */
regs_left &= ~mask_relative_to(
inst->src[0], scan_inst->dst, scan_inst->size_written);
if (!regs_left)
break;
}
/* We don't handle control flow here. Most computation of
* values that end up in MRFs are shortly before the MRF
* write anyway.
*/
if (block->start() == scan_inst)
break;
/* You can't read from an MRF, so if someone else reads our
* MRF's source GRF that we wanted to rewrite, that stops us.
*/
bool interfered = false;
for (int i = 0; i < scan_inst->sources; i++) {
if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
inst->src[0], inst->size_read(0))) {
interfered = true;
}
}
if (interfered)
break;
if (regions_overlap(scan_inst->dst, scan_inst->size_written,
inst->dst, inst->size_written)) {
/* If somebody else writes our MRF here, we can't
* compute-to-MRF before that.
*/
break;
}
if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
regions_overlap(elk_fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
inst->dst, inst->size_written)) {
/* Found a SEND instruction, which means that there are
* live values in MRFs from base_mrf to base_mrf +
* scan_inst->mlen - 1. Don't go pushing our MRF write up
* above it.
*/
break;
}
}
if (regs_left)
continue;
/* Found all generating instructions of our MRF's source value, so it
* should be safe to rewrite them to point to the MRF directly.
*/
regs_left = (1 << regs_read(inst, 0)) - 1;
foreach_inst_in_block_reverse_starting_from(elk_fs_inst, scan_inst, inst) {
if (regions_overlap(scan_inst->dst, scan_inst->size_written,
inst->src[0], inst->size_read(0))) {
/* Clear the bits for any registers this instruction overwrites. */
regs_left &= ~mask_relative_to(
inst->src[0], scan_inst->dst, scan_inst->size_written);
const unsigned rel_offset = reg_offset(scan_inst->dst) -
reg_offset(inst->src[0]);
if (inst->dst.nr & ELK_MRF_COMPR4) {
/* Apply the same address transformation done by the hardware
* for COMPR4 MRF writes.
*/
assert(rel_offset < 2 * REG_SIZE);
scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
/* Clear the COMPR4 bit if the generating instruction is not
* compressed.
*/
if (scan_inst->size_written < 2 * REG_SIZE)
scan_inst->dst.nr &= ~ELK_MRF_COMPR4;
} else {
/* Calculate the MRF number the result of this instruction is
* ultimately written to.
*/
scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
}
scan_inst->dst.file = MRF;
scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
scan_inst->saturate |= inst->saturate;
if (!regs_left)
break;
}
}
assert(!regs_left);
inst->remove(block);
progress = true;
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
return progress;
}
/**
* Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
* flow. We could probably do better here with some form of divergence
* analysis.
*/
bool
elk_fs_visitor::eliminate_find_live_channel()
{
bool progress = false;
unsigned depth = 0;
if (!elk_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
/* The optimization below assumes that channel zero is live on thread
* dispatch, which may not be the case if the fixed function dispatches
* threads sparsely.
*/
return false;
}
foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) {
switch (inst->opcode) {
case ELK_OPCODE_IF:
case ELK_OPCODE_DO:
depth++;
break;
case ELK_OPCODE_ENDIF:
case ELK_OPCODE_WHILE:
depth--;
break;
case ELK_OPCODE_HALT:
/* This can potentially make control flow non-uniform until the end
* of the program.
*/
goto out;
case ELK_SHADER_OPCODE_FIND_LIVE_CHANNEL:
if (depth == 0) {
inst->opcode = ELK_OPCODE_MOV;
inst->src[0] = elk_imm_ud(0u);
inst->sources = 1;
inst->force_writemask_all = true;
progress = true;
}
break;
default:
break;
}
}
out:
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
return progress;
}
/**
* Once we've generated code, try to convert normal ELK_FS_OPCODE_FB_WRITE
* instructions to ELK_FS_OPCODE_REP_FB_WRITE.
*/
void
elk_fs_visitor::emit_repclear_shader()
{
elk_wm_prog_key *key = (elk_wm_prog_key*) this->key;
elk_fs_inst *write = NULL;
assert(uniforms == 0);
assume(key->nr_color_regions > 0);
elk_fs_reg color_output, header;
if (devinfo->ver >= 7) {
color_output = retype(elk_vec4_grf(127, 0), ELK_REGISTER_TYPE_UD);
header = retype(elk_vec8_grf(125, 0), ELK_REGISTER_TYPE_UD);
} else {
color_output = retype(elk_vec4_reg(MRF, 2, 0), ELK_REGISTER_TYPE_UD);
header = retype(elk_vec8_reg(MRF, 0, 0), ELK_REGISTER_TYPE_UD);
}
/* We pass the clear color as a flat input. Copy it to the output. */
elk_fs_reg color_input =
elk_reg(ELK_GENERAL_REGISTER_FILE, 2, 3, 0, 0, ELK_REGISTER_TYPE_UD,
ELK_VERTICAL_STRIDE_8, ELK_WIDTH_2, ELK_HORIZONTAL_STRIDE_4,
ELK_SWIZZLE_XYZW, WRITEMASK_XYZW);
const fs_builder bld = fs_builder(this).at_end();
bld.exec_all().group(4, 0).MOV(color_output, color_input);
if (key->nr_color_regions > 1) {
/* Copy g0..g1 as the message header */
bld.exec_all().group(16, 0)
.MOV(header, retype(elk_vec8_grf(0, 0), ELK_REGISTER_TYPE_UD));
}
for (int i = 0; i < key->nr_color_regions; ++i) {
if (i > 0)
bld.exec_all().group(1, 0).MOV(component(header, 2), elk_imm_ud(i));
if (devinfo->ver >= 7) {
write = bld.emit(ELK_SHADER_OPCODE_SEND);
write->resize_sources(2);
write->sfid = GFX6_SFID_DATAPORT_RENDER_CACHE;
write->src[0] = elk_imm_ud(0);
write->src[1] = i == 0 ? color_output : header;
write->check_tdr = true;
write->send_has_side_effects = true;
write->desc = elk_fb_write_desc(devinfo, i,
ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED,
i == key->nr_color_regions - 1, false);
} else {
write = bld.emit(ELK_FS_OPCODE_REP_FB_WRITE);
write->target = i;
write->base_mrf = i == 0 ? color_output.nr : header.nr;
}
/* We can use a headerless message for the first render target */
write->header_size = i == 0 ? 0 : 2;
write->mlen = 1 + write->header_size;
}
write->eot = true;
write->last_rt = true;
calculate_cfg();
this->first_non_payload_grf = payload().num_regs;
}
/**
* Walks through basic blocks, looking for repeated MRF writes and
* removing the later ones.
*/
bool
elk_fs_visitor::remove_duplicate_mrf_writes()
{
elk_fs_inst *last_mrf_move[ELK_MAX_MRF_ALL];
bool progress = false;
/* Need to update the MRF tracking for compressed instructions. */
if (dispatch_width >= 16)
return false;
memset(last_mrf_move, 0, sizeof(last_mrf_move));
foreach_block_and_inst_safe (block, elk_fs_inst, inst, cfg) {
if (inst->is_control_flow()) {
memset(last_mrf_move, 0, sizeof(last_mrf_move));
}
if (inst->opcode == ELK_OPCODE_MOV &&
inst->dst.file == MRF) {
elk_fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
if (prev_inst && prev_inst->opcode == ELK_OPCODE_MOV &&
inst->dst.equals(prev_inst->dst) &&
inst->src[0].equals(prev_inst->src[0]) &&
inst->saturate == prev_inst->saturate &&
inst->predicate == prev_inst->predicate &&
inst->conditional_mod == prev_inst->conditional_mod &&
inst->exec_size == prev_inst->exec_size) {
inst->remove(block);
progress = true;
continue;
}
}
/* Clear out the last-write records for MRFs that were overwritten. */
if (inst->dst.file == MRF) {
last_mrf_move[inst->dst.nr] = NULL;
}
if (inst->mlen > 0 && inst->base_mrf != -1) {
/* Found a SEND instruction, which will include two or fewer
* implied MRF writes. We could do better here.
*/
for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
last_mrf_move[inst->base_mrf + i] = NULL;
}
}
/* Clear out any MRF move records whose sources got overwritten. */
for (unsigned i = 0; i < ELK_MAX_MRF(devinfo->ver); i++) {
if (last_mrf_move[i] &&
regions_overlap(inst->dst, inst->size_written,
last_mrf_move[i]->src[0],
last_mrf_move[i]->size_read(0))) {
last_mrf_move[i] = NULL;
}
}
if (inst->opcode == ELK_OPCODE_MOV &&
inst->dst.file == MRF &&
inst->src[0].file != ARF &&
!inst->is_partial_write()) {
last_mrf_move[inst->dst.nr] = inst;
}
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
return progress;
}
/**
* Rounding modes for conversion instructions are included for each
* conversion, but right now it is a state. So once it is set,
* we don't need to call it again for subsequent calls.
*
* This is useful for vector/matrices conversions, as setting the
* mode once is enough for the full vector/matrix
*/
bool
elk_fs_visitor::remove_extra_rounding_modes()
{
bool progress = false;
unsigned execution_mode = this->nir->info.float_controls_execution_mode;
elk_rnd_mode base_mode = ELK_RND_MODE_UNSPECIFIED;
if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
execution_mode)
base_mode = ELK_RND_MODE_RTNE;
if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
execution_mode)
base_mode = ELK_RND_MODE_RTZ;
foreach_block (block, cfg) {
elk_rnd_mode prev_mode = base_mode;
foreach_inst_in_block_safe (elk_fs_inst, inst, block) {
if (inst->opcode == ELK_SHADER_OPCODE_RND_MODE) {
assert(inst->src[0].file == ELK_IMMEDIATE_VALUE);
const elk_rnd_mode mode = (elk_rnd_mode) inst->src[0].d;
if (mode == prev_mode) {
inst->remove(block);
progress = true;
} else {
prev_mode = mode;
}
}
}
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
return progress;
}
static void
clear_deps_for_inst_src(elk_fs_inst *inst, bool *deps, int first_grf, int grf_len)
{
/* Clear the flag for registers that actually got read (as expected). */
for (int i = 0; i < inst->sources; i++) {
int grf;
if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
grf = inst->src[i].nr;
} else {
continue;
}
if (grf >= first_grf &&
grf < first_grf + grf_len) {
deps[grf - first_grf] = false;
if (inst->exec_size == 16)
deps[grf - first_grf + 1] = false;
}
}
}
/**
* Implements this workaround for the original 965:
*
* "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
* check for post destination dependencies on this instruction, software
* must ensure that there is no destination hazard for the case of ‘write
* followed by a posted write’ shown in the following example.
*
* 1. mov r3 0
* 2. send r3.xy <rest of send instruction>
* 3. mov r2 r3
*
* Due to no post-destination dependency check on the ‘send’, the above
* code sequence could have two instructions (1 and 2) in flight at the
* same time that both consider ‘r3’ as the target of their final writes.
*/
void
elk_fs_visitor::insert_gfx4_pre_send_dependency_workarounds(elk_bblock_t *block,
elk_fs_inst *inst)
{
int write_len = regs_written(inst);
int first_write_grf = inst->dst.nr;
bool needs_dep[ELK_MAX_MRF_ALL];
assert(write_len < ELK_MAX_MRF(devinfo->ver) - 1);
memset(needs_dep, false, sizeof(needs_dep));
memset(needs_dep, true, write_len);
clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
/* Walk backwards looking for writes to registers we're writing which
* aren't read since being written. If we hit the start of the program,
* we assume that there are no outstanding dependencies on entry to the
* program.
*/
foreach_inst_in_block_reverse_starting_from(elk_fs_inst, scan_inst, inst) {
/* If we hit control flow, assume that there *are* outstanding
* dependencies, and force their cleanup before our instruction.
*/
if (block->start() == scan_inst && block->num != 0) {
for (int i = 0; i < write_len; i++) {
if (needs_dep[i])
DEP_RESOLVE_MOV(fs_builder(this, block, inst),
first_write_grf + i);
}
return;
}
/* We insert our reads as late as possible on the assumption that any
* instruction but a MOV that might have left us an outstanding
* dependency has more latency than a MOV.
*/
if (scan_inst->dst.file == VGRF) {
for (unsigned i = 0; i < regs_written(scan_inst); i++) {
int reg = scan_inst->dst.nr + i;
if (reg >= first_write_grf &&
reg < first_write_grf + write_len &&
needs_dep[reg - first_write_grf]) {
DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
needs_dep[reg - first_write_grf] = false;
if (scan_inst->exec_size == 16)
needs_dep[reg - first_write_grf + 1] = false;
}
}
}
/* Clear the flag for registers that actually got read (as expected). */
clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
/* Continue the loop only if we haven't resolved all the dependencies */
int i;
for (i = 0; i < write_len; i++) {
if (needs_dep[i])
break;
}
if (i == write_len)
return;
}
}
/**
* Implements this workaround for the original 965:
*
* "[DevBW, DevCL] Errata: A destination register from a send can not be
* used as a destination register until after it has been sourced by an
* instruction with a different destination register.
*/
void
elk_fs_visitor::insert_gfx4_post_send_dependency_workarounds(elk_bblock_t *block, elk_fs_inst *inst)
{
int write_len = regs_written(inst);
unsigned first_write_grf = inst->dst.nr;
bool needs_dep[ELK_MAX_MRF_ALL];
assert(write_len < ELK_MAX_MRF(devinfo->ver) - 1);
memset(needs_dep, false, sizeof(needs_dep));
memset(needs_dep, true, write_len);
/* Walk forwards looking for writes to registers we're writing which aren't
* read before being written.
*/
foreach_inst_in_block_starting_from(elk_fs_inst, scan_inst, inst) {
/* If we hit control flow, force resolve all remaining dependencies. */
if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
for (int i = 0; i < write_len; i++) {
if (needs_dep[i])
DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
first_write_grf + i);
}
return;
}
/* Clear the flag for registers that actually got read (as expected). */
clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
/* We insert our reads as late as possible since they're reading the
* result of a SEND, which has massive latency.
*/
if (scan_inst->dst.file == VGRF &&
scan_inst->dst.nr >= first_write_grf &&
scan_inst->dst.nr < first_write_grf + write_len &&
needs_dep[scan_inst->dst.nr - first_write_grf]) {
DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
scan_inst->dst.nr);
needs_dep[scan_inst->dst.nr - first_write_grf] = false;
}
/* Continue the loop only if we haven't resolved all the dependencies */
int i;
for (i = 0; i < write_len; i++) {
if (needs_dep[i])
break;
}
if (i == write_len)
return;
}
}
void
elk_fs_visitor::insert_gfx4_send_dependency_workarounds()
{
if (devinfo->ver != 4 || devinfo->platform == INTEL_PLATFORM_G4X)
return;
bool progress = false;
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
if (inst->mlen != 0 && inst->dst.file == VGRF) {
insert_gfx4_pre_send_dependency_workarounds(block, inst);
insert_gfx4_post_send_dependency_workarounds(block, inst);
progress = true;
}
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
}
/**
* flags_read() and flags_written() return flag access with byte granularity,
* but for Flag Register PRM lists "Access Granularity: Word", so we can assume
* accessing any part of a word will clear its register dependency.
*/
static unsigned
bytes_bitmask_to_words(unsigned b)
{
unsigned first_byte_mask = b & 0x55555555;
unsigned second_byte_mask = b & 0xaaaaaaaa;
return first_byte_mask |
(first_byte_mask << 1) |
second_byte_mask |
(second_byte_mask >> 1);
}
/**
* WaClearArfDependenciesBeforeEot
*
* Flag register dependency not cleared after EOT, so we have to source them
* before EOT. We can do this with simple `mov(1) nullUD, f{0,1}UD`
*
* To avoid emitting MOVs when it's not needed, check if each block reads all
* the flags it sets. We might falsely determine register as unread if it'll be
* accessed inside the next blocks, but this still should be good enough.
*/
bool
elk_fs_visitor::workaround_source_arf_before_eot()
{
bool progress = false;
if (devinfo->platform != INTEL_PLATFORM_CHV)
return false;
unsigned flags_unread = 0;
foreach_block(block, cfg) {
unsigned flags_unread_in_block = 0;
foreach_inst_in_block(elk_fs_inst, inst, block) {
/* Instruction can read and write to the same flag, so the order is important */
flags_unread_in_block &= ~bytes_bitmask_to_words(inst->flags_read(devinfo));
flags_unread_in_block |= bytes_bitmask_to_words(inst->flags_written(devinfo));
/* HALT does not start its block even though it can leave a dependency */
if (inst->opcode == ELK_OPCODE_HALT ||
inst->opcode == ELK_SHADER_OPCODE_HALT_TARGET) {
flags_unread |= flags_unread_in_block;
flags_unread_in_block = 0;
}
}
flags_unread |= flags_unread_in_block;
if ((flags_unread & 0x0f) && (flags_unread & 0xf0))
break;
}
if (flags_unread) {
int eot_count = 0;
foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg)
{
if (!inst->eot)
continue;
/* Currently, we always emit only one EOT per program,
* this WA should be updated if it ever changes.
*/
++eot_count;
assert(eot_count == 1);
const fs_builder ibld(this, block, inst);
const fs_builder ubld = ibld.exec_all().group(1, 0);
if (flags_unread & 0x0f)
ubld.MOV(ubld.null_reg_ud(), retype(elk_flag_reg(0, 0), ELK_REGISTER_TYPE_UD));
if (flags_unread & 0xf0)
ubld.MOV(ubld.null_reg_ud(), retype(elk_flag_reg(1, 0), ELK_REGISTER_TYPE_UD));
}
progress = true;
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
}
return progress;
}
static bool
has_compr4(const struct intel_device_info *devinfo)
{
return devinfo->verx10 > 40 && devinfo->verx10 < 60;
}
bool
elk_fs_visitor::lower_load_payload()
{
bool progress = false;
foreach_block_and_inst_safe (block, elk_fs_inst, inst, cfg) {
if (inst->opcode != ELK_SHADER_OPCODE_LOAD_PAYLOAD)
continue;
assert(inst->dst.file == MRF || inst->dst.file == VGRF);
assert(inst->saturate == false);
elk_fs_reg dst = inst->dst;
/* Get rid of COMPR4. We'll add it back in if we need it */
if (dst.file == MRF)
dst.nr = dst.nr & ~ELK_MRF_COMPR4;
const fs_builder ibld(this, block, inst);
const fs_builder ubld = ibld.exec_all();
for (uint8_t i = 0; i < inst->header_size;) {
/* Number of header GRFs to initialize at once with a single MOV
* instruction.
*/
const unsigned n =
(i + 1 < inst->header_size && inst->src[i].stride == 1 &&
inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
2 : 1;
if (inst->src[i].file != BAD_FILE)
ubld.group(8 * n, 0).MOV(retype(dst, ELK_REGISTER_TYPE_UD),
retype(inst->src[i], ELK_REGISTER_TYPE_UD));
dst = byte_offset(dst, n * REG_SIZE);
i += n;
}
if (inst->dst.file == MRF && (inst->dst.nr & ELK_MRF_COMPR4) &&
inst->exec_size > 8) {
/* In this case, the payload portion of the LOAD_PAYLOAD isn't
* a straightforward copy. Instead, the result of the
* LOAD_PAYLOAD is treated as interleaved and the first four
* non-header sources are unpacked as:
*
* m + 0: r0
* m + 1: g0
* m + 2: b0
* m + 3: a0
* m + 4: r1
* m + 5: g1
* m + 6: b1
* m + 7: a1
*
* This is used for gen <= 5 fb writes.
*/
assert(inst->exec_size == 16);
assert(inst->header_size + 4 <= inst->sources);
for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
if (inst->src[i].file != BAD_FILE) {
if (has_compr4(devinfo)) {
elk_fs_reg compr4_dst = retype(dst, inst->src[i].type);
compr4_dst.nr |= ELK_MRF_COMPR4;
ibld.MOV(compr4_dst, inst->src[i]);
} else {
/* Platform doesn't have COMPR4. We have to fake it */
elk_fs_reg mov_dst = retype(dst, inst->src[i].type);
ibld.quarter(0).MOV(mov_dst, quarter(inst->src[i], 0));
mov_dst.nr += 4;
ibld.quarter(1).MOV(mov_dst, quarter(inst->src[i], 1));
}
}
dst.nr++;
}
/* The loop above only ever incremented us through the first set
* of 4 registers. However, thanks to the magic of COMPR4, we
* actually wrote to the first 8 registers, so we need to take
* that into account now.
*/
dst.nr += 4;
/* The COMPR4 code took care of the first 4 sources. We'll let
* the regular path handle any remaining sources. Yes, we are
* modifying the instruction but we're about to delete it so
* this really doesn't hurt anything.
*/
inst->header_size += 4;
}
for (uint8_t i = inst->header_size; i < inst->sources; i++) {
dst.type = inst->src[i].type;
if (inst->src[i].file != BAD_FILE) {
ibld.MOV(dst, inst->src[i]);
}
dst = offset(dst, ibld, 1);
}
inst->remove(block);
progress = true;
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
return progress;
}
/**
* Factor an unsigned 32-bit integer.
*
* Attempts to factor \c x into two values that are at most 0xFFFF. If no
* such factorization is possible, either because the value is too large or is
* prime, both \c result_a and \c result_b will be zero.
*/
static void
factor_uint32(uint32_t x, unsigned *result_a, unsigned *result_b)
{
/* This is necessary to prevent various opportunities for division by zero
* below.
*/
assert(x > 0xffff);
/* This represents the actual expected constraints on the input. Namely,
* both the upper and lower words should be > 1.
*/
assert(x >= 0x00020002);
*result_a = 0;
*result_b = 0;
/* The value is too large to factor with the constraints. */
if (x > (0xffffu * 0xffffu))
return;
/* A non-prime number will have the form p*q*d where p is some prime
* number, q > 1, and 1 <= d <= q. To meet the constraints of this
* function, (p*d) < 0x10000. This implies d <= floor(0xffff / p).
* Furthermore, since q < 0x10000, d >= floor(x / (0xffff * p)). Finally,
* floor(x / (0xffff * p)) <= d <= floor(0xffff / p).
*
* The observation is finding the largest possible value of p reduces the
* possible range of d. After selecting p, all values of d in this range
* are tested until a factorization is found. The size of the range of
* possible values of d sets an upper bound on the run time of the
* function.
*/
static const uint16_t primes[256] = {
2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131, /* 32 */
137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223,
227, 229, 233, 239, 241, 251, 257, 263,
269, 271, 277, 281, 283, 293, 307, 311, /* 64 */
313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457,
461, 463, 467, 479, 487, 491, 499, 503, /* 96 */
509, 521, 523, 541, 547, 557, 563, 569,
571, 577, 587, 593, 599, 601, 607, 613,
617, 619, 631, 641, 643, 647, 653, 659,
661, 673, 677, 683, 691, 701, 709, 719, /* 128 */
727, 733, 739, 743, 751, 757, 761, 769,
773, 787, 797, 809, 811, 821, 823, 827,
829, 839, 853, 857, 859, 863, 877, 881,
883, 887, 907, 911, 919, 929, 937, 941, /* 160 */
947, 953, 967, 971, 977, 983, 991, 997,
1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049,
1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097,
1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, /* 192 */
1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223,
1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283,
1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321,
1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, /* 224 */
1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459,
1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511,
1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571,
1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, /* 256 */
};
unsigned p;
unsigned x_div_p;
for (int i = ARRAY_SIZE(primes) - 1; i >= 0; i--) {
p = primes[i];
x_div_p = x / p;
if ((x_div_p * p) == x)
break;
}
/* A prime factor was not found. */
if (x_div_p * p != x)
return;
/* Terminate early if d=1 is a solution. */
if (x_div_p < 0x10000) {
*result_a = x_div_p;
*result_b = p;
return;
}
/* Pick the maximum possible value for 'd'. It's important that the loop
* below execute while d <= max_d because max_d is a valid value. Having
* the wrong loop bound would cause 1627*1367*47 (0x063b0c83) to be
* incorrectly reported as not being factorable. The problem would occur
* with any value that is a factor of two primes in the table and one prime
* not in the table.
*/
const unsigned max_d = 0xffff / p;
/* Pick an initial value of 'd' that (combined with rejecting too large
* values above) guarantees that 'q' will always be small enough.
* DIV_ROUND_UP is used to prevent 'd' from being zero.
*/
for (unsigned d = DIV_ROUND_UP(x_div_p, 0xffff); d <= max_d; d++) {
unsigned q = x_div_p / d;
if ((q * d) == x_div_p) {
assert(p * d * q == x);
assert((p * d) < 0x10000);
*result_a = q;
*result_b = p * d;
break;
}
/* Since every value of 'd' is tried, as soon as 'd' is larger
* than 'q', we're just re-testing combinations that have
* already been tested.
*/
if (d > q)
break;
}
}
void
elk_fs_visitor::lower_mul_dword_inst(elk_fs_inst *inst, elk_bblock_t *block)
{
const fs_builder ibld(this, block, inst);
/* It is correct to use inst->src[1].d in both end of the comparison.
* Using .ud in the UINT16_MAX comparison would cause any negative value to
* fail the check.
*/
if (inst->src[1].file == IMM &&
(inst->src[1].d >= INT16_MIN && inst->src[1].d <= UINT16_MAX)) {
/* The MUL instruction isn't commutative. On Gen <= 6, only the low
* 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
* src1 are used.
*
* If multiplying by an immediate value that fits in 16-bits, do a
* single MUL instruction with that value in the proper location.
*/
const bool ud = (inst->src[1].d >= 0);
if (devinfo->ver < 7) {
elk_fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
ibld.MOV(imm, inst->src[1]);
ibld.MUL(inst->dst, imm, inst->src[0]);
} else {
ibld.MUL(inst->dst, inst->src[0],
ud ? elk_imm_uw(inst->src[1].ud)
: elk_imm_w(inst->src[1].d));
}
} else {
/* Gen < 8 (and some Gfx8+ low-power parts like Cherryview) cannot
* do 32-bit integer multiplication in one instruction, but instead
* must do a sequence (which actually calculates a 64-bit result):
*
* mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
* mach(8) null g3<8,8,1>D g4<8,8,1>D
* mov(8) g2<1>D acc0<8,8,1>D
*
* But on Gen > 6, the ability to use second accumulator register
* (acc1) for non-float data types was removed, preventing a simple
* implementation in SIMD16. A 16-channel result can be calculated by
* executing the three instructions twice in SIMD8, once with quarter
* control of 1Q for the first eight channels and again with 2Q for
* the second eight channels.
*
* Which accumulator register is implicitly accessed (by AccWrEnable
* for instance) is determined by the quarter control. Unfortunately
* Ivybridge (and presumably Baytrail) has a hardware bug in which an
* implicit accumulator access by an instruction with 2Q will access
* acc1 regardless of whether the data type is usable in acc1.
*
* Specifically, the 2Q mach(8) writes acc1 which does not exist for
* integer data types.
*
* Since we only want the low 32-bits of the result, we can do two
* 32-bit x 16-bit multiplies (like the mul and mach are doing), and
* adjust the high result and add them (like the mach is doing):
*
* mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
* mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
* shl(8) g9<1>D g8<8,8,1>D 16D
* add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
*
* We avoid the shl instruction by realizing that we only want to add
* the low 16-bits of the "high" result to the high 16-bits of the
* "low" result and using proper regioning on the add:
*
* mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
* mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
* add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
*
* Since it does not use the (single) accumulator register, we can
* schedule multi-component multiplications much better.
*/
bool needs_mov = false;
elk_fs_reg orig_dst = inst->dst;
/* Get a new VGRF for the "low" 32x16-bit multiplication result if
* reusing the original destination is impossible due to hardware
* restrictions, source/destination overlap, or it being the null
* register.
*/
elk_fs_reg low = inst->dst;
if (orig_dst.is_null() || orig_dst.file == MRF ||
regions_overlap(inst->dst, inst->size_written,
inst->src[0], inst->size_read(0)) ||
regions_overlap(inst->dst, inst->size_written,
inst->src[1], inst->size_read(1)) ||
inst->dst.stride >= 4) {
needs_mov = true;
low = elk_fs_reg(VGRF, alloc.allocate(regs_written(inst)),
inst->dst.type);
}
/* Get a new VGRF but keep the same stride as inst->dst */
elk_fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
high.stride = inst->dst.stride;
high.offset = inst->dst.offset % REG_SIZE;
bool do_addition = true;
if (devinfo->ver >= 7) {
if (inst->src[1].abs)
lower_src_modifiers(this, block, inst, 1);
if (inst->src[1].file == IMM) {
unsigned a;
unsigned b;
/* If the immeditate value can be factored into two values, A and
* B, that each fit in 16-bits, the multiplication result can
* instead be calculated as (src1 * (A * B)) = ((src1 * A) * B).
* This saves an operation (the addition) and a temporary register
* (high).
*
* Skip the optimization if either the high word or the low word
* is 0 or 1. In these conditions, at least one of the
* multiplications generated by the straightforward method will be
* eliminated anyway.
*/
if (inst->src[1].ud > 0x0001ffff &&
(inst->src[1].ud & 0xffff) > 1) {
factor_uint32(inst->src[1].ud, &a, &b);
if (a != 0) {
ibld.MUL(low, inst->src[0], elk_imm_uw(a));
ibld.MUL(low, low, elk_imm_uw(b));
do_addition = false;
}
}
if (do_addition) {
ibld.MUL(low, inst->src[0],
elk_imm_uw(inst->src[1].ud & 0xffff));
ibld.MUL(high, inst->src[0],
elk_imm_uw(inst->src[1].ud >> 16));
}
} else {
ibld.MUL(low, inst->src[0],
subscript(inst->src[1], ELK_REGISTER_TYPE_UW, 0));
ibld.MUL(high, inst->src[0],
subscript(inst->src[1], ELK_REGISTER_TYPE_UW, 1));
}
} else {
if (inst->src[0].abs)
lower_src_modifiers(this, block, inst, 0);
ibld.MUL(low, subscript(inst->src[0], ELK_REGISTER_TYPE_UW, 0),
inst->src[1]);
ibld.MUL(high, subscript(inst->src[0], ELK_REGISTER_TYPE_UW, 1),
inst->src[1]);
}
if (do_addition) {
ibld.ADD(subscript(low, ELK_REGISTER_TYPE_UW, 1),
subscript(low, ELK_REGISTER_TYPE_UW, 1),
subscript(high, ELK_REGISTER_TYPE_UW, 0));
}
if (needs_mov || inst->conditional_mod)
set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
}
}
void
elk_fs_visitor::lower_mul_qword_inst(elk_fs_inst *inst, elk_bblock_t *block)
{
const fs_builder ibld(this, block, inst);
/* Considering two 64-bit integers ab and cd where each letter ab
* corresponds to 32 bits, we get a 128-bit result WXYZ. We * cd
* only need to provide the YZ part of the result. -------
* BD
* Only BD needs to be 64 bits. For AD and BC we only care + AD
* about the lower 32 bits (since they are part of the upper + BC
* 32 bits of our result). AC is not needed since it starts + AC
* on the 65th bit of the result. -------
* WXYZ
*/
unsigned int q_regs = regs_written(inst);
unsigned int d_regs = (q_regs + 1) / 2;
elk_fs_reg bd(VGRF, alloc.allocate(q_regs), ELK_REGISTER_TYPE_UQ);
elk_fs_reg ad(VGRF, alloc.allocate(d_regs), ELK_REGISTER_TYPE_UD);
elk_fs_reg bc(VGRF, alloc.allocate(d_regs), ELK_REGISTER_TYPE_UD);
/* Here we need the full 64 bit result for 32b * 32b. */
if (devinfo->has_integer_dword_mul) {
ibld.MUL(bd, subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0),
subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 0));
} else {
elk_fs_reg bd_high(VGRF, alloc.allocate(d_regs), ELK_REGISTER_TYPE_UD);
elk_fs_reg bd_low(VGRF, alloc.allocate(d_regs), ELK_REGISTER_TYPE_UD);
const unsigned acc_width = reg_unit(devinfo) * 8;
elk_fs_reg acc = suboffset(retype(elk_acc_reg(inst->exec_size), ELK_REGISTER_TYPE_UD),
inst->group % acc_width);
elk_fs_inst *mul = ibld.MUL(acc,
subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0),
subscript(inst->src[1], ELK_REGISTER_TYPE_UW, 0));
mul->writes_accumulator = true;
ibld.MACH(bd_high, subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0),
subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 0));
ibld.MOV(bd_low, acc);
ibld.UNDEF(bd);
ibld.MOV(subscript(bd, ELK_REGISTER_TYPE_UD, 0), bd_low);
ibld.MOV(subscript(bd, ELK_REGISTER_TYPE_UD, 1), bd_high);
}
ibld.MUL(ad, subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 1),
subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 0));
ibld.MUL(bc, subscript(inst->src[0], ELK_REGISTER_TYPE_UD, 0),
subscript(inst->src[1], ELK_REGISTER_TYPE_UD, 1));
ibld.ADD(ad, ad, bc);
ibld.ADD(subscript(bd, ELK_REGISTER_TYPE_UD, 1),
subscript(bd, ELK_REGISTER_TYPE_UD, 1), ad);
if (devinfo->has_64bit_int) {
ibld.MOV(inst->dst, bd);
} else {
if (!inst->is_partial_write())
ibld.emit_undef_for_dst(inst);
ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 0),
subscript(bd, ELK_REGISTER_TYPE_UD, 0));
ibld.MOV(subscript(inst->dst, ELK_REGISTER_TYPE_UD, 1),
subscript(bd, ELK_REGISTER_TYPE_UD, 1));
}
}
void
elk_fs_visitor::lower_mulh_inst(elk_fs_inst *inst, elk_bblock_t *block)
{
const fs_builder ibld(this, block, inst);
/* According to the BDW+ BSpec page for the "Multiply Accumulate
* High" instruction:
*
* "An added preliminary mov is required for source modification on
* src1:
* mov (8) r3.0<1>:d -r3<8;8,1>:d
* mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
* mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
*/
if (devinfo->ver >= 8 && (inst->src[1].negate || inst->src[1].abs))
lower_src_modifiers(this, block, inst, 1);
/* Should have been lowered to 8-wide. */
assert(inst->exec_size <= get_lowered_simd_width(this, inst));
const unsigned acc_width = reg_unit(devinfo) * 8;
const elk_fs_reg acc = suboffset(retype(elk_acc_reg(inst->exec_size), inst->dst.type),
inst->group % acc_width);
elk_fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
elk_fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
if (devinfo->ver >= 8) {
/* Until Gfx8, integer multiplies read 32-bits from one source,
* and 16-bits from the other, and relying on the MACH instruction
* to generate the high bits of the result.
*
* On Gfx8, the multiply instruction does a full 32x32-bit
* multiply, but in order to do a 64-bit multiply we can simulate
* the previous behavior and then use a MACH instruction.
*/
assert(mul->src[1].type == ELK_REGISTER_TYPE_D ||
mul->src[1].type == ELK_REGISTER_TYPE_UD);
mul->src[1].type = ELK_REGISTER_TYPE_UW;
mul->src[1].stride *= 2;
if (mul->src[1].file == IMM) {
mul->src[1] = elk_imm_uw(mul->src[1].ud);
}
} else if (devinfo->verx10 == 70 &&
inst->group > 0) {
/* Among other things the quarter control bits influence which
* accumulator register is used by the hardware for instructions
* that access the accumulator implicitly (e.g. MACH). A
* second-half instruction would normally map to acc1, which
* doesn't exist on Gfx7 and up (the hardware does emulate it for
* floating-point instructions *only* by taking advantage of the
* extra precision of acc0 not normally used for floating point
* arithmetic).
*
* HSW and up are careful enough not to try to access an
* accumulator register that doesn't exist, but on earlier Gfx7
* hardware we need to make sure that the quarter control bits are
* zero to avoid non-deterministic behaviour and emit an extra MOV
* to get the result masked correctly according to the current
* channel enables.
*/
mach->group = 0;
mach->force_writemask_all = true;
mach->dst = ibld.vgrf(inst->dst.type);
ibld.MOV(inst->dst, mach->dst);
}
}
bool
elk_fs_visitor::lower_integer_multiplication()
{
bool progress = false;
foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) {
if (inst->opcode == ELK_OPCODE_MUL) {
/* If the instruction is already in a form that does not need lowering,
* return early.
*/
if (devinfo->ver >= 7) {
if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4)
continue;
} else {
if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4)
continue;
}
if ((inst->dst.type == ELK_REGISTER_TYPE_Q ||
inst->dst.type == ELK_REGISTER_TYPE_UQ) &&
(inst->src[0].type == ELK_REGISTER_TYPE_Q ||
inst->src[0].type == ELK_REGISTER_TYPE_UQ) &&
(inst->src[1].type == ELK_REGISTER_TYPE_Q ||
inst->src[1].type == ELK_REGISTER_TYPE_UQ)) {
lower_mul_qword_inst(inst, block);
inst->remove(block);
progress = true;
} else if (!inst->dst.is_accumulator() &&
(inst->dst.type == ELK_REGISTER_TYPE_D ||
inst->dst.type == ELK_REGISTER_TYPE_UD) &&
!devinfo->has_integer_dword_mul) {
lower_mul_dword_inst(inst, block);
inst->remove(block);
progress = true;
}
} else if (inst->opcode == ELK_SHADER_OPCODE_MULH) {
lower_mulh_inst(inst, block);
inst->remove(block);
progress = true;
}
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
bool
elk_fs_visitor::lower_minmax()
{
assert(devinfo->ver < 6);
bool progress = false;
foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) {
const fs_builder ibld(this, block, inst);
if (inst->opcode == ELK_OPCODE_SEL &&
inst->predicate == ELK_PREDICATE_NONE) {
/* If src1 is an immediate value that is not NaN, then it can't be
* NaN. In that case, emit CMP because it is much better for cmod
* propagation. Likewise if src1 is not float. Gfx4 and Gfx5 don't
* support HF or DF, so it is not necessary to check for those.
*/
if (inst->src[1].type != ELK_REGISTER_TYPE_F ||
(inst->src[1].file == IMM && !isnan(inst->src[1].f))) {
ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
inst->conditional_mod);
} else {
ibld.CMPN(ibld.null_reg_d(), inst->src[0], inst->src[1],
inst->conditional_mod);
}
inst->predicate = ELK_PREDICATE_NORMAL;
inst->conditional_mod = ELK_CONDITIONAL_NONE;
progress = true;
}
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
return progress;
}
bool
elk_fs_visitor::lower_sub_sat()
{
bool progress = false;
foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) {
const fs_builder ibld(this, block, inst);
if (inst->opcode == ELK_SHADER_OPCODE_USUB_SAT ||
inst->opcode == ELK_SHADER_OPCODE_ISUB_SAT) {
/* The fundamental problem is the hardware performs source negation
* at the bit width of the source. If the source is 0x80000000D, the
* negation is 0x80000000D. As a result, subtractSaturate(0,
* 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There
* are at least three ways to resolve this:
*
* 1. Use the accumulator for the negated source. The accumulator is
* 33 bits, so our source 0x80000000 is sign-extended to
* 0x1800000000. The negation of which is 0x080000000. This
* doesn't help for 64-bit integers (which are already bigger than
* 33 bits). There are also only 8 accumulators, so SIMD16 or
* SIMD32 instructions would have to be split into multiple SIMD8
* instructions.
*
* 2. Use slightly different math. For any n-bit value x, we know (x
* >> 1) != -(x >> 1). We can use this fact to only do
* subtractions involving (x >> 1). subtractSaturate(a, b) ==
* subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
*
* 3. For unsigned sources, it is sufficient to replace the
* subtractSaturate with (a > b) ? a - b : 0.
*
* It may also be possible to use the SUBB instruction. This
* implicitly writes the accumulator, so it could only be used in the
* same situations as #1 above. It is further limited by only
* allowing UD sources.
*/
if (inst->exec_size == 8 && inst->src[0].type != ELK_REGISTER_TYPE_Q &&
inst->src[0].type != ELK_REGISTER_TYPE_UQ) {
elk_fs_reg acc(ARF, ELK_ARF_ACCUMULATOR, inst->src[1].type);
ibld.MOV(acc, inst->src[1]);
elk_fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
add->saturate = true;
add->src[0].negate = true;
} else if (inst->opcode == ELK_SHADER_OPCODE_ISUB_SAT) {
/* tmp = src1 >> 1;
* dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
*/
elk_fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
elk_fs_reg tmp2 = ibld.vgrf(inst->src[0].type);
elk_fs_reg tmp3 = ibld.vgrf(inst->src[0].type);
elk_fs_inst *add;
ibld.SHR(tmp1, inst->src[1], elk_imm_d(1));
add = ibld.ADD(tmp2, inst->src[1], tmp1);
add->src[1].negate = true;
add = ibld.ADD(tmp3, inst->src[0], tmp1);
add->src[1].negate = true;
add->saturate = true;
add = ibld.ADD(inst->dst, tmp3, tmp2);
add->src[1].negate = true;
add->saturate = true;
} else {
/* a > b ? a - b : 0 */
ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
ELK_CONDITIONAL_G);
elk_fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
add->src[1].negate = !add->src[1].negate;
ibld.SEL(inst->dst, inst->dst, elk_imm_ud(0))
->predicate = ELK_PREDICATE_NORMAL;
}
inst->remove(block);
progress = true;
}
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
/**
* Get the mask of SIMD channels enabled during dispatch and not yet disabled
* by discard. Due to the layout of the sample mask in the fragment shader
* thread payload, \p bld is required to have a dispatch_width() not greater
* than 16 for fragment shaders.
*/
elk_fs_reg
elk_sample_mask_reg(const fs_builder &bld)
{
const elk_fs_visitor &s = *bld.shader;
if (s.stage != MESA_SHADER_FRAGMENT) {
return elk_imm_ud(0xffffffff);
} else if (elk_wm_prog_data(s.stage_prog_data)->uses_kill) {
assert(bld.dispatch_width() <= 16);
return elk_flag_subreg(sample_mask_flag_subreg(s) + bld.group() / 16);
} else {
assert(s.devinfo->ver >= 6 && bld.dispatch_width() <= 16);
return retype(elk_vec1_grf((bld.group() >= 16 ? 2 : 1), 7),
ELK_REGISTER_TYPE_UW);
}
}
uint32_t
elk_fb_write_msg_control(const elk_fs_inst *inst,
const struct elk_wm_prog_data *prog_data)
{
uint32_t mctl;
if (inst->opcode == ELK_FS_OPCODE_REP_FB_WRITE) {
assert(inst->group == 0 && inst->exec_size == 16);
mctl = ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
} else if (prog_data->dual_src_blend) {
assert(inst->exec_size == 8);
if (inst->group % 16 == 0)
mctl = ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
else if (inst->group % 16 == 8)
mctl = ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
else
unreachable("Invalid dual-source FB write instruction group");
} else {
assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
if (inst->exec_size == 16)
mctl = ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
else if (inst->exec_size == 8)
mctl = ELK_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
else
unreachable("Invalid FB write execution size");
}
return mctl;
}
/**
* Predicate the specified instruction on the sample mask.
*/
void
elk_emit_predicate_on_sample_mask(const fs_builder &bld, elk_fs_inst *inst)
{
assert(bld.shader->stage == MESA_SHADER_FRAGMENT &&
bld.group() == inst->group &&
bld.dispatch_width() == inst->exec_size);
const elk_fs_visitor &s = *bld.shader;
const elk_fs_reg sample_mask = elk_sample_mask_reg(bld);
const unsigned subreg = sample_mask_flag_subreg(s);
if (elk_wm_prog_data(s.stage_prog_data)->uses_kill) {
assert(sample_mask.file == ARF &&
sample_mask.nr == elk_flag_subreg(subreg).nr &&
sample_mask.subnr == elk_flag_subreg(
subreg + inst->group / 16).subnr);
} else {
bld.group(1, 0).exec_all()
.MOV(elk_flag_subreg(subreg + inst->group / 16), sample_mask);
}
if (inst->predicate) {
assert(inst->predicate == ELK_PREDICATE_NORMAL);
assert(!inst->predicate_inverse);
assert(inst->flag_subreg == 0);
/* Combine the sample mask with the existing predicate by using a
* vertical predication mode.
*/
inst->predicate = ELK_PREDICATE_ALIGN1_ALLV;
} else {
inst->flag_subreg = subreg;
inst->predicate = ELK_PREDICATE_NORMAL;
inst->predicate_inverse = false;
}
}
static bool
is_mixed_float_with_fp32_dst(const elk_fs_inst *inst)
{
/* This opcode sometimes uses :W type on the source even if the operand is
* a :HF, because in gfx7 there is no support for :HF, and thus it uses :W.
*/
if (inst->opcode == ELK_OPCODE_F16TO32)
return true;
if (inst->dst.type != ELK_REGISTER_TYPE_F)
return false;
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].type == ELK_REGISTER_TYPE_HF)
return true;
}
return false;
}
static bool
is_mixed_float_with_packed_fp16_dst(const elk_fs_inst *inst)
{
/* This opcode sometimes uses :W type on the destination even if the
* destination is a :HF, because in gfx7 there is no support for :HF, and
* thus it uses :W.
*/
if (inst->opcode == ELK_OPCODE_F32TO16 &&
inst->dst.stride == 1)
return true;
if (inst->dst.type != ELK_REGISTER_TYPE_HF ||
inst->dst.stride != 1)
return false;
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].type == ELK_REGISTER_TYPE_F)
return true;
}
return false;
}
/**
* Get the closest allowed SIMD width for instruction \p inst accounting for
* some common regioning and execution control restrictions that apply to FPU
* instructions. These restrictions don't necessarily have any relevance to
* instructions not executed by the FPU pipeline like extended math, control
* flow or send message instructions.
*
* For virtual opcodes it's really up to the instruction -- In some cases
* (e.g. where a virtual instruction unrolls into a simple sequence of FPU
* instructions) it may simplify virtual instruction lowering if we can
* enforce FPU-like regioning restrictions already on the virtual instruction,
* in other cases (e.g. virtual send-like instructions) this may be
* excessively restrictive.
*/
static unsigned
get_fpu_lowered_simd_width(const elk_fs_visitor *shader,
const elk_fs_inst *inst)
{
const struct elk_compiler *compiler = shader->compiler;
const struct intel_device_info *devinfo = compiler->devinfo;
/* Maximum execution size representable in the instruction controls. */
unsigned max_width = MIN2(32, inst->exec_size);
/* According to the PRMs:
* "A. In Direct Addressing mode, a source cannot span more than 2
* adjacent GRF registers.
* B. A destination cannot span more than 2 adjacent GRF registers."
*
* Look for the source or destination with the largest register region
* which is the one that is going to limit the overall execution size of
* the instruction due to this rule.
*/
unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
for (unsigned i = 0; i < inst->sources; i++)
reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
/* Calculate the maximum execution size of the instruction based on the
* factor by which it goes over the hardware limit of 2 GRFs.
*/
const unsigned max_reg_count = 2 * reg_unit(devinfo);
if (reg_count > max_reg_count)
max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, max_reg_count));
/* According to the IVB PRMs:
* "When destination spans two registers, the source MUST span two
* registers. The exception to the above rule:
*
* - When source is scalar, the source registers are not incremented.
* - When source is packed integer Word and destination is packed
* integer DWord, the source register is not incremented but the
* source sub register is incremented."
*
* The hardware specs from Gfx4 to Gfx7.5 mention similar regioning
* restrictions. The code below intentionally doesn't check whether the
* destination type is integer because empirically the hardware doesn't
* seem to care what the actual type is as long as it's dword-aligned.
*
* HSW PRMs also add a note to the second exception:
* "When lower 8 channels are disabled, the sub register of source1
* operand is not incremented. If the lower 8 channels are expected
* to be disabled, say by predication, the instruction must be split
* into pair of simd8 operations."
*
* We can't reliably know if the channels won't be disabled due to,
* for example, IMASK. So, play it safe and disallow packed-word exception
* for src1.
*/
if (devinfo->ver < 8) {
for (unsigned i = 0; i < inst->sources; i++) {
/* IVB implements DF scalars as <0;2,1> regions. */
const bool is_scalar_exception = is_uniform(inst->src[i]) &&
(devinfo->platform == INTEL_PLATFORM_HSW || type_sz(inst->src[i].type) != 8);
const bool is_packed_word_exception = i != 1 &&
type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
/* We check size_read(i) against size_written instead of REG_SIZE
* because we want to properly handle SIMD32. In SIMD32, you can end
* up with writes to 4 registers and a source that reads 2 registers
* and we may still need to lower all the way to SIMD8 in that case.
*/
if (inst->size_written > REG_SIZE &&
inst->size_read(i) != 0 &&
inst->size_read(i) < inst->size_written &&
!is_scalar_exception && !is_packed_word_exception) {
const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
max_width = MIN2(max_width, inst->exec_size / reg_count);
}
}
}
if (devinfo->ver < 6) {
/* From the G45 PRM, Volume 4 Page 361:
*
* "Operand Alignment Rule: With the exceptions listed below, a
* source/destination operand in general should be aligned to even
* 256-bit physical register with a region size equal to two 256-bit
* physical registers."
*
* Normally we enforce this by allocating virtual registers to the
* even-aligned class. But we need to handle payload registers.
*/
for (unsigned i = 0; i < inst->sources; i++) {
if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
inst->size_read(i) > REG_SIZE) {
max_width = MIN2(max_width, 8);
}
}
}
/* From the IVB PRMs:
* "When an instruction is SIMD32, the low 16 bits of the execution mask
* are applied for both halves of the SIMD32 instruction. If different
* execution mask channels are required, split the instruction into two
* SIMD16 instructions."
*
* There is similar text in the HSW PRMs. Gfx4-6 don't even implement
* 32-wide control flow support in hardware and will behave similarly.
*/
if (devinfo->ver < 8 && !inst->force_writemask_all)
max_width = MIN2(max_width, 16);
/* From the IVB PRMs (applies to HSW too):
* "Instructions with condition modifiers must not use SIMD32."
*
* From the BDW PRMs (applies to later hardware too):
* "Ternary instruction with condition modifiers must not use SIMD32."
*/
if (inst->conditional_mod && (devinfo->ver < 8 ||
inst->elk_is_3src(compiler)))
max_width = MIN2(max_width, 16);
/* From the IVB PRMs (applies to other devices that don't have the
* intel_device_info::supports_simd16_3src flag set):
* "In Align16 access mode, SIMD16 is not allowed for DW operations and
* SIMD8 is not allowed for DF operations."
*/
if (inst->elk_is_3src(compiler) && !devinfo->supports_simd16_3src)
max_width = MIN2(max_width, inst->exec_size / reg_count);
/* Pre-Gfx8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
* the 8-bit quarter of the execution mask signals specified in the
* instruction control fields) for the second compressed half of any
* single-precision instruction (for double-precision instructions
* it's hardwired to use NibCtrl+1, at least on HSW), which means that
* the EU will apply the wrong execution controls for the second
* sequential GRF write if the number of channels per GRF is not exactly
* eight in single-precision mode (or four in double-float mode).
*
* In this situation we calculate the maximum size of the split
* instructions so they only ever write to a single register.
*/
if (devinfo->ver < 8 && inst->size_written > REG_SIZE &&
!inst->force_writemask_all) {
const unsigned channels_per_grf = inst->exec_size /
DIV_ROUND_UP(inst->size_written, REG_SIZE);
const unsigned exec_type_size = get_exec_type_size(inst);
assert(exec_type_size);
/* The hardware shifts exactly 8 channels per compressed half of the
* instruction in single-precision mode and exactly 4 in double-precision.
*/
if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
max_width = MIN2(max_width, channels_per_grf);
/* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
* because HW applies the same channel enable signals to both halves of
* the compressed instruction which will be just wrong under
* non-uniform control flow.
*/
if (devinfo->verx10 == 70 &&
(exec_type_size == 8 || type_sz(inst->dst.type) == 8))
max_width = MIN2(max_width, 4);
}
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No SIMD16 in mixed mode when destination is f32. Instruction
* execution size must be no more than 8."
*
* FIXME: the simulator doesn't seem to complain if we don't do this and
* empirical testing with existing CTS tests show that they pass just fine
* without implementing this, however, since our interpretation of the PRM
* is that conversion MOVs between HF and F are still mixed-float
* instructions (and therefore subject to this restriction) we decided to
* split them to be safe. Might be useful to do additional investigation to
* lift the restriction if we can ensure that it is safe though, since these
* conversions are common when half-float types are involved since many
* instructions do not support HF types and conversions from/to F are
* required.
*/
if (is_mixed_float_with_fp32_dst(inst))
max_width = MIN2(max_width, 8);
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No SIMD16 in mixed mode when destination is packed f16 for both
* Align1 and Align16."
*/
if (is_mixed_float_with_packed_fp16_dst(inst))
max_width = MIN2(max_width, 8);
/* Only power-of-two execution sizes are representable in the instruction
* control fields.
*/
return 1 << util_logbase2(max_width);
}
/**
* Get the maximum allowed SIMD width for instruction \p inst accounting for
* various payload size restrictions that apply to sampler message
* instructions.
*
* This is only intended to provide a maximum theoretical bound for the
* execution size of the message based on the number of argument components
* alone, which in most cases will determine whether the SIMD8 or SIMD16
* variant of the message can be used, though some messages may have
* additional restrictions not accounted for here (e.g. pre-ILK hardware uses
* the message length to determine the exact SIMD width and argument count,
* which makes a number of sampler message combinations impossible to
* represent).
*
* Note: Platforms with monolithic SIMD16 double the possible SIMD widths
* change from (SIMD8, SIMD16) to (SIMD16, SIMD32).
*/
static unsigned
get_sampler_lowered_simd_width(const struct intel_device_info *devinfo,
const elk_fs_inst *inst)
{
/* If we have a min_lod parameter on anything other than a simple sample
* message, it will push it over 5 arguments and we have to fall back to
* SIMD8.
*/
if (inst->opcode != ELK_SHADER_OPCODE_TEX &&
inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
return 8;
/* Calculate the number of coordinate components that have to be present
* assuming that additional arguments follow the texel coordinates in the
* message payload. On IVB+ there is no need for padding, on ILK-SNB we
* need to pad to four or three components depending on the message,
* pre-ILK we need to pad to at most three components.
*/
const unsigned req_coord_components =
(devinfo->ver >= 7 ||
!inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
(devinfo->ver >= 5 && inst->opcode != ELK_SHADER_OPCODE_TXF_LOGICAL &&
inst->opcode != ELK_SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
3;
/* Calculate the total number of argument components that need to be passed
* to the sampler unit.
*/
const unsigned num_payload_components =
MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
req_coord_components) +
inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
inst->components_read(TEX_LOGICAL_SRC_LOD) +
inst->components_read(TEX_LOGICAL_SRC_LOD2) +
inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
(inst->opcode == ELK_SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
inst->components_read(TEX_LOGICAL_SRC_MCS);
const unsigned simd_limit = reg_unit(devinfo) *
(num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
/* SIMD16 (SIMD32 on Xe2) messages with more than five arguments exceed the
* maximum message size supported by the sampler, regardless of whether a
* header is provided or not.
*/
return MIN2(inst->exec_size, simd_limit);
}
/**
* Get the closest native SIMD width supported by the hardware for instruction
* \p inst. The instruction will be left untouched by
* elk_fs_visitor::lower_simd_width() if the returned value is equal to the
* original execution size.
*/
static unsigned
get_lowered_simd_width(const elk_fs_visitor *shader, const elk_fs_inst *inst)
{
const struct elk_compiler *compiler = shader->compiler;
const struct intel_device_info *devinfo = compiler->devinfo;
switch (inst->opcode) {
case ELK_OPCODE_MOV:
case ELK_OPCODE_SEL:
case ELK_OPCODE_NOT:
case ELK_OPCODE_AND:
case ELK_OPCODE_OR:
case ELK_OPCODE_XOR:
case ELK_OPCODE_SHR:
case ELK_OPCODE_SHL:
case ELK_OPCODE_ASR:
case ELK_OPCODE_CMPN:
case ELK_OPCODE_CSEL:
case ELK_OPCODE_F32TO16:
case ELK_OPCODE_F16TO32:
case ELK_OPCODE_BFREV:
case ELK_OPCODE_BFE:
case ELK_OPCODE_ADD:
case ELK_OPCODE_MUL:
case ELK_OPCODE_AVG:
case ELK_OPCODE_FRC:
case ELK_OPCODE_RNDU:
case ELK_OPCODE_RNDD:
case ELK_OPCODE_RNDE:
case ELK_OPCODE_RNDZ:
case ELK_OPCODE_LZD:
case ELK_OPCODE_FBH:
case ELK_OPCODE_FBL:
case ELK_OPCODE_CBIT:
case ELK_OPCODE_SAD2:
case ELK_OPCODE_MAD:
case ELK_OPCODE_LRP:
case ELK_FS_OPCODE_PACK:
case ELK_SHADER_OPCODE_SEL_EXEC:
case ELK_SHADER_OPCODE_CLUSTER_BROADCAST:
case ELK_SHADER_OPCODE_MOV_RELOC_IMM:
return get_fpu_lowered_simd_width(shader, inst);
case ELK_OPCODE_CMP: {
/* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
* when the destination is a GRF the dependency-clear bit on the flag
* register is cleared early.
*
* Suggested workarounds are to disable coissuing CMP instructions
* or to split CMP(16) instructions into two CMP(8) instructions.
*
* We choose to split into CMP(8) instructions since disabling
* coissuing would affect CMP instructions not otherwise affected by
* the errata.
*/
const unsigned max_width = (devinfo->verx10 == 70 &&
!inst->dst.is_null() ? 8 : ~0);
return MIN2(max_width, get_fpu_lowered_simd_width(shader, inst));
}
case ELK_OPCODE_BFI1:
case ELK_OPCODE_BFI2:
/* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
* should
* "Force BFI instructions to be executed always in SIMD8."
*/
return MIN2(devinfo->platform == INTEL_PLATFORM_HSW ? 8 : ~0u,
get_fpu_lowered_simd_width(shader, inst));
case ELK_OPCODE_IF:
assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
return inst->exec_size;
case ELK_SHADER_OPCODE_RCP:
case ELK_SHADER_OPCODE_RSQ:
case ELK_SHADER_OPCODE_SQRT:
case ELK_SHADER_OPCODE_EXP2:
case ELK_SHADER_OPCODE_LOG2:
case ELK_SHADER_OPCODE_SIN:
case ELK_SHADER_OPCODE_COS: {
/* Unary extended math instructions are limited to SIMD8 on Gfx4 and
* Gfx6. Extended Math Function is limited to SIMD8 with half-float.
*/
if (devinfo->ver == 6 || devinfo->verx10 == 40)
return MIN2(8, inst->exec_size);
if (inst->dst.type == ELK_REGISTER_TYPE_HF)
return MIN2(8, inst->exec_size);
return MIN2(16, inst->exec_size);
}
case ELK_SHADER_OPCODE_POW: {
/* SIMD16 is only allowed on Gfx7+. Extended Math Function is limited
* to SIMD8 with half-float
*/
if (devinfo->ver < 7)
return MIN2(8, inst->exec_size);
if (inst->dst.type == ELK_REGISTER_TYPE_HF)
return MIN2(8, inst->exec_size);
return MIN2(16, inst->exec_size);
}
case ELK_SHADER_OPCODE_USUB_SAT:
case ELK_SHADER_OPCODE_ISUB_SAT:
return get_fpu_lowered_simd_width(shader, inst);
case ELK_SHADER_OPCODE_INT_QUOTIENT:
case ELK_SHADER_OPCODE_INT_REMAINDER:
/* Integer division is limited to SIMD8 on all generations. */
return MIN2(8, inst->exec_size);
case ELK_FS_OPCODE_LINTERP:
case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
case ELK_FS_OPCODE_PACK_HALF_2x16_SPLIT:
case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
return MIN2(16, inst->exec_size);
case ELK_FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
/* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
* message used to implement varying pull constant loads, so expand it
* to SIMD16. An alternative with longer message payload length but
* shorter return payload would be to use the SIMD8 sampler message that
* takes (header, u, v, r) as parameters instead of (header, u).
*/
return (devinfo->ver == 4 ? 16 : MIN2(16, inst->exec_size));
case ELK_FS_OPCODE_DDX_COARSE:
case ELK_FS_OPCODE_DDX_FINE:
case ELK_FS_OPCODE_DDY_COARSE:
case ELK_FS_OPCODE_DDY_FINE:
/* The implementation of this virtual opcode may require emitting
* compressed Align16 instructions, which are severely limited on some
* generations.
*
* From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
* Region Restrictions):
*
* "In Align16 access mode, SIMD16 is not allowed for DW operations
* and SIMD8 is not allowed for DF operations."
*
* In this context, "DW operations" means "operations acting on 32-bit
* values", so it includes operations on floats.
*
* Gfx4 has a similar restriction. From the i965 PRM, section 11.5.3
* (Instruction Compression -> Rules and Restrictions):
*
* "A compressed instruction must be in Align1 access mode. Align16
* mode instructions cannot be compressed."
*
* Similar text exists in the g45 PRM.
*
* Empirically, compressed align16 instructions using odd register
* numbers don't appear to work on Sandybridge either.
*/
return (devinfo->ver == 4 || devinfo->ver == 6 ||
(devinfo->verx10 == 70) ?
MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
case ELK_SHADER_OPCODE_MULH:
/* MULH is lowered to the MUL/MACH sequence using the accumulator, which
* is 8-wide on Gfx7+.
*/
return (devinfo->ver >= 7 ? 8 :
get_fpu_lowered_simd_width(shader, inst));
case ELK_FS_OPCODE_FB_WRITE_LOGICAL:
/* Gfx6 doesn't support SIMD16 depth writes but we cannot handle them
* here.
*/
assert(devinfo->ver != 6 ||
inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
inst->exec_size == 8);
/* Dual-source FB writes are unsupported in SIMD16 mode. */
return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
8 : MIN2(16, inst->exec_size));
case ELK_SHADER_OPCODE_TEX_LOGICAL:
case ELK_SHADER_OPCODE_TXF_CMS_LOGICAL:
case ELK_SHADER_OPCODE_TXF_UMS_LOGICAL:
case ELK_SHADER_OPCODE_TXF_MCS_LOGICAL:
case ELK_SHADER_OPCODE_LOD_LOGICAL:
case ELK_SHADER_OPCODE_TG4_LOGICAL:
case ELK_SHADER_OPCODE_SAMPLEINFO_LOGICAL:
case ELK_SHADER_OPCODE_TXF_CMS_W_LOGICAL:
case ELK_SHADER_OPCODE_TG4_OFFSET_LOGICAL:
return get_sampler_lowered_simd_width(devinfo, inst);
/* On gfx12 parameters are fixed to 16-bit values and therefore they all
* always fit regardless of the execution size.
*/
case ELK_SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
return MIN2(16, inst->exec_size);
case ELK_SHADER_OPCODE_TXD_LOGICAL:
/* TXD is unsupported in SIMD16 mode previous to Xe2. SIMD32 is still
* unsuppported on Xe2.
*/
return 8;
case ELK_SHADER_OPCODE_TXL_LOGICAL:
case ELK_FS_OPCODE_TXB_LOGICAL:
/* Only one execution size is representable pre-ILK depending on whether
* the shadow reference argument is present.
*/
if (devinfo->ver == 4)
return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
else
return get_sampler_lowered_simd_width(devinfo, inst);
case ELK_SHADER_OPCODE_TXF_LOGICAL:
case ELK_SHADER_OPCODE_TXS_LOGICAL:
/* Gfx4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
* messages. Use SIMD16 instead.
*/
if (devinfo->ver == 4)
return 16;
else
return get_sampler_lowered_simd_width(devinfo, inst);
case ELK_SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
case ELK_SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
case ELK_SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
return 8;
case ELK_SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
case ELK_SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
case ELK_SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
case ELK_SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
case ELK_SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
case ELK_SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
case ELK_SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
return MIN2(16, inst->exec_size);
case ELK_SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
case ELK_SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
case ELK_SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
case ELK_SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
return devinfo->ver <= 8 ? 8 : MIN2(16, inst->exec_size);
case ELK_SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
case ELK_SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
case ELK_SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
assert(inst->exec_size <= 16);
return inst->exec_size;
case ELK_SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
return devinfo->has_lsc ? MIN2(16, inst->exec_size) : 8;
case ELK_SHADER_OPCODE_URB_READ_LOGICAL:
case ELK_SHADER_OPCODE_URB_WRITE_LOGICAL:
return MIN2(8, inst->exec_size);
case ELK_SHADER_OPCODE_QUAD_SWIZZLE: {
const unsigned swiz = inst->src[1].ud;
return (is_uniform(inst->src[0]) ?
get_fpu_lowered_simd_width(shader, inst) :
type_sz(inst->src[0].type) == 4 ? 8 :
swiz == ELK_SWIZZLE_XYXY || swiz == ELK_SWIZZLE_ZWZW ? 4 :
get_fpu_lowered_simd_width(shader, inst));
}
case ELK_SHADER_OPCODE_MOV_INDIRECT: {
/* From IVB and HSW PRMs:
*
* "2.When the destination requires two registers and the sources are
* indirect, the sources must use 1x1 regioning mode.
*
* In case of DF instructions in HSW/IVB, the exec_size is limited by
* the EU decompression logic not handling VxH indirect addressing
* correctly.
*/
const unsigned max_size = (devinfo->ver >= 8 ? 2 : 1) * REG_SIZE;
/* Prior to Broadwell, we only have 8 address subregisters. */
return MIN3(devinfo->ver >= 8 ? 16 : 8,
max_size / (inst->dst.stride * type_sz(inst->dst.type)),
inst->exec_size);
}
case ELK_SHADER_OPCODE_LOAD_PAYLOAD: {
const unsigned reg_count =
DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
if (reg_count > 2) {
/* Only LOAD_PAYLOAD instructions with per-channel destination region
* can be easily lowered (which excludes headers and heterogeneous
* types).
*/
assert(!inst->header_size);
for (unsigned i = 0; i < inst->sources; i++)
assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
inst->src[i].file == BAD_FILE);
return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
} else {
return inst->exec_size;
}
}
default:
return inst->exec_size;
}
}
/**
* Return true if splitting out the group of channels of instruction \p inst
* given by lbld.group() requires allocating a temporary for the i-th source
* of the lowered instruction.
*/
static inline bool
needs_src_copy(const fs_builder &lbld, const elk_fs_inst *inst, unsigned i)
{
return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
(inst->components_read(i) == 1 &&
lbld.dispatch_width() <= inst->exec_size)) ||
(inst->flags_written(lbld.shader->devinfo) &
flag_mask(inst->src[i], type_sz(inst->src[i].type)));
}
/**
* Extract the data that would be consumed by the channel group given by
* lbld.group() from the i-th source region of instruction \p inst and return
* it as result in packed form.
*/
static elk_fs_reg
emit_unzip(const fs_builder &lbld, elk_fs_inst *inst, unsigned i)
{
assert(lbld.group() >= inst->group);
/* Specified channel group from the source region. */
const elk_fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
if (needs_src_copy(lbld, inst, i)) {
/* Builder of the right width to perform the copy avoiding uninitialized
* data if the lowered execution size is greater than the original
* execution size of the instruction.
*/
const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
inst->exec_size), 0);
const elk_fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
for (unsigned k = 0; k < inst->components_read(i); ++k)
cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
return tmp;
} else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
/* The source is invariant for all dispatch_width-wide groups of the
* original region.
*/
return inst->src[i];
} else {
/* We can just point the lowered instruction at the right channel group
* from the original region.
*/
return src;
}
}
/**
* Return true if splitting out the group of channels of instruction \p inst
* given by lbld.group() requires allocating a temporary for the destination
* of the lowered instruction and copying the data back to the original
* destination region.
*/
static inline bool
needs_dst_copy(const fs_builder &lbld, const elk_fs_inst *inst)
{
if (inst->dst.is_null())
return false;
/* If the instruction writes more than one component we'll have to shuffle
* the results of multiple lowered instructions in order to make sure that
* they end up arranged correctly in the original destination region.
*/
if (inst->size_written > inst->dst.component_size(inst->exec_size))
return true;
/* If the lowered execution size is larger than the original the result of
* the instruction won't fit in the original destination, so we'll have to
* allocate a temporary in any case.
*/
if (lbld.dispatch_width() > inst->exec_size)
return true;
for (unsigned i = 0; i < inst->sources; i++) {
/* If we already made a copy of the source for other reasons there won't
* be any overlap with the destination.
*/
if (needs_src_copy(lbld, inst, i))
continue;
/* In order to keep the logic simple we emit a copy whenever the
* destination region doesn't exactly match an overlapping source, which
* may point at the source and destination not being aligned group by
* group which could cause one of the lowered instructions to overwrite
* the data read from the same source by other lowered instructions.
*/
if (regions_overlap(inst->dst, inst->size_written,
inst->src[i], inst->size_read(i)) &&
!inst->dst.equals(inst->src[i]))
return true;
}
return false;
}
/**
* Insert data from a packed temporary into the channel group given by
* lbld.group() of the destination region of instruction \p inst and return
* the temporary as result. Any copy instructions that are required for
* unzipping the previous value (in the case of partial writes) will be
* inserted using \p lbld_before and any copy instructions required for
* zipping up the destination of \p inst will be inserted using \p lbld_after.
*/
static elk_fs_reg
emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
elk_fs_inst *inst)
{
assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
assert(lbld_before.group() == lbld_after.group());
assert(lbld_after.group() >= inst->group);
const struct intel_device_info *devinfo = lbld_before.shader->devinfo;
/* Specified channel group from the destination region. */
const elk_fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
if (!needs_dst_copy(lbld_after, inst)) {
/* No need to allocate a temporary for the lowered instruction, just
* take the right group of channels from the original region.
*/
return dst;
}
/* Deal with the residency data part later */
const unsigned residency_size = inst->has_sampler_residency() ?
(reg_unit(devinfo) * REG_SIZE) : 0;
const unsigned dst_size = (inst->size_written - residency_size) /
inst->dst.component_size(inst->exec_size);
const elk_fs_reg tmp = lbld_after.vgrf(inst->dst.type,
dst_size + inst->has_sampler_residency());
if (inst->predicate) {
/* Handle predication by copying the original contents of the
* destination into the temporary before emitting the lowered
* instruction.
*/
const fs_builder gbld_before =
lbld_before.group(MIN2(lbld_before.dispatch_width(),
inst->exec_size), 0);
for (unsigned k = 0; k < dst_size; ++k) {
gbld_before.MOV(offset(tmp, lbld_before, k),
offset(dst, inst->exec_size, k));
}
}
const fs_builder gbld_after =
lbld_after.group(MIN2(lbld_after.dispatch_width(),
inst->exec_size), 0);
for (unsigned k = 0; k < dst_size; ++k) {
/* Use a builder of the right width to perform the copy avoiding
* uninitialized data if the lowered execution size is greater than the
* original execution size of the instruction.
*/
gbld_after.MOV(offset(dst, inst->exec_size, k),
offset(tmp, lbld_after, k));
}
if (inst->has_sampler_residency()) {
/* Sampler messages with residency need a special attention. In the
* first lane of the last component are located the Pixel Null Mask
* (bits 0:15) & some upper bits we need to discard (bits 16:31). We
* have to build a single 32bit value for the SIMD32 message out of 2
* SIMD16 16 bit values.
*/
const fs_builder rbld = gbld_after.exec_all().group(1, 0);
elk_fs_reg local_res_reg = component(
retype(offset(tmp, lbld_before, dst_size),
ELK_REGISTER_TYPE_UW), 0);
elk_fs_reg final_res_reg =
retype(byte_offset(inst->dst,
inst->size_written - residency_size +
gbld_after.group() / 8),
ELK_REGISTER_TYPE_UW);
rbld.MOV(final_res_reg, local_res_reg);
}
return tmp;
}
bool
elk_fs_visitor::lower_simd_width()
{
bool progress = false;
foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) {
const unsigned lower_width = get_lowered_simd_width(this, inst);
if (lower_width != inst->exec_size) {
/* Builder matching the original instruction. We may also need to
* emit an instruction of width larger than the original, set the
* execution size of the builder to the highest of both for now so
* we're sure that both cases can be handled.
*/
const unsigned max_width = MAX2(inst->exec_size, lower_width);
const fs_builder bld =
fs_builder(this, MAX2(max_width, dispatch_width)).at_end();
const fs_builder ibld = bld.at(block, inst)
.exec_all(inst->force_writemask_all)
.group(max_width, inst->group / max_width);
/* Split the copies in chunks of the execution width of either the
* original or the lowered instruction, whichever is lower.
*/
const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
const unsigned residency_size = inst->has_sampler_residency() ?
(reg_unit(devinfo) * REG_SIZE) : 0;
const unsigned dst_size =
(inst->size_written - residency_size) /
inst->dst.component_size(inst->exec_size);
assert(!inst->writes_accumulator && !inst->mlen);
/* Inserting the zip, unzip, and duplicated instructions in all of
* the right spots is somewhat tricky. All of the unzip and any
* instructions from the zip which unzip the destination prior to
* writing need to happen before all of the per-group instructions
* and the zip instructions need to happen after. In order to sort
* this all out, we insert the unzip instructions before \p inst,
* insert the per-group instructions after \p inst (i.e. before
* inst->next), and insert the zip instructions before the
* instruction after \p inst. Since we are inserting instructions
* after \p inst, inst->next is a moving target and we need to save
* it off here so that we insert the zip instructions in the right
* place.
*
* Since we're inserting split instructions after after_inst, the
* instructions will end up in the reverse order that we insert them.
* However, certain render target writes require that the low group
* instructions come before the high group. From the Ivy Bridge PRM
* Vol. 4, Pt. 1, Section 3.9.11:
*
* "If multiple SIMD8 Dual Source messages are delivered by the
* pixel shader thread, each SIMD8_DUALSRC_LO message must be
* issued before the SIMD8_DUALSRC_HI message with the same Slot
* Group Select setting."
*
* And, from Section 3.9.11.1 of the same PRM:
*
* "When SIMD32 or SIMD16 PS threads send render target writes
* with multiple SIMD8 and SIMD16 messages, the following must
* hold:
*
* All the slots (as described above) must have a corresponding
* render target write irrespective of the slot's validity. A slot
* is considered valid when at least one sample is enabled. For
* example, a SIMD16 PS thread must send two SIMD8 render target
* writes to cover all the slots.
*
* PS thread must send SIMD render target write messages with
* increasing slot numbers. For example, SIMD16 thread has
* Slot[15:0] and if two SIMD8 render target writes are used, the
* first SIMD8 render target write must send Slot[7:0] and the
* next one must send Slot[15:8]."
*
* In order to make low group instructions come before high group
* instructions (this is required for some render target writes), we
* split from the highest group to lowest.
*/
exec_node *const after_inst = inst->next;
for (int i = n - 1; i >= 0; i--) {
/* Emit a copy of the original instruction with the lowered width.
* If the EOT flag was set throw it away except for the last
* instruction to avoid killing the thread prematurely.
*/
elk_fs_inst split_inst = *inst;
split_inst.exec_size = lower_width;
split_inst.eot = inst->eot && i == int(n - 1);
/* Select the correct channel enables for the i-th group, then
* transform the sources and destination and emit the lowered
* instruction.
*/
const fs_builder lbld = ibld.group(lower_width, i);
for (unsigned j = 0; j < inst->sources; j++)
split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
split_inst.dst = emit_zip(lbld.at(block, inst),
lbld.at(block, after_inst), inst);
split_inst.size_written =
split_inst.dst.component_size(lower_width) * dst_size +
residency_size;
lbld.at(block, inst->next).emit(split_inst);
}
inst->remove(block);
progress = true;
}
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
/**
* Transform barycentric vectors into the interleaved form expected by the PLN
* instruction and returned by the Gfx7+ PI shared function.
*
* For channels 0-15 in SIMD16 mode they are expected to be laid out as
* follows in the register file:
*
* rN+0: X[0-7]
* rN+1: Y[0-7]
* rN+2: X[8-15]
* rN+3: Y[8-15]
*
* There is no need to handle SIMD32 here -- This is expected to be run after
* SIMD lowering, since SIMD lowering relies on vectors having the standard
* component layout.
*/
bool
elk_fs_visitor::lower_barycentrics()
{
const bool has_interleaved_layout = devinfo->has_pln ||
devinfo->ver >= 7;
bool progress = false;
if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout)
return false;
foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) {
if (inst->exec_size < 16)
continue;
const fs_builder ibld(this, block, inst);
const fs_builder ubld = ibld.exec_all().group(8, 0);
switch (inst->opcode) {
case ELK_FS_OPCODE_LINTERP : {
assert(inst->exec_size == 16);
const elk_fs_reg tmp = ibld.vgrf(inst->src[0].type, 2);
elk_fs_reg srcs[4];
for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2),
8 * (i / 2));
ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
inst->src[0] = tmp;
progress = true;
break;
}
case ELK_FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case ELK_FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case ELK_FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
assert(inst->exec_size == 16);
const elk_fs_reg tmp = ibld.vgrf(inst->dst.type, 2);
for (unsigned i = 0; i < 2; i++) {
for (unsigned g = 0; g < inst->exec_size / 8; g++) {
elk_fs_inst *mov = ibld.at(block, inst->next).group(8, g)
.MOV(horiz_offset(offset(inst->dst, ibld, i),
8 * g),
offset(tmp, ubld, 2 * g + i));
mov->predicate = inst->predicate;
mov->predicate_inverse = inst->predicate_inverse;
mov->flag_subreg = inst->flag_subreg;
}
}
inst->dst = tmp;
progress = true;
break;
}
default:
break;
}
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
bool
elk_fs_visitor::lower_find_live_channel()
{
bool progress = false;
if (devinfo->ver < 8)
return false;
bool packed_dispatch =
elk_stage_has_packed_dispatch(devinfo, stage, stage_prog_data);
bool vmask =
stage == MESA_SHADER_FRAGMENT &&
elk_wm_prog_data(stage_prog_data)->uses_vmask;
foreach_block_and_inst_safe(block, elk_fs_inst, inst, cfg) {
if (inst->opcode != ELK_SHADER_OPCODE_FIND_LIVE_CHANNEL &&
inst->opcode != ELK_SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL)
continue;
bool first = inst->opcode == ELK_SHADER_OPCODE_FIND_LIVE_CHANNEL;
/* Getting the first active channel index is easy on Gfx8: Just find
* the first bit set in the execution mask. The register exists on
* HSW already but it reads back as all ones when the current
* instruction has execution masking disabled, so it's kind of
* useless there.
*/
elk_fs_reg exec_mask(retype(elk_mask_reg(0), ELK_REGISTER_TYPE_UD));
const fs_builder ibld(this, block, inst);
if (!inst->is_partial_write())
ibld.emit_undef_for_dst(inst);
const fs_builder ubld = fs_builder(this, block, inst).exec_all().group(1, 0);
/* ce0 doesn't consider the thread dispatch mask (DMask or VMask),
* so combine the execution and dispatch masks to obtain the true mask.
*
* If we're looking for the first live channel, and we have packed
* dispatch, we can skip this step, as we know all dispatched channels
* will appear at the front of the mask.
*/
if (!(first && packed_dispatch)) {
elk_fs_reg mask = ubld.vgrf(ELK_REGISTER_TYPE_UD);
ubld.UNDEF(mask);
ubld.emit(ELK_SHADER_OPCODE_READ_SR_REG, mask, elk_imm_ud(vmask ? 3 : 2));
/* Quarter control has the effect of magically shifting the value of
* ce0 so you'll get the first/last active channel relative to the
* specified quarter control as result.
*/
if (inst->group > 0)
ubld.SHR(mask, mask, elk_imm_ud(ALIGN(inst->group, 8)));
ubld.AND(mask, exec_mask, mask);
exec_mask = mask;
}
if (first) {
ubld.FBL(inst->dst, exec_mask);
} else {
elk_fs_reg tmp = ubld.vgrf(ELK_REGISTER_TYPE_UD, 1);
ubld.UNDEF(tmp);
ubld.LZD(tmp, exec_mask);
ubld.ADD(inst->dst, negate(tmp), elk_imm_uw(31));
}
inst->remove(block);
progress = true;
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
void
elk_fs_visitor::dump_instructions_to_file(FILE *file) const
{
if (cfg) {
const register_pressure &rp = regpressure_analysis.require();
unsigned ip = 0, max_pressure = 0;
unsigned cf_count = 0;
foreach_block_and_inst(block, elk_backend_instruction, inst, cfg) {
if (inst->is_control_flow_end())
cf_count -= 1;
max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip);
for (unsigned i = 0; i < cf_count; i++)
fprintf(file, " ");
dump_instruction(inst, file);
ip++;
if (inst->is_control_flow_begin())
cf_count += 1;
}
fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
} else {
int ip = 0;
foreach_in_list(elk_backend_instruction, inst, &instructions) {
fprintf(file, "%4d: ", ip++);
dump_instruction(inst, file);
}
}
}
void
elk_fs_visitor::dump_instruction_to_file(const elk_backend_instruction *be_inst, FILE *file) const
{
const elk_fs_inst *inst = (const elk_fs_inst *)be_inst;
if (inst->predicate) {
fprintf(file, "(%cf%d.%d) ",
inst->predicate_inverse ? '-' : '+',
inst->flag_subreg / 2,
inst->flag_subreg % 2);
}
fprintf(file, "%s", elk_instruction_name(&compiler->isa, inst->opcode));
if (inst->saturate)
fprintf(file, ".sat");
if (inst->conditional_mod) {
fprintf(file, "%s", elk_conditional_modifier[inst->conditional_mod]);
if (!inst->predicate &&
(devinfo->ver < 5 || (inst->opcode != ELK_OPCODE_SEL &&
inst->opcode != ELK_OPCODE_CSEL &&
inst->opcode != ELK_OPCODE_IF &&
inst->opcode != ELK_OPCODE_WHILE))) {
fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
inst->flag_subreg % 2);
}
}
fprintf(file, "(%d) ", inst->exec_size);
if (inst->mlen) {
fprintf(file, "(mlen: %d) ", inst->mlen);
}
if (inst->eot) {
fprintf(file, "(EOT) ");
}
switch (inst->dst.file) {
case VGRF:
fprintf(file, "vgrf%d", inst->dst.nr);
break;
case FIXED_GRF:
fprintf(file, "g%d", inst->dst.nr);
break;
case MRF:
fprintf(file, "m%d", inst->dst.nr);
break;
case BAD_FILE:
fprintf(file, "(null)");
break;
case UNIFORM:
fprintf(file, "***u%d***", inst->dst.nr);
break;
case ATTR:
fprintf(file, "***attr%d***", inst->dst.nr);
break;
case ARF:
switch (inst->dst.nr) {
case ELK_ARF_NULL:
fprintf(file, "null");
break;
case ELK_ARF_ADDRESS:
fprintf(file, "a0.%d", inst->dst.subnr);
break;
case ELK_ARF_ACCUMULATOR:
fprintf(file, "acc%d", inst->dst.subnr);
break;
case ELK_ARF_FLAG:
fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
break;
default:
fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
break;
}
break;
case IMM:
unreachable("not reached");
}
if (inst->dst.offset ||
(inst->dst.file == VGRF &&
alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
inst->dst.offset % reg_size);
}
if (inst->dst.stride != 1)
fprintf(file, "<%u>", inst->dst.stride);
fprintf(file, ":%s, ", elk_reg_type_to_letters(inst->dst.type));
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].negate)
fprintf(file, "-");
if (inst->src[i].abs)
fprintf(file, "|");
switch (inst->src[i].file) {
case VGRF:
fprintf(file, "vgrf%d", inst->src[i].nr);
break;
case FIXED_GRF:
fprintf(file, "g%d", inst->src[i].nr);
break;
case MRF:
fprintf(file, "***m%d***", inst->src[i].nr);
break;
case ATTR:
fprintf(file, "attr%d", inst->src[i].nr);
break;
case UNIFORM:
fprintf(file, "u%d", inst->src[i].nr);
break;
case BAD_FILE:
fprintf(file, "(null)");
break;
case IMM:
switch (inst->src[i].type) {
case ELK_REGISTER_TYPE_HF:
fprintf(file, "%-ghf", _mesa_half_to_float(inst->src[i].ud & 0xffff));
break;
case ELK_REGISTER_TYPE_F:
fprintf(file, "%-gf", inst->src[i].f);
break;
case ELK_REGISTER_TYPE_DF:
fprintf(file, "%fdf", inst->src[i].df);
break;
case ELK_REGISTER_TYPE_W:
case ELK_REGISTER_TYPE_D:
fprintf(file, "%dd", inst->src[i].d);
break;
case ELK_REGISTER_TYPE_UW:
case ELK_REGISTER_TYPE_UD:
fprintf(file, "%uu", inst->src[i].ud);
break;
case ELK_REGISTER_TYPE_Q:
fprintf(file, "%" PRId64 "q", inst->src[i].d64);
break;
case ELK_REGISTER_TYPE_UQ:
fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
break;
case ELK_REGISTER_TYPE_VF:
fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
elk_vf_to_float((inst->src[i].ud >> 0) & 0xff),
elk_vf_to_float((inst->src[i].ud >> 8) & 0xff),
elk_vf_to_float((inst->src[i].ud >> 16) & 0xff),
elk_vf_to_float((inst->src[i].ud >> 24) & 0xff));
break;
case ELK_REGISTER_TYPE_V:
case ELK_REGISTER_TYPE_UV:
fprintf(file, "%08x%s", inst->src[i].ud,
inst->src[i].type == ELK_REGISTER_TYPE_V ? "V" : "UV");
break;
default:
fprintf(file, "???");
break;
}
break;
case ARF:
switch (inst->src[i].nr) {
case ELK_ARF_NULL:
fprintf(file, "null");
break;
case ELK_ARF_ADDRESS:
fprintf(file, "a0.%d", inst->src[i].subnr);
break;
case ELK_ARF_ACCUMULATOR:
fprintf(file, "acc%d", inst->src[i].subnr);
break;
case ELK_ARF_FLAG:
fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
break;
default:
fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
break;
}
break;
}
if (inst->src[i].offset ||
(inst->src[i].file == VGRF &&
alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
inst->src[i].offset % reg_size);
}
if (inst->src[i].abs)
fprintf(file, "|");
if (inst->src[i].file != IMM) {
unsigned stride;
if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
unsigned hstride = inst->src[i].hstride;
stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
} else {
stride = inst->src[i].stride;
}
if (stride != 1)
fprintf(file, "<%u>", stride);
fprintf(file, ":%s", elk_reg_type_to_letters(inst->src[i].type));
}
if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
fprintf(file, ", ");
}
fprintf(file, " ");
if (inst->force_writemask_all)
fprintf(file, "NoMask ");
if (inst->exec_size != dispatch_width)
fprintf(file, "group%d ", inst->group);
fprintf(file, "\n");
}
elk::register_pressure::register_pressure(const elk_fs_visitor *v)
{
const fs_live_variables &live = v->live_analysis.require();
const unsigned num_instructions = v->cfg->num_blocks ?
v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0;
regs_live_at_ip = new unsigned[num_instructions]();
for (unsigned reg = 0; reg < v->alloc.count; reg++) {
for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++)
regs_live_at_ip[ip] += v->alloc.sizes[reg];
}
const unsigned payload_count = v->first_non_payload_grf;
int *payload_last_use_ip = new int[payload_count];
v->calculate_payload_ranges(payload_count, payload_last_use_ip);
for (unsigned reg = 0; reg < payload_count; reg++) {
for (int ip = 0; ip < payload_last_use_ip[reg]; ip++)
++regs_live_at_ip[ip];
}
delete[] payload_last_use_ip;
}
elk::register_pressure::~register_pressure()
{
delete[] regs_live_at_ip;
}
void
elk_fs_visitor::invalidate_analysis(elk::analysis_dependency_class c)
{
elk_backend_shader::invalidate_analysis(c);
live_analysis.invalidate(c);
regpressure_analysis.invalidate(c);
}
void
elk_fs_visitor::debug_optimizer(const nir_shader *nir,
const char *pass_name,
int iteration, int pass_num) const
{
if (!elk_should_print_shader(nir, DEBUG_OPTIMIZER))
return;
char *filename;
int ret = asprintf(&filename, "%s/%s%d-%s-%02d-%02d-%s",
debug_get_option("INTEL_SHADER_OPTIMIZER_PATH", "./"),
_mesa_shader_stage_to_abbrev(stage), dispatch_width, nir->info.name,
iteration, pass_num, pass_name);
if (ret == -1)
return;
dump_instructions(filename);
free(filename);
}
void
elk_fs_visitor::optimize()
{
debug_optimizer(nir, "start", 0, 0);
/* Start by validating the shader we currently have. */
validate();
bool progress = false;
int iteration = 0;
int pass_num = 0;
#define OPT(pass, args...) ({ \
pass_num++; \
bool this_progress = pass(args); \
\
if (this_progress) \
debug_optimizer(nir, #pass, iteration, pass_num); \
\
validate(); \
\
progress = progress || this_progress; \
this_progress; \
})
assign_constant_locations();
OPT(lower_constant_loads);
validate();
OPT(split_virtual_grfs);
/* Before anything else, eliminate dead code. The results of some NIR
* instructions may effectively be calculated twice. Once when the
* instruction is encountered, and again when the user of that result is
* encountered. Wipe those away before algebraic optimizations and
* especially copy propagation can mix things up.
*/
OPT(dead_code_eliminate);
OPT(remove_extra_rounding_modes);
do {
progress = false;
pass_num = 0;
iteration++;
OPT(remove_duplicate_mrf_writes);
OPT(opt_algebraic);
OPT(opt_cse);
OPT(opt_copy_propagation);
OPT(elk_opt_predicated_break, this);
OPT(opt_cmod_propagation);
OPT(dead_code_eliminate);
OPT(opt_peephole_sel);
OPT(elk_dead_control_flow_eliminate, this);
OPT(opt_saturate_propagation);
OPT(register_coalesce);
OPT(compute_to_mrf);
OPT(eliminate_find_live_channel);
OPT(compact_virtual_grfs);
} while (progress);
progress = false;
pass_num = 0;
if (OPT(lower_pack)) {
OPT(register_coalesce);
OPT(dead_code_eliminate);
}
OPT(lower_simd_width);
OPT(lower_barycentrics);
OPT(lower_logical_sends);
/* After logical SEND lowering. */
if (OPT(opt_copy_propagation))
OPT(opt_algebraic);
/* Identify trailing zeros LOAD_PAYLOAD of sampler messages.
* Do this before splitting SENDs.
*/
if (devinfo->ver >= 7) {
if (OPT(opt_zero_samples) && OPT(opt_copy_propagation))
OPT(opt_algebraic);
}
if (progress) {
if (OPT(opt_copy_propagation))
OPT(opt_algebraic);
/* Run after logical send lowering to give it a chance to CSE the
* LOAD_PAYLOAD instructions created to construct the payloads of
* e.g. texturing messages in cases where it wasn't possible to CSE the
* whole logical instruction.
*/
OPT(opt_cse);
OPT(register_coalesce);
OPT(compute_to_mrf);
OPT(dead_code_eliminate);
OPT(remove_duplicate_mrf_writes);
OPT(opt_peephole_sel);
}
OPT(opt_redundant_halt);
if (OPT(lower_load_payload)) {
OPT(split_virtual_grfs);
/* Lower 64 bit MOVs generated by payload lowering. */
if (!devinfo->has_64bit_float || !devinfo->has_64bit_int)
OPT(opt_algebraic);
OPT(register_coalesce);
OPT(lower_simd_width);
OPT(compute_to_mrf);
OPT(dead_code_eliminate);
}
OPT(opt_combine_constants);
if (OPT(lower_integer_multiplication)) {
/* If lower_integer_multiplication made progress, it may have produced
* some 32x32-bit MULs in the process of lowering 64-bit MULs. Run it
* one more time to clean those up if they exist.
*/
OPT(lower_integer_multiplication);
}
OPT(lower_sub_sat);
if (devinfo->ver <= 5 && OPT(lower_minmax)) {
OPT(opt_cmod_propagation);
OPT(opt_cse);
if (OPT(opt_copy_propagation))
OPT(opt_algebraic);
OPT(dead_code_eliminate);
}
progress = false;
OPT(lower_regioning);
if (progress) {
if (OPT(opt_copy_propagation))
OPT(opt_algebraic);
OPT(dead_code_eliminate);
OPT(lower_simd_width);
}
OPT(lower_uniform_pull_constant_loads);
OPT(lower_find_live_channel);
validate();
}
/**
* Three source instruction must have a GRF/MRF destination register.
* ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
*/
void
elk_fs_visitor::fixup_3src_null_dest()
{
bool progress = false;
foreach_block_and_inst_safe (block, elk_fs_inst, inst, cfg) {
if (inst->elk_is_3src(compiler) && inst->dst.is_null()) {
inst->dst = elk_fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
inst->dst.type);
progress = true;
}
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
DEPENDENCY_VARIABLES);
}
uint32_t
elk_fs_visitor::compute_max_register_pressure()
{
const register_pressure &rp = regpressure_analysis.require();
uint32_t ip = 0, max_pressure = 0;
foreach_block_and_inst(block, elk_backend_instruction, inst, cfg) {
max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
ip++;
}
return max_pressure;
}
static elk_fs_inst **
save_instruction_order(const struct elk_cfg_t *cfg)
{
/* Before we schedule anything, stash off the instruction order as an array
* of elk_fs_inst *. This way, we can reset it between scheduling passes to
* prevent dependencies between the different scheduling modes.
*/
int num_insts = cfg->last_block()->end_ip + 1;
elk_fs_inst **inst_arr = new elk_fs_inst * [num_insts];
int ip = 0;
foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
assert(ip >= block->start_ip && ip <= block->end_ip);
inst_arr[ip++] = inst;
}
assert(ip == num_insts);
return inst_arr;
}
static void
restore_instruction_order(struct elk_cfg_t *cfg, elk_fs_inst **inst_arr)
{
ASSERTED int num_insts = cfg->last_block()->end_ip + 1;
int ip = 0;
foreach_block (block, cfg) {
block->instructions.make_empty();
assert(ip == block->start_ip);
for (; ip <= block->end_ip; ip++)
block->instructions.push_tail(inst_arr[ip]);
}
assert(ip == num_insts);
}
void
elk_fs_visitor::allocate_registers(bool allow_spilling)
{
bool allocated;
static const enum instruction_scheduler_mode pre_modes[] = {
SCHEDULE_PRE,
SCHEDULE_PRE_NON_LIFO,
SCHEDULE_NONE,
SCHEDULE_PRE_LIFO,
};
static const char *scheduler_mode_name[] = {
[SCHEDULE_PRE] = "top-down",
[SCHEDULE_PRE_NON_LIFO] = "non-lifo",
[SCHEDULE_PRE_LIFO] = "lifo",
[SCHEDULE_POST] = "post",
[SCHEDULE_NONE] = "none",
};
uint32_t best_register_pressure = UINT32_MAX;
enum instruction_scheduler_mode best_sched = SCHEDULE_NONE;
compact_virtual_grfs();
if (needs_register_pressure)
shader_stats.max_register_pressure = compute_max_register_pressure();
debug_optimizer(nir, "pre_register_allocate", 90, 90);
bool spill_all = allow_spilling && INTEL_DEBUG(DEBUG_SPILL_FS);
/* Before we schedule anything, stash off the instruction order as an array
* of elk_fs_inst *. This way, we can reset it between scheduling passes to
* prevent dependencies between the different scheduling modes.
*/
elk_fs_inst **orig_order = save_instruction_order(cfg);
elk_fs_inst **best_pressure_order = NULL;
void *scheduler_ctx = ralloc_context(NULL);
elk_fs_instruction_scheduler *sched = prepare_scheduler(scheduler_ctx);
/* Try each scheduling heuristic to see if it can successfully register
* allocate without spilling. They should be ordered by decreasing
* performance but increasing likelihood of allocating.
*/
for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
enum instruction_scheduler_mode sched_mode = pre_modes[i];
schedule_instructions_pre_ra(sched, sched_mode);
this->shader_stats.scheduler_mode = scheduler_mode_name[sched_mode];
debug_optimizer(nir, shader_stats.scheduler_mode, 95, i);
if (0) {
assign_regs_trivial();
allocated = true;
break;
}
/* We should only spill registers on the last scheduling. */
assert(!spilled_any_registers);
allocated = assign_regs(false, spill_all);
if (allocated)
break;
/* Save the maximum register pressure */
uint32_t this_pressure = compute_max_register_pressure();
if (0) {
fprintf(stderr, "Scheduler mode \"%s\" spilled, max pressure = %u\n",
scheduler_mode_name[sched_mode], this_pressure);
}
if (this_pressure < best_register_pressure) {
best_register_pressure = this_pressure;
best_sched = sched_mode;
delete[] best_pressure_order;
best_pressure_order = save_instruction_order(cfg);
}
/* Reset back to the original order before trying the next mode */
restore_instruction_order(cfg, orig_order);
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
}
ralloc_free(scheduler_ctx);
if (!allocated) {
if (0) {
fprintf(stderr, "Spilling - using lowest-pressure mode \"%s\"\n",
scheduler_mode_name[best_sched]);
}
restore_instruction_order(cfg, best_pressure_order);
shader_stats.scheduler_mode = scheduler_mode_name[best_sched];
allocated = assign_regs(allow_spilling, spill_all);
}
delete[] orig_order;
delete[] best_pressure_order;
if (!allocated) {
fail("Failure to register allocate. Reduce number of "
"live scalar values to avoid this.");
} else if (spilled_any_registers) {
elk_shader_perf_log(compiler, log_data,
"%s shader triggered register spilling. "
"Try reducing the number of live scalar "
"values to improve performance.\n",
_mesa_shader_stage_to_string(stage));
}
/* This must come after all optimization and register allocation, since
* it inserts dead code that happens to have side effects, and it does
* so based on the actual physical registers in use.
*/
insert_gfx4_send_dependency_workarounds();
if (failed)
return;
opt_bank_conflicts();
schedule_instructions_post_ra();
if (last_scratch > 0) {
ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
/* Take the max of any previously compiled variant of the shader. In the
* case of bindless shaders with return parts, this will also take the
* max of all parts.
*/
prog_data->total_scratch = MAX2(elk_get_scratch_size(last_scratch),
prog_data->total_scratch);
if (gl_shader_stage_is_compute(stage)) {
if (devinfo->platform == INTEL_PLATFORM_HSW) {
/* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
* field documentation, Haswell supports a minimum of 2kB of
* scratch space for compute shaders, unlike every other stage
* and platform.
*/
prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
} else if (devinfo->ver <= 7) {
/* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
* field documentation, platforms prior to Haswell measure scratch
* size linearly with a range of [1kB, 12kB] and 1kB granularity.
*/
prog_data->total_scratch = ALIGN(last_scratch, 1024);
max_scratch_size = 12 * 1024;
}
}
/* We currently only support up to 2MB of scratch space. If we
* need to support more eventually, the documentation suggests
* that we could allocate a larger buffer, and partition it out
* ourselves. We'd just have to undo the hardware's address
* calculation by subtracting (FFTID * Per Thread Scratch Space)
* and then add FFTID * (Larger Per Thread Scratch Space).
*
* See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
* Thread Group Tracking > Local Memory/Scratch Space.
*/
assert(prog_data->total_scratch < max_scratch_size);
}
}
bool
elk_fs_visitor::run_vs()
{
assert(stage == MESA_SHADER_VERTEX);
payload_ = new elk_vs_thread_payload(*this);
nir_to_elk(this);
if (failed)
return false;
emit_urb_writes();
calculate_cfg();
optimize();
assign_curb_setup();
assign_vs_urb_setup();
fixup_3src_null_dest();
allocate_registers(true /* allow_spilling */);
workaround_source_arf_before_eot();
return !failed;
}
void
elk_fs_visitor::set_tcs_invocation_id()
{
struct elk_tcs_prog_data *tcs_prog_data = elk_tcs_prog_data(prog_data);
struct elk_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
const fs_builder bld = fs_builder(this).at_end();
const unsigned instance_id_mask = INTEL_MASK(23, 17);
const unsigned instance_id_shift = 17;
elk_fs_reg t = bld.vgrf(ELK_REGISTER_TYPE_UD);
bld.AND(t, elk_fs_reg(retype(elk_vec1_grf(0, 2), ELK_REGISTER_TYPE_UD)),
elk_imm_ud(instance_id_mask));
invocation_id = bld.vgrf(ELK_REGISTER_TYPE_UD);
if (vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_MULTI_PATCH) {
/* gl_InvocationID is just the thread number */
bld.SHR(invocation_id, t, elk_imm_ud(instance_id_shift));
return;
}
assert(vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH);
elk_fs_reg channels_uw = bld.vgrf(ELK_REGISTER_TYPE_UW);
elk_fs_reg channels_ud = bld.vgrf(ELK_REGISTER_TYPE_UD);
bld.MOV(channels_uw, elk_fs_reg(elk_imm_uv(0x76543210)));
bld.MOV(channels_ud, channels_uw);
if (tcs_prog_data->instances == 1) {
invocation_id = channels_ud;
} else {
elk_fs_reg instance_times_8 = bld.vgrf(ELK_REGISTER_TYPE_UD);
bld.SHR(instance_times_8, t, elk_imm_ud(instance_id_shift - 3));
bld.ADD(invocation_id, instance_times_8, channels_ud);
}
}
void
elk_fs_visitor::emit_tcs_thread_end()
{
/* Try and tag the last URB write with EOT instead of emitting a whole
* separate write just to finish the thread. There isn't guaranteed to
* be one, so this may not succeed.
*/
if (devinfo->ver != 8 && mark_last_urb_write_with_eot())
return;
const fs_builder bld = fs_builder(this).at_end();
/* Emit a URB write to end the thread. On Broadwell, we use this to write
* zero to the "TR DS Cache Disable" bit (we haven't implemented a fancy
* algorithm to set it optimally). On other platforms, we simply write
* zero to a reserved/MBZ patch header DWord which has no consequence.
*/
elk_fs_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = tcs_payload().patch_urb_output;
srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = elk_imm_ud(WRITEMASK_X << 16);
srcs[URB_LOGICAL_SRC_DATA] = elk_imm_ud(0);
srcs[URB_LOGICAL_SRC_COMPONENTS] = elk_imm_ud(1);
elk_fs_inst *inst = bld.emit(ELK_SHADER_OPCODE_URB_WRITE_LOGICAL,
reg_undef, srcs, ARRAY_SIZE(srcs));
inst->eot = true;
}
bool
elk_fs_visitor::run_tcs()
{
assert(stage == MESA_SHADER_TESS_CTRL);
struct elk_vue_prog_data *vue_prog_data = elk_vue_prog_data(prog_data);
const fs_builder bld = fs_builder(this).at_end();
assert(vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH ||
vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_MULTI_PATCH);
payload_ = new elk_tcs_thread_payload(*this);
/* Initialize gl_InvocationID */
set_tcs_invocation_id();
const bool fix_dispatch_mask =
vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH &&
(nir->info.tess.tcs_vertices_out % 8) != 0;
/* Fix the disptach mask */
if (fix_dispatch_mask) {
bld.CMP(bld.null_reg_ud(), invocation_id,
elk_imm_ud(nir->info.tess.tcs_vertices_out), ELK_CONDITIONAL_L);
bld.IF(ELK_PREDICATE_NORMAL);
}
nir_to_elk(this);
if (fix_dispatch_mask) {
bld.emit(ELK_OPCODE_ENDIF);
}
emit_tcs_thread_end();
if (failed)
return false;
calculate_cfg();
optimize();
assign_curb_setup();
assign_tcs_urb_setup();
fixup_3src_null_dest();
allocate_registers(true /* allow_spilling */);
workaround_source_arf_before_eot();
return !failed;
}
bool
elk_fs_visitor::run_tes()
{
assert(stage == MESA_SHADER_TESS_EVAL);
payload_ = new elk_tes_thread_payload(*this);
nir_to_elk(this);
if (failed)
return false;
emit_urb_writes();
calculate_cfg();
optimize();
assign_curb_setup();
assign_tes_urb_setup();
fixup_3src_null_dest();
allocate_registers(true /* allow_spilling */);
workaround_source_arf_before_eot();
return !failed;
}
bool
elk_fs_visitor::run_gs()
{
assert(stage == MESA_SHADER_GEOMETRY);
payload_ = new elk_gs_thread_payload(*this);
this->final_gs_vertex_count = vgrf(glsl_uint_type());
if (gs_compile->control_data_header_size_bits > 0) {
/* Create a VGRF to store accumulated control data bits. */
this->control_data_bits = vgrf(glsl_uint_type());
/* If we're outputting more than 32 control data bits, then EmitVertex()
* will set control_data_bits to 0 after emitting the first vertex.
* Otherwise, we need to initialize it to 0 here.
*/
if (gs_compile->control_data_header_size_bits <= 32) {
const fs_builder bld = fs_builder(this).at_end();
const fs_builder abld = bld.annotate("initialize control data bits");
abld.MOV(this->control_data_bits, elk_imm_ud(0u));
}
}
nir_to_elk(this);
emit_gs_thread_end();
if (failed)
return false;
calculate_cfg();
optimize();
assign_curb_setup();
assign_gs_urb_setup();
fixup_3src_null_dest();
allocate_registers(true /* allow_spilling */);
workaround_source_arf_before_eot();
return !failed;
}
bool
elk_fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
{
struct elk_wm_prog_data *wm_prog_data = elk_wm_prog_data(this->prog_data);
elk_wm_prog_key *wm_key = (elk_wm_prog_key *) this->key;
const fs_builder bld = fs_builder(this).at_end();
assert(stage == MESA_SHADER_FRAGMENT);
payload_ = new elk_fs_thread_payload(*this, source_depth_to_render_target,
runtime_check_aads_emit);
if (do_rep_send) {
assert(dispatch_width == 16);
emit_repclear_shader();
} else {
if (nir->info.inputs_read > 0 ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PIXEL_COORD) ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD_Z) ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD_W) ||
(nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
if (devinfo->ver < 6)
emit_interpolation_setup_gfx4();
else
emit_interpolation_setup_gfx6();
}
/* We handle discards by keeping track of the still-live pixels in f0.1.
* Initialize it with the dispatched pixels.
*/
if (wm_prog_data->uses_kill) {
const unsigned lower_width = MIN2(dispatch_width, 16);
for (unsigned i = 0; i < dispatch_width / lower_width; i++) {
/* According to the "PS Thread Payload for Normal
* Dispatch" pages on the BSpec, the dispatch mask is
* stored in R1.7/R2.7 on gfx6+.
*/
const elk_fs_reg dispatch_mask =
devinfo->ver >= 6 ? elk_vec1_grf(i + 1, 7) :
elk_vec1_grf(0, 0);
bld.exec_all().group(1, 0)
.MOV(elk_sample_mask_reg(bld.group(lower_width, i)),
retype(dispatch_mask, ELK_REGISTER_TYPE_UW));
}
}
if (nir->info.writes_memory)
wm_prog_data->has_side_effects = true;
nir_to_elk(this);
if (failed)
return false;
if (wm_key->emit_alpha_test)
emit_alpha_test();
emit_fb_writes();
calculate_cfg();
optimize();
assign_curb_setup();
assign_urb_setup();
fixup_3src_null_dest();
allocate_registers(allow_spilling);
workaround_source_arf_before_eot();
}
return !failed;
}
bool
elk_fs_visitor::run_cs(bool allow_spilling)
{
assert(gl_shader_stage_is_compute(stage));
assert(devinfo->ver >= 7);
const fs_builder bld = fs_builder(this).at_end();
payload_ = new elk_cs_thread_payload(*this);
if (devinfo->platform == INTEL_PLATFORM_HSW && prog_data->total_shared > 0) {
/* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
const fs_builder abld = bld.exec_all().group(1, 0);
abld.MOV(retype(elk_sr0_reg(1), ELK_REGISTER_TYPE_UW),
suboffset(retype(elk_vec1_grf(0, 0), ELK_REGISTER_TYPE_UW), 1));
}
nir_to_elk(this);
if (failed)
return false;
emit_cs_terminate();
calculate_cfg();
optimize();
assign_curb_setup();
fixup_3src_null_dest();
allocate_registers(allow_spilling);
workaround_source_arf_before_eot();
return !failed;
}
/**
* Return a bitfield where bit n is set if barycentric interpolation mode n
* (see enum elk_barycentric_mode) is needed by the fragment shader.
*
* We examine the load_barycentric intrinsics rather than looking at input
* variables so that we catch interpolateAtCentroid() messages too, which
* also need the ELK_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
*/
static unsigned
elk_compute_barycentric_interp_modes(const struct intel_device_info *devinfo,
const nir_shader *shader)
{
unsigned barycentric_interp_modes = 0;
nir_foreach_function_impl(impl, shader) {
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_at_sample:
case nir_intrinsic_load_barycentric_at_offset:
break;
default:
continue;
}
nir_intrinsic_op bary_op = intrin->intrinsic;
enum elk_barycentric_mode bary =
elk_barycentric_mode(intrin);
barycentric_interp_modes |= 1 << bary;
if (elk_needs_unlit_centroid_workaround(devinfo) &&
bary_op == nir_intrinsic_load_barycentric_centroid)
barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
}
}
}
return barycentric_interp_modes;
}
static void
elk_compute_flat_inputs(struct elk_wm_prog_data *prog_data,
const nir_shader *shader)
{
prog_data->flat_inputs = 0;
nir_foreach_shader_in_variable(var, shader) {
/* flat shading */
if (var->data.interpolation != INTERP_MODE_FLAT)
continue;
if (var->data.per_primitive)
continue;
unsigned slots = glsl_count_attribute_slots(var->type, false);
for (unsigned s = 0; s < slots; s++) {
int input_index = prog_data->urb_setup[var->data.location + s];
if (input_index >= 0)
prog_data->flat_inputs |= 1 << input_index;
}
}
}
static uint8_t
computed_depth_mode(const nir_shader *shader)
{
if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
switch (shader->info.fs.depth_layout) {
case FRAG_DEPTH_LAYOUT_NONE:
case FRAG_DEPTH_LAYOUT_ANY:
return ELK_PSCDEPTH_ON;
case FRAG_DEPTH_LAYOUT_GREATER:
return ELK_PSCDEPTH_ON_GE;
case FRAG_DEPTH_LAYOUT_LESS:
return ELK_PSCDEPTH_ON_LE;
case FRAG_DEPTH_LAYOUT_UNCHANGED:
/* We initially set this to OFF, but having the shader write the
* depth means we allocate register space in the SEND message. The
* difference between the SEND register count and the OFF state
* programming makes the HW hang.
*
* Removing the depth writes also leads to test failures. So use
* LesserThanOrEqual, which fits writing the same value
* (unchanged/equal).
*
*/
return ELK_PSCDEPTH_ON_LE;
}
}
return ELK_PSCDEPTH_OFF;
}
/**
* Move load_interpolated_input with simple (payload-based) barycentric modes
* to the top of the program so we don't emit multiple PLNs for the same input.
*
* This works around CSE not being able to handle non-dominating cases
* such as:
*
* if (...) {
* interpolate input
* } else {
* interpolate the same exact input
* }
*
* This should be replaced by global value numbering someday.
*/
bool
elk_nir_move_interpolation_to_top(nir_shader *nir)
{
bool progress = false;
nir_foreach_function_impl(impl, nir) {
nir_block *top = nir_start_block(impl);
nir_cursor cursor = nir_before_instr(nir_block_first_instr(top));
bool impl_progress = false;
for (nir_block *block = nir_block_cf_tree_next(top);
block != NULL;
block = nir_block_cf_tree_next(block)) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
continue;
nir_intrinsic_instr *bary_intrinsic =
nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
nir_intrinsic_op op = bary_intrinsic->intrinsic;
/* Leave interpolateAtSample/Offset() where they are. */
if (op == nir_intrinsic_load_barycentric_at_sample ||
op == nir_intrinsic_load_barycentric_at_offset)
continue;
nir_instr *move[3] = {
&bary_intrinsic->instr,
intrin->src[1].ssa->parent_instr,
instr
};
for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
if (move[i]->block != top) {
nir_instr_move(cursor, move[i]);
impl_progress = true;
}
}
}
}
progress |= nir_progress(impl_progress, impl, nir_metadata_control_flow);
}
return progress;
}
static void
elk_nir_populate_wm_prog_data(nir_shader *shader,
const struct intel_device_info *devinfo,
const struct elk_wm_prog_key *key,
struct elk_wm_prog_data *prog_data)
{
/* key->alpha_test_func means simulating alpha testing via discards,
* so the shader definitely kills pixels.
*/
prog_data->uses_kill = shader->info.fs.uses_discard ||
key->emit_alpha_test;
prog_data->uses_omask = !key->ignore_sample_mask_out &&
(shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK));
prog_data->color_outputs_written = key->color_outputs_valid;
prog_data->computed_depth_mode = computed_depth_mode(shader);
prog_data->computed_stencil =
shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
prog_data->sample_shading =
shader->info.fs.uses_sample_shading ||
shader->info.outputs_read;
assert(key->multisample_fbo != ELK_NEVER ||
key->persample_interp == ELK_NEVER);
prog_data->persample_dispatch = key->persample_interp;
if (prog_data->sample_shading)
prog_data->persample_dispatch = ELK_ALWAYS;
/* We can only persample dispatch if we have a multisample FBO */
prog_data->persample_dispatch = MIN2(prog_data->persample_dispatch,
key->multisample_fbo);
/* Currently only the Vulkan API allows alpha_to_coverage to be dynamic. If
* persample_dispatch & multisample_fbo are not dynamic, Anv should be able
* to definitively tell whether alpha_to_coverage is on or off.
*/
prog_data->alpha_to_coverage = key->alpha_to_coverage;
assert(prog_data->alpha_to_coverage != ELK_SOMETIMES ||
prog_data->persample_dispatch == ELK_SOMETIMES);
if (devinfo->ver >= 6) {
prog_data->uses_sample_mask =
BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN);
/* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
*
* "MSDISPMODE_PERSAMPLE is required in order to select
* POSOFFSET_SAMPLE"
*
* So we can only really get sample positions if we are doing real
* per-sample dispatch. If we need gl_SamplePosition and we don't have
* persample dispatch, we hard-code it to 0.5.
*/
prog_data->uses_pos_offset =
prog_data->persample_dispatch != ELK_NEVER &&
(BITSET_TEST(shader->info.system_values_read,
SYSTEM_VALUE_SAMPLE_POS) ||
BITSET_TEST(shader->info.system_values_read,
SYSTEM_VALUE_SAMPLE_POS_OR_CENTER));
}
prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
prog_data->inner_coverage = shader->info.fs.inner_coverage;
prog_data->barycentric_interp_modes =
elk_compute_barycentric_interp_modes(devinfo, shader);
/* From the BDW PRM documentation for 3DSTATE_WM:
*
* "MSDISPMODE_PERSAMPLE is required in order to select Perspective
* Sample or Non- perspective Sample barycentric coordinates."
*
* So cleanup any potentially set sample barycentric mode when not in per
* sample dispatch.
*/
if (prog_data->persample_dispatch == ELK_NEVER) {
prog_data->barycentric_interp_modes &=
~BITFIELD_BIT(ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE);
}
prog_data->uses_nonperspective_interp_modes |=
(prog_data->barycentric_interp_modes &
ELK_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0;
/* ICL PRMs, Volume 9: Render Engine, Shared Functions Pixel Interpolater,
* Message Descriptor :
*
* "Message Type. Specifies the type of message being sent when
* pixel-rate evaluation is requested :
*
* Format = U2
* 0: Per Message Offset (eval_snapped with immediate offset)
* 1: Sample Position Offset (eval_sindex)
* 2: Centroid Position Offset (eval_centroid)
* 3: Per Slot Offset (eval_snapped with register offset)
*
* Message Type. Specifies the type of message being sent when
* coarse-rate evaluation is requested :
*
* Format = U2
* 0: Coarse to Pixel Mapping Message (internal message)
* 1: Reserved
* 2: Coarse Centroid Position (eval_centroid)
* 3: Per Slot Coarse Pixel Offset (eval_snapped with register offset)"
*
* The Sample Position Offset is marked as reserved for coarse rate
* evaluation and leads to hangs if we try to use it. So disable coarse
* pixel shading if we have any intrinsic that will result in a pixel
* interpolater message at sample.
*/
intel_nir_pulls_at_sample(shader);
/* We choose to always enable VMask prior to XeHP, as it would cause
* us to lose out on the eliminate_find_live_channel() optimization.
*/
prog_data->uses_vmask = true;
prog_data->uses_src_w =
BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD_W);
prog_data->uses_src_depth =
BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD_Z);
calculate_urb_setup(devinfo, key, prog_data, shader);
elk_compute_flat_inputs(prog_data, shader);
}
/**
* Pre-gfx6, the register file of the EUs was shared between threads,
* and each thread used some subset allocated on a 16-register block
* granularity. The unit states wanted these block counts.
*/
static inline int
elk_register_blocks(int reg_count)
{
return ALIGN(reg_count, 16) / 16 - 1;
}
const unsigned *
elk_compile_fs(const struct elk_compiler *compiler,
struct elk_compile_fs_params *params)
{
struct nir_shader *nir = params->base.nir;
const struct elk_wm_prog_key *key = params->key;
struct elk_wm_prog_data *prog_data = params->prog_data;
bool allow_spilling = params->allow_spilling;
const bool debug_enabled =
elk_should_print_shader(nir, params->base.debug_flag ?
params->base.debug_flag : DEBUG_WM);
prog_data->base.stage = MESA_SHADER_FRAGMENT;
prog_data->base.total_scratch = 0;
const struct intel_device_info *devinfo = compiler->devinfo;
const unsigned max_subgroup_size = compiler->devinfo->ver >= 6 ? 32 : 16;
elk_nir_apply_key(nir, compiler, &key->base, max_subgroup_size);
elk_nir_lower_fs_inputs(nir, devinfo, key);
elk_nir_lower_fs_outputs(nir);
if (devinfo->ver < 6)
elk_setup_vue_interpolation(params->vue_map, nir, prog_data);
/* From the SKL PRM, Volume 7, "Alpha Coverage":
* "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
* hardware, regardless of the state setting for this feature."
*/
if (devinfo->ver > 6 && key->alpha_to_coverage != ELK_NEVER) {
/* Run constant fold optimization in order to get the correct source
* offset to determine render target 0 store instruction in
* emit_alpha_to_coverage pass.
*/
NIR_PASS(_, nir, nir_opt_constant_folding);
NIR_PASS(_, nir, elk_nir_lower_alpha_to_coverage, key, prog_data);
}
NIR_PASS(_, nir, elk_nir_move_interpolation_to_top);
elk_postprocess_nir(nir, compiler, debug_enabled,
key->base.robust_flags);
elk_nir_populate_wm_prog_data(nir, compiler->devinfo, key, prog_data);
std::unique_ptr<elk_fs_visitor> v8, v16, v32, vmulti;
elk_cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
float throughput = 0;
bool has_spilled = false;
v8 = std::make_unique<elk_fs_visitor>(compiler, &params->base, key,
prog_data, nir, 8,
params->base.stats != NULL,
debug_enabled);
if (!v8->run_fs(allow_spilling, false /* do_rep_send */)) {
params->base.error_str = ralloc_strdup(params->base.mem_ctx,
v8->fail_msg);
return NULL;
} else if (INTEL_SIMD(FS, 8)) {
simd8_cfg = v8->cfg;
assert(v8->payload().num_regs % reg_unit(devinfo) == 0);
prog_data->base.dispatch_grf_start_reg = v8->payload().num_regs / reg_unit(devinfo);
prog_data->reg_blocks_8 = elk_register_blocks(v8->grf_used);
const performance &perf = v8->performance_analysis.require();
throughput = MAX2(throughput, perf.throughput);
has_spilled = v8->spilled_any_registers;
allow_spilling = false;
}
/* Limit dispatch width to simd8 with dual source blending on gfx8.
* See: https://gitlab.freedesktop.org/mesa/mesa/-/issues/1917
*/
if (devinfo->ver == 8 && prog_data->dual_src_blend &&
INTEL_SIMD(FS, 8)) {
assert(!params->use_rep_send);
v8->limit_dispatch_width(8, "gfx8 workaround: "
"using SIMD8 when dual src blending.\n");
}
if (!has_spilled &&
(!v8 || v8->max_dispatch_width >= 16) &&
(INTEL_SIMD(FS, 16) || params->use_rep_send)) {
/* Try a SIMD16 compile */
v16 = std::make_unique<elk_fs_visitor>(compiler, &params->base, key,
prog_data, nir, 16,
params->base.stats != NULL,
debug_enabled);
if (v8)
v16->import_uniforms(v8.get());
if (!v16->run_fs(allow_spilling, params->use_rep_send)) {
elk_shader_perf_log(compiler, params->base.log_data,
"SIMD16 shader failed to compile: %s\n",
v16->fail_msg);
} else {
simd16_cfg = v16->cfg;
assert(v16->payload().num_regs % reg_unit(devinfo) == 0);
prog_data->dispatch_grf_start_reg_16 = v16->payload().num_regs / reg_unit(devinfo);
prog_data->reg_blocks_16 = elk_register_blocks(v16->grf_used);
const performance &perf = v16->performance_analysis.require();
throughput = MAX2(throughput, perf.throughput);
has_spilled = v16->spilled_any_registers;
allow_spilling = false;
}
}
const bool simd16_failed = v16 && !simd16_cfg;
/* Currently, the compiler only supports SIMD32 on SNB+ */
if (!has_spilled &&
(!v8 || v8->max_dispatch_width >= 32) &&
(!v16 || v16->max_dispatch_width >= 32) && !params->use_rep_send &&
devinfo->ver >= 6 && !simd16_failed &&
INTEL_SIMD(FS, 32)) {
/* Try a SIMD32 compile */
v32 = std::make_unique<elk_fs_visitor>(compiler, &params->base, key,
prog_data, nir, 32,
params->base.stats != NULL,
debug_enabled);
if (v8)
v32->import_uniforms(v8.get());
else if (v16)
v32->import_uniforms(v16.get());
if (!v32->run_fs(allow_spilling, false)) {
elk_shader_perf_log(compiler, params->base.log_data,
"SIMD32 shader failed to compile: %s\n",
v32->fail_msg);
} else {
const performance &perf = v32->performance_analysis.require();
if (!INTEL_DEBUG(DEBUG_DO32) && throughput >= perf.throughput) {
elk_shader_perf_log(compiler, params->base.log_data,
"SIMD32 shader inefficient\n");
} else {
simd32_cfg = v32->cfg;
assert(v32->payload().num_regs % reg_unit(devinfo) == 0);
prog_data->dispatch_grf_start_reg_32 = v32->payload().num_regs / reg_unit(devinfo);
prog_data->reg_blocks_32 = elk_register_blocks(v32->grf_used);
throughput = MAX2(throughput, perf.throughput);
}
}
}
/* When the caller requests a repclear shader, they want SIMD16-only */
if (params->use_rep_send)
simd8_cfg = NULL;
/* Prior to Iron Lake, the PS had a single shader offset with a jump table
* at the top to select the shader. We've never implemented that.
* Instead, we just give them exactly one shader and we pick the widest one
* available.
*/
if (compiler->devinfo->ver < 5) {
if (simd32_cfg || simd16_cfg)
simd8_cfg = NULL;
if (simd32_cfg)
simd16_cfg = NULL;
}
/* If computed depth is enabled SNB only allows SIMD8. */
if (compiler->devinfo->ver == 6 &&
prog_data->computed_depth_mode != ELK_PSCDEPTH_OFF)
assert(simd16_cfg == NULL && simd32_cfg == NULL);
if (compiler->devinfo->ver <= 5 && !simd8_cfg) {
/* Iron lake and earlier only have one Dispatch GRF start field. Make
* the data available in the base prog data struct for convenience.
*/
if (simd16_cfg) {
prog_data->base.dispatch_grf_start_reg =
prog_data->dispatch_grf_start_reg_16;
} else if (simd32_cfg) {
prog_data->base.dispatch_grf_start_reg =
prog_data->dispatch_grf_start_reg_32;
}
}
elk_fs_generator g(compiler, &params->base, &prog_data->base,
v8 && v8->runtime_check_aads_emit, MESA_SHADER_FRAGMENT);
if (unlikely(debug_enabled)) {
g.enable_debug(ralloc_asprintf(params->base.mem_ctx,
"%s fragment shader %s",
nir->info.label ?
nir->info.label : "unnamed",
nir->info.name));
}
struct elk_compile_stats *stats = params->base.stats;
uint32_t max_dispatch_width = 0;
if (simd8_cfg) {
prog_data->dispatch_8 = true;
g.generate_code(simd8_cfg, 8, v8->shader_stats,
v8->performance_analysis.require(), stats);
stats = stats ? stats + 1 : NULL;
max_dispatch_width = 8;
}
if (simd16_cfg) {
prog_data->dispatch_16 = true;
prog_data->prog_offset_16 = g.generate_code(
simd16_cfg, 16, v16->shader_stats,
v16->performance_analysis.require(), stats);
stats = stats ? stats + 1 : NULL;
max_dispatch_width = 16;
}
if (simd32_cfg) {
prog_data->dispatch_32 = true;
prog_data->prog_offset_32 = g.generate_code(
simd32_cfg, 32, v32->shader_stats,
v32->performance_analysis.require(), stats);
stats = stats ? stats + 1 : NULL;
max_dispatch_width = 32;
}
for (struct elk_compile_stats *s = params->base.stats; s != NULL && s != stats; s++)
s->max_dispatch_width = max_dispatch_width;
g.add_const_data(nir->constant_data, nir->constant_data_size);
return g.get_assembly();
}
unsigned
elk_cs_push_const_total_size(const struct elk_cs_prog_data *cs_prog_data,
unsigned threads)
{
assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0);
assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0);
return cs_prog_data->push.per_thread.size * threads +
cs_prog_data->push.cross_thread.size;
}
static void
fill_push_const_block_info(struct elk_push_const_block *block, unsigned dwords)
{
block->dwords = dwords;
block->regs = DIV_ROUND_UP(dwords, 8);
block->size = block->regs * 32;
}
static void
cs_fill_push_const_info(const struct intel_device_info *devinfo,
struct elk_cs_prog_data *cs_prog_data)
{
const struct elk_stage_prog_data *prog_data = &cs_prog_data->base;
int subgroup_id_index = elk_get_subgroup_id_param_index(devinfo, prog_data);
bool cross_thread_supported = devinfo->verx10 >= 75;
/* The thread ID should be stored in the last param dword */
assert(subgroup_id_index == -1 ||
subgroup_id_index == (int)prog_data->nr_params - 1);
unsigned cross_thread_dwords, per_thread_dwords;
if (!cross_thread_supported) {
cross_thread_dwords = 0u;
per_thread_dwords = prog_data->nr_params;
} else if (subgroup_id_index >= 0) {
/* Fill all but the last register with cross-thread payload */
cross_thread_dwords = 8 * (subgroup_id_index / 8);
per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
} else {
/* Fill all data using cross-thread payload */
cross_thread_dwords = prog_data->nr_params;
per_thread_dwords = 0u;
}
fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
cs_prog_data->push.per_thread.size == 0);
assert(cs_prog_data->push.cross_thread.dwords +
cs_prog_data->push.per_thread.dwords ==
prog_data->nr_params);
}
static bool
filter_simd(const nir_instr *instr, const void * /* options */)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
switch (nir_instr_as_intrinsic(instr)->intrinsic) {
case nir_intrinsic_load_simd_width_intel:
case nir_intrinsic_load_subgroup_id:
return true;
default:
return false;
}
}
static nir_def *
lower_simd(nir_builder *b, nir_instr *instr, void *options)
{
uintptr_t simd_width = (uintptr_t)options;
switch (nir_instr_as_intrinsic(instr)->intrinsic) {
case nir_intrinsic_load_simd_width_intel:
return nir_imm_int(b, simd_width);
case nir_intrinsic_load_subgroup_id:
/* If the whole workgroup fits in one thread, we can lower subgroup_id
* to a constant zero.
*/
if (!b->shader->info.workgroup_size_variable) {
unsigned local_workgroup_size = b->shader->info.workgroup_size[0] *
b->shader->info.workgroup_size[1] *
b->shader->info.workgroup_size[2];
if (local_workgroup_size <= simd_width)
return nir_imm_int(b, 0);
}
return NULL;
default:
return NULL;
}
}
bool
elk_nir_lower_simd(nir_shader *nir, unsigned dispatch_width)
{
return nir_shader_lower_instructions(nir, filter_simd, lower_simd,
(void *)(uintptr_t)dispatch_width);
}
const unsigned *
elk_compile_cs(const struct elk_compiler *compiler,
struct elk_compile_cs_params *params)
{
const nir_shader *nir = params->base.nir;
const struct elk_cs_prog_key *key = params->key;
struct elk_cs_prog_data *prog_data = params->prog_data;
const bool debug_enabled =
elk_should_print_shader(nir, params->base.debug_flag ?
params->base.debug_flag : DEBUG_CS);
prog_data->base.stage = MESA_SHADER_COMPUTE;
prog_data->base.total_shared = nir->info.shared_size;
prog_data->base.total_scratch = 0;
if (!nir->info.workgroup_size_variable) {
prog_data->local_size[0] = nir->info.workgroup_size[0];
prog_data->local_size[1] = nir->info.workgroup_size[1];
prog_data->local_size[2] = nir->info.workgroup_size[2];
}
elk_simd_selection_state simd_state{
.devinfo = compiler->devinfo,
.prog_data = prog_data,
.required_width = elk_required_dispatch_width(&nir->info),
};
std::unique_ptr<elk_fs_visitor> v[3];
for (unsigned simd = 0; simd < 3; simd++) {
if (!elk_simd_should_compile(simd_state, simd))
continue;
const unsigned dispatch_width = 8u << simd;
nir_shader *shader = nir_shader_clone(params->base.mem_ctx, nir);
elk_nir_apply_key(shader, compiler, &key->base,
dispatch_width);
NIR_PASS(_, shader, elk_nir_lower_simd, dispatch_width);
/* Clean up after the local index and ID calculations. */
NIR_PASS(_, shader, nir_opt_constant_folding);
NIR_PASS(_, shader, nir_opt_dce);
elk_postprocess_nir(shader, compiler, debug_enabled,
key->base.robust_flags);
v[simd] = std::make_unique<elk_fs_visitor>(compiler, &params->base,
&key->base,
&prog_data->base,
shader, dispatch_width,
params->base.stats != NULL,
debug_enabled);
const int first = elk_simd_first_compiled(simd_state);
if (first >= 0)
v[simd]->import_uniforms(v[first].get());
const bool allow_spilling = first < 0 || nir->info.workgroup_size_variable;
if (v[simd]->run_cs(allow_spilling)) {
cs_fill_push_const_info(compiler->devinfo, prog_data);
elk_simd_mark_compiled(simd_state, simd, v[simd]->spilled_any_registers);
} else {
simd_state.error[simd] = ralloc_strdup(params->base.mem_ctx, v[simd]->fail_msg);
if (simd > 0) {
elk_shader_perf_log(compiler, params->base.log_data,
"SIMD%u shader failed to compile: %s\n",
dispatch_width, v[simd]->fail_msg);
}
}
}
const int selected_simd = elk_simd_select(simd_state);
if (selected_simd < 0) {
params->base.error_str =
ralloc_asprintf(params->base.mem_ctx,
"Can't compile shader: "
"SIMD8 '%s', SIMD16 '%s' and SIMD32 '%s'.\n",
simd_state.error[0], simd_state.error[1],
simd_state.error[2]);
return NULL;
}
assert(selected_simd < 3);
elk_fs_visitor *selected = v[selected_simd].get();
if (!nir->info.workgroup_size_variable)
prog_data->prog_mask = 1 << selected_simd;
elk_fs_generator g(compiler, &params->base, &prog_data->base,
selected->runtime_check_aads_emit, MESA_SHADER_COMPUTE);
if (unlikely(debug_enabled)) {
char *name = ralloc_asprintf(params->base.mem_ctx,
"%s compute shader %s",
nir->info.label ?
nir->info.label : "unnamed",
nir->info.name);
g.enable_debug(name);
}
uint32_t max_dispatch_width = 8u << (util_last_bit(prog_data->prog_mask) - 1);
struct elk_compile_stats *stats = params->base.stats;
for (unsigned simd = 0; simd < 3; simd++) {
if (prog_data->prog_mask & (1u << simd)) {
assert(v[simd]);
prog_data->prog_offset[simd] =
g.generate_code(v[simd]->cfg, 8u << simd, v[simd]->shader_stats,
v[simd]->performance_analysis.require(), stats);
if (stats)
stats->max_dispatch_width = max_dispatch_width;
stats = stats ? stats + 1 : NULL;
max_dispatch_width = 8u << simd;
}
}
g.add_const_data(nir->constant_data, nir->constant_data_size);
return g.get_assembly();
}
struct intel_cs_dispatch_info
elk_cs_get_dispatch_info(const struct intel_device_info *devinfo,
const struct elk_cs_prog_data *prog_data,
const unsigned *override_local_size)
{
struct intel_cs_dispatch_info info = {};
const unsigned *sizes =
override_local_size ? override_local_size :
prog_data->local_size;
const int simd = elk_simd_select_for_workgroup_size(devinfo, prog_data, sizes);
assert(simd >= 0 && simd < 3);
info.group_size = sizes[0] * sizes[1] * sizes[2];
info.simd_size = 8u << simd;
info.threads = DIV_ROUND_UP(info.group_size, info.simd_size);
const uint32_t remainder = info.group_size & (info.simd_size - 1);
if (remainder > 0)
info.right_mask = ~0u >> (32 - remainder);
else
info.right_mask = ~0u >> (32 - info.simd_size);
return info;
}
uint64_t
elk_bsr(const struct intel_device_info *devinfo,
uint32_t offset, uint8_t simd_size, uint8_t local_arg_offset)
{
assert(offset % 64 == 0);
assert(simd_size == 8 || simd_size == 16);
assert(local_arg_offset % 8 == 0);
return offset |
SET_BITS(simd_size == 8, 4, 4) |
SET_BITS(local_arg_offset / 8, 2, 0);
}
/**
* Test the dispatch mask packing assumptions of
* elk_stage_has_packed_dispatch(). Call this from e.g. the top of
* elk_fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
* executed with an unexpected dispatch mask.
*/
static UNUSED void
elk_fs_test_dispatch_packing(const fs_builder &bld)
{
const elk_fs_visitor *shader = static_cast<const elk_fs_visitor *>(bld.shader);
const gl_shader_stage stage = shader->stage;
const bool uses_vmask =
stage == MESA_SHADER_FRAGMENT &&
elk_wm_prog_data(shader->stage_prog_data)->uses_vmask;
if (elk_stage_has_packed_dispatch(shader->devinfo, stage,
shader->stage_prog_data)) {
const fs_builder ubld = bld.exec_all().group(1, 0);
const elk_fs_reg tmp = component(bld.vgrf(ELK_REGISTER_TYPE_UD), 0);
const elk_fs_reg mask = uses_vmask ? elk_vmask_reg() : elk_dmask_reg();
ubld.ADD(tmp, mask, elk_imm_ud(1));
ubld.AND(tmp, mask, tmp);
/* This will loop forever if the dispatch mask doesn't have the expected
* form '2^n-1', in which case tmp will be non-zero.
*/
bld.emit(ELK_OPCODE_DO);
bld.CMP(bld.null_reg_ud(), tmp, elk_imm_ud(0), ELK_CONDITIONAL_NZ);
set_predicate(ELK_PREDICATE_NORMAL, bld.emit(ELK_OPCODE_WHILE));
}
}
unsigned
elk_fs_visitor::workgroup_size() const
{
assert(gl_shader_stage_uses_workgroup(stage));
const struct elk_cs_prog_data *cs = elk_cs_prog_data(prog_data);
return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
}
bool elk_should_print_shader(const nir_shader *shader, uint64_t debug_flag)
{
return INTEL_DEBUG(debug_flag) && (!shader->info.internal || NIR_DEBUG(PRINT_INTERNAL));
}
namespace elk {
elk_fs_reg
fetch_payload_reg(const elk::fs_builder &bld, uint8_t regs[2],
elk_reg_type type, unsigned n)
{
if (!regs[0])
return elk_fs_reg();
if (bld.dispatch_width() > 16) {
const elk_fs_reg tmp = bld.vgrf(type, n);
const elk::fs_builder hbld = bld.exec_all().group(16, 0);
const unsigned m = bld.dispatch_width() / hbld.dispatch_width();
elk_fs_reg *const components = new elk_fs_reg[m * n];
for (unsigned c = 0; c < n; c++) {
for (unsigned g = 0; g < m; g++)
components[c * m + g] =
offset(retype(elk_vec8_grf(regs[g], 0), type), hbld, c);
}
hbld.LOAD_PAYLOAD(tmp, components, m * n, 0);
delete[] components;
return tmp;
} else {
return elk_fs_reg(retype(elk_vec8_grf(regs[0], 0), type));
}
}
elk_fs_reg
fetch_barycentric_reg(const elk::fs_builder &bld, uint8_t regs[2])
{
if (!regs[0])
return elk_fs_reg();
const elk_fs_reg tmp = bld.vgrf(ELK_REGISTER_TYPE_F, 2);
const elk::fs_builder hbld = bld.exec_all().group(8, 0);
const unsigned m = bld.dispatch_width() / hbld.dispatch_width();
elk_fs_reg *const components = new elk_fs_reg[2 * m];
for (unsigned c = 0; c < 2; c++) {
for (unsigned g = 0; g < m; g++)
components[c * m + g] = offset(elk_vec8_grf(regs[g / 2], 0),
hbld, c + 2 * (g % 2));
}
hbld.LOAD_PAYLOAD(tmp, components, 2 * m, 0);
delete[] components;
return tmp;
}
void
check_dynamic_msaa_flag(const fs_builder &bld,
const struct elk_wm_prog_data *wm_prog_data,
enum intel_msaa_flags flag)
{
elk_fs_inst *inst = bld.AND(bld.null_reg_ud(),
dynamic_msaa_flags(wm_prog_data),
elk_imm_ud(flag));
inst->conditional_mod = ELK_CONDITIONAL_NZ;
}
}