| /* |
| * Copyright © 2010 - 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #pragma once |
| |
| #include <stdio.h> |
| #include "c11/threads.h" |
| #include "dev/intel_device_info.h" |
| #include "isl/isl.h" |
| #include "util/macros.h" |
| #include "util/mesa-sha1.h" |
| #include "util/enum_operators.h" |
| #include "util/ralloc.h" |
| #include "util/u_math.h" |
| #include "elk_isa_info.h" |
| #include "../intel_shader_enums.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| struct ra_regs; |
| struct nir_shader; |
| struct shader_info; |
| |
| struct nir_shader_compiler_options; |
| typedef struct nir_shader nir_shader; |
| |
| #define REG_CLASS_COUNT 20 |
| |
| struct elk_compiler { |
| const struct intel_device_info *devinfo; |
| |
| /* This lock must be taken if the compiler is to be modified in any way, |
| * including adding something to the ralloc child list. |
| */ |
| mtx_t mutex; |
| |
| struct elk_isa_info isa; |
| |
| struct { |
| struct ra_regs *regs; |
| |
| /** |
| * Array of the ra classes for the unaligned contiguous register |
| * block sizes used. |
| */ |
| struct ra_class **classes; |
| } vec4_reg_set; |
| |
| struct { |
| struct ra_regs *regs; |
| |
| /** |
| * Array of the ra classes for the unaligned contiguous register |
| * block sizes used, indexed by register size. |
| */ |
| struct ra_class *classes[REG_CLASS_COUNT]; |
| |
| /** |
| * ra class for the aligned barycentrics we use for PLN, which doesn't |
| * appear in *classes. |
| */ |
| struct ra_class *aligned_bary_class; |
| } fs_reg_sets[3]; |
| |
| void (*shader_debug_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4); |
| void (*shader_perf_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4); |
| |
| bool scalar_stage[MESA_ALL_SHADER_STAGES]; |
| struct nir_shader_compiler_options *nir_options[MESA_ALL_SHADER_STAGES]; |
| |
| /** |
| * Apply workarounds for SIN and COS output range problems. |
| * This can negatively impact performance. |
| */ |
| bool precise_trig; |
| |
| /** |
| * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State |
| * Base Address? (If not, it's a normal GPU address.) |
| */ |
| bool constant_buffer_0_is_relative; |
| |
| /** |
| * Whether or not the driver supports NIR shader constants. This controls |
| * whether nir_opt_large_constants will be run. |
| */ |
| bool supports_shader_constants; |
| |
| /** |
| * Whether indirect UBO loads should use the sampler or go through the |
| * data/constant cache. For the sampler, UBO surface states have to be set |
| * up with VK_FORMAT_R32G32B32A32_FLOAT whereas if it's going through the |
| * constant or data cache, UBOs must use VK_FORMAT_RAW. |
| */ |
| bool indirect_ubos_use_sampler; |
| |
| /** Whether we have an original 965G/GM clipping bug */ |
| bool has_negative_rhw_bug; |
| |
| /** |
| * Calling the ra_allocate function after each register spill can take |
| * several minutes. This option speeds up shader compilation by spilling |
| * more registers after the ra_allocate failure. Required for |
| * Cyberpunk 2077, which uses a watchdog thread to terminate the process |
| * in case the render thread hasn't responded within 2 minutes. |
| */ |
| int spilling_rate; |
| }; |
| |
| #define elk_shader_debug_log(compiler, data, fmt, ... ) do { \ |
| static unsigned id = 0; \ |
| compiler->shader_debug_log(data, &id, fmt, ##__VA_ARGS__); \ |
| } while (0) |
| |
| #define elk_shader_perf_log(compiler, data, fmt, ... ) do { \ |
| static unsigned id = 0; \ |
| compiler->shader_perf_log(data, &id, fmt, ##__VA_ARGS__); \ |
| } while (0) |
| |
| /** |
| * We use a constant subgroup size of 32. It really only needs to be a |
| * maximum and, since we do SIMD32 for compute shaders in some cases, it |
| * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a |
| * subgroup size of 32 but will act as if 16 or 24 of those channels are |
| * disabled. |
| */ |
| #define ELK_SUBGROUP_SIZE 32 |
| |
| /** |
| * Program key structures. |
| * |
| * When drawing, we look for the currently bound shaders in the program |
| * cache. This is essentially a hash table lookup, and these are the keys. |
| * |
| * Sometimes OpenGL features specified as state need to be simulated via |
| * shader code, due to a mismatch between the API and the hardware. This |
| * is often referred to as "non-orthagonal state" or "NOS". We store NOS |
| * in the program key so it's considered when searching for a program. If |
| * we haven't seen a particular combination before, we have to recompile a |
| * new specialized version. |
| * |
| * Shader compilation should not look up state in gl_context directly, but |
| * instead use the copy in the program key. This guarantees recompiles will |
| * happen correctly. |
| * |
| * @{ |
| */ |
| |
| enum PACKED elk_gfx6_gather_sampler_wa { |
| ELK_WA_SIGN = 1, /* whether we need to sign extend */ |
| ELK_WA_8BIT = 2, /* if we have an 8bit format needing wa */ |
| ELK_WA_16BIT = 4, /* if we have a 16bit format needing wa */ |
| }; |
| |
| #define ELK_MAX_SAMPLERS 32 |
| |
| /* Provide explicit padding for each member, to ensure that the compiler |
| * initializes every bit in the shader cache keys. The keys will be compared |
| * with memcmp. |
| */ |
| PRAGMA_DIAGNOSTIC_PUSH |
| PRAGMA_DIAGNOSTIC_ERROR(-Wpadded) |
| |
| /** |
| * Sampler information needed by VS, WM, and GS program cache keys. |
| */ |
| struct elk_sampler_prog_key_data { |
| /** |
| * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles. |
| * |
| * This field is not consumed by the back-end compiler and is only relevant |
| * for the crocus OpenGL driver for Broadwell and earlier hardware. |
| */ |
| uint16_t swizzles[ELK_MAX_SAMPLERS]; |
| |
| uint32_t gl_clamp_mask[3]; |
| |
| /** |
| * For RG32F, gather4's channel select is broken. |
| */ |
| uint32_t gather_channel_quirk_mask; |
| |
| /** |
| * For Sandybridge, which shader w/a we need for gather quirks. |
| */ |
| enum elk_gfx6_gather_sampler_wa gfx6_gather_wa[ELK_MAX_SAMPLERS]; |
| }; |
| |
| enum elk_robustness_flags { |
| ELK_ROBUSTNESS_UBO = BITFIELD_BIT(0), |
| ELK_ROBUSTNESS_SSBO = BITFIELD_BIT(1), |
| }; |
| |
| struct elk_base_prog_key { |
| unsigned program_string_id; |
| |
| enum elk_robustness_flags robust_flags:2; |
| |
| unsigned padding:22; |
| |
| /** |
| * Apply workarounds for SIN and COS input range problems. |
| * This limits input range for SIN and COS to [-2p : 2p] to |
| * avoid precision issues. |
| */ |
| bool limit_trig_input_range; |
| |
| struct elk_sampler_prog_key_data tex; |
| }; |
| |
| /** |
| * The VF can't natively handle certain types of attributes, such as GL_FIXED |
| * or most 10_10_10_2 types. These flags enable various VS workarounds to |
| * "fix" attributes at the beginning of shaders. |
| */ |
| #define ELK_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */ |
| #define ELK_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */ |
| #define ELK_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */ |
| #define ELK_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */ |
| #define ELK_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */ |
| |
| /** |
| * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range |
| * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user |
| * input vertex attributes. In Vulkan, we expose up to 29 user vertex input |
| * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0. |
| */ |
| #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX |
| #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 29) |
| |
| /** |
| * Max number of binding table entries used for stream output. |
| * |
| * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the |
| * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64. |
| * |
| * On Gfx6, the size of transform feedback data is limited not by the number |
| * of components but by the number of binding table entries we set aside. We |
| * use one binding table entry for a float, one entry for a vector, and one |
| * entry per matrix column. Since the only way we can communicate our |
| * transform feedback capabilities to the client is via |
| * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the |
| * worst case, in which all the varyings are floats, so we use up one binding |
| * table entry per component. Therefore we need to set aside at least 64 |
| * binding table entries for use by transform feedback. |
| * |
| * Note: since we don't currently pack varyings, it is currently impossible |
| * for the client to actually use up all of these binding table entries--if |
| * all of their varyings were floats, they would run out of varying slots and |
| * fail to link. But that's a bug, so it seems prudent to go ahead and |
| * allocate the number of binding table entries we will need once the bug is |
| * fixed. |
| */ |
| #define ELK_MAX_SOL_BINDINGS 64 |
| |
| /** The program key for Vertex Shaders. */ |
| struct elk_vs_prog_key { |
| struct elk_base_prog_key base; |
| |
| /** |
| * Per-attribute workaround flags |
| * |
| * For each attribute, a combination of ELK_ATTRIB_WA_*. |
| * |
| * For OpenGL, where we expose a maximum of 16 user input attributes |
| * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan |
| * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can |
| * expose up to 28 user input vertex attributes that are mapped to slots |
| * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large |
| * enough to hold this many slots. |
| */ |
| uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)]; |
| |
| /** |
| * For pre-Gfx6 hardware, a bitfield indicating which texture coordinates |
| * are going to be replaced with point coordinates (as a consequence of a |
| * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because |
| * our SF thread requires exact matching between VS outputs and FS inputs, |
| * these texture coordinates will need to be unconditionally included in |
| * the VUE, even if they aren't written by the vertex shader. |
| */ |
| uint8_t point_coord_replace; |
| unsigned clamp_pointsize:1; |
| |
| bool copy_edgeflag:1; |
| |
| bool clamp_vertex_color:1; |
| |
| /** |
| * How many user clipping planes are being uploaded to the vertex shader as |
| * push constants. |
| * |
| * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to |
| * clip distances. |
| */ |
| unsigned nr_userclip_plane_consts:4; |
| |
| uint32_t padding: 17; |
| }; |
| |
| /** The program key for Tessellation Control Shaders. */ |
| struct elk_tcs_prog_key |
| { |
| struct elk_base_prog_key base; |
| |
| /** A bitfield of per-vertex outputs written. */ |
| uint64_t outputs_written; |
| |
| enum tess_primitive_mode _tes_primitive_mode; |
| |
| /** Number of input vertices, 0 means dynamic */ |
| unsigned input_vertices; |
| |
| /** A bitfield of per-patch outputs written. */ |
| uint32_t patch_outputs_written; |
| |
| bool quads_workaround; |
| uint32_t padding:24; |
| }; |
| |
| #define ELK_MAX_TCS_INPUT_VERTICES (32) |
| |
| static inline uint32_t |
| elk_tcs_prog_key_input_vertices(const struct elk_tcs_prog_key *key) |
| { |
| return key->input_vertices != 0 ? |
| key->input_vertices : ELK_MAX_TCS_INPUT_VERTICES; |
| } |
| |
| /** The program key for Tessellation Evaluation Shaders. */ |
| struct elk_tes_prog_key |
| { |
| struct elk_base_prog_key base; |
| |
| /** A bitfield of per-vertex inputs read. */ |
| uint64_t inputs_read; |
| |
| /** A bitfield of per-patch inputs read. */ |
| uint32_t patch_inputs_read; |
| |
| /** |
| * How many user clipping planes are being uploaded to the tessellation |
| * evaluation shader as push constants. |
| * |
| * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to |
| * clip distances. |
| */ |
| unsigned nr_userclip_plane_consts:4; |
| unsigned clamp_pointsize:1; |
| uint32_t padding:27; |
| }; |
| |
| /** The program key for Geometry Shaders. */ |
| struct elk_gs_prog_key |
| { |
| struct elk_base_prog_key base; |
| |
| /** |
| * How many user clipping planes are being uploaded to the geometry shader |
| * as push constants. |
| * |
| * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to |
| * clip distances. |
| */ |
| unsigned nr_userclip_plane_consts:4; |
| unsigned clamp_pointsize:1; |
| unsigned padding:27; |
| }; |
| |
| enum elk_sf_primitive { |
| ELK_SF_PRIM_POINTS = 0, |
| ELK_SF_PRIM_LINES = 1, |
| ELK_SF_PRIM_TRIANGLES = 2, |
| ELK_SF_PRIM_UNFILLED_TRIS = 3, |
| }; |
| |
| struct elk_sf_prog_key { |
| uint64_t attrs; |
| bool contains_flat_varying; |
| unsigned char interp_mode[65]; /* ELK_VARYING_SLOT_COUNT */ |
| uint8_t point_sprite_coord_replace; |
| enum elk_sf_primitive primitive:2; |
| bool do_twoside_color:1; |
| bool frontface_ccw:1; |
| bool do_point_sprite:1; |
| bool do_point_coord:1; |
| bool sprite_origin_lower_left:1; |
| bool userclip_active:1; |
| unsigned padding: 32; |
| }; |
| |
| enum elk_clip_mode { |
| ELK_CLIP_MODE_NORMAL = 0, |
| ELK_CLIP_MODE_CLIP_ALL = 1, |
| ELK_CLIP_MODE_CLIP_NON_REJECTED = 2, |
| ELK_CLIP_MODE_REJECT_ALL = 3, |
| ELK_CLIP_MODE_ACCEPT_ALL = 4, |
| ELK_CLIP_MODE_KERNEL_CLIP = 5, |
| }; |
| |
| enum elk_clip_fill_mode { |
| ELK_CLIP_FILL_MODE_LINE = 0, |
| ELK_CLIP_FILL_MODE_POINT = 1, |
| ELK_CLIP_FILL_MODE_FILL = 2, |
| ELK_CLIP_FILL_MODE_CULL = 3, |
| }; |
| |
| /* Note that if unfilled primitives are being emitted, we have to fix |
| * up polygon offset and flatshading at this point: |
| */ |
| struct elk_clip_prog_key { |
| uint64_t attrs; |
| float offset_factor; |
| float offset_units; |
| float offset_clamp; |
| bool contains_flat_varying; |
| bool contains_noperspective_varying; |
| unsigned char interp_mode[65]; /* ELK_VARYING_SLOT_COUNT */ |
| unsigned primitive:4; |
| unsigned nr_userclip:4; |
| bool pv_first:1; |
| bool do_unfilled:1; |
| enum elk_clip_fill_mode fill_cw:2; /* includes cull information */ |
| enum elk_clip_fill_mode fill_ccw:2; /* includes cull information */ |
| bool offset_cw:1; |
| bool offset_ccw:1; |
| bool copy_bfc_cw:1; |
| bool copy_bfc_ccw:1; |
| enum elk_clip_mode clip_mode:3; |
| uint64_t padding:51; |
| }; |
| |
| /* A big lookup table is used to figure out which and how many |
| * additional regs will inserted before the main payload in the WM |
| * program execution. These mainly relate to depth and stencil |
| * processing and the early-depth-test optimization. |
| */ |
| enum elk_wm_iz_bits { |
| ELK_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1, |
| ELK_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2, |
| ELK_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4, |
| ELK_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8, |
| ELK_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10, |
| ELK_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20, |
| ELK_WM_IZ_BIT_MAX = 0x40 |
| }; |
| |
| enum elk_sometimes { |
| ELK_NEVER = 0, |
| ELK_SOMETIMES, |
| ELK_ALWAYS |
| }; |
| |
| static inline enum elk_sometimes |
| elk_sometimes_invert(enum elk_sometimes x) |
| { |
| return (enum elk_sometimes)((int)ELK_ALWAYS - (int)x); |
| } |
| |
| /** The program key for Fragment/Pixel Shaders. */ |
| struct elk_wm_prog_key { |
| struct elk_base_prog_key base; |
| |
| uint64_t input_slots_valid; |
| float alpha_test_ref; |
| uint8_t color_outputs_valid; |
| |
| /* Some collection of ELK_WM_IZ_* */ |
| uint8_t iz_lookup; |
| bool stats_wm:1; |
| bool flat_shade:1; |
| unsigned nr_color_regions:5; |
| bool emit_alpha_test:1; |
| enum compare_func alpha_test_func:3; /* < For Gfx4/5 MRT alpha test */ |
| bool alpha_test_replicate_alpha:1; |
| enum elk_sometimes alpha_to_coverage:2; |
| bool clamp_fragment_color:1; |
| |
| bool force_dual_color_blend:1; |
| |
| /** Whether or inputs are interpolated at sample rate by default |
| * |
| * This corresponds to the sample shading API bit in Vulkan or OpenGL which |
| * controls how inputs with no interpolation qualifier are interpolated. |
| * This is distinct from the way that using gl_SampleID or similar requires |
| * us to run per-sample. Even when running per-sample due to gl_SampleID, |
| * we may still interpolate unqualified inputs at the pixel center. |
| */ |
| enum elk_sometimes persample_interp:2; |
| |
| /* Whether or not we are running on a multisampled framebuffer */ |
| enum elk_sometimes multisample_fbo:2; |
| |
| enum elk_sometimes line_aa:2; |
| |
| bool coherent_fb_fetch:1; |
| bool ignore_sample_mask_out:1; |
| |
| uint64_t padding:56; |
| }; |
| |
| struct elk_cs_prog_key { |
| struct elk_base_prog_key base; |
| }; |
| |
| struct elk_ff_gs_prog_key { |
| uint64_t attrs; |
| |
| /** |
| * Map from the index of a transform feedback binding table entry to the |
| * gl_varying_slot that should be streamed out through that binding table |
| * entry. |
| */ |
| unsigned char transform_feedback_bindings[ELK_MAX_SOL_BINDINGS]; |
| |
| /** |
| * Map from the index of a transform feedback binding table entry to the |
| * swizzles that should be used when streaming out data through that |
| * binding table entry. |
| */ |
| unsigned char transform_feedback_swizzles[ELK_MAX_SOL_BINDINGS]; |
| |
| /** |
| * Hardware primitive type being drawn, e.g. _3DPRIM_TRILIST. |
| */ |
| unsigned primitive:8; |
| |
| unsigned pv_first:1; |
| unsigned need_gs_prog:1; |
| |
| /** |
| * Number of varyings that are output to transform feedback. |
| */ |
| unsigned num_transform_feedback_bindings:7; /* 0-ELK_MAX_SOL_BINDINGS */ |
| uint64_t padding:47; |
| }; |
| |
| /* elk_any_prog_key is any of the keys that map to an API stage */ |
| union elk_any_prog_key { |
| struct elk_base_prog_key base; |
| struct elk_vs_prog_key vs; |
| struct elk_tcs_prog_key tcs; |
| struct elk_tes_prog_key tes; |
| struct elk_gs_prog_key gs; |
| struct elk_wm_prog_key wm; |
| struct elk_cs_prog_key cs; |
| }; |
| |
| PRAGMA_DIAGNOSTIC_POP |
| |
| /** Max number of render targets in a shader */ |
| #define ELK_MAX_DRAW_BUFFERS 8 |
| |
| /** |
| * Binding table index for the first gfx6 SOL binding. |
| */ |
| #define ELK_GFX6_SOL_BINDING_START 0 |
| |
| struct elk_ubo_range |
| { |
| uint16_t block; |
| |
| /* In units of 32-byte registers */ |
| uint8_t start; |
| uint8_t length; |
| }; |
| |
| /* We reserve the first 2^16 values for builtins */ |
| #define ELK_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0) |
| |
| enum elk_param_builtin { |
| ELK_PARAM_BUILTIN_ZERO, |
| |
| ELK_PARAM_BUILTIN_CLIP_PLANE_0_X, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_0_Y, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_0_Z, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_0_W, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_1_X, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_1_Y, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_1_Z, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_1_W, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_2_X, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_2_Y, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_2_Z, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_2_W, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_3_X, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_3_Y, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_3_Z, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_3_W, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_4_X, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_4_Y, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_4_Z, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_4_W, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_5_X, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_5_Y, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_5_Z, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_5_W, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_6_X, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_6_Y, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_6_Z, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_6_W, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_7_X, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_7_Y, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_7_Z, |
| ELK_PARAM_BUILTIN_CLIP_PLANE_7_W, |
| |
| ELK_PARAM_BUILTIN_TESS_LEVEL_OUTER_X, |
| ELK_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y, |
| ELK_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z, |
| ELK_PARAM_BUILTIN_TESS_LEVEL_OUTER_W, |
| ELK_PARAM_BUILTIN_TESS_LEVEL_INNER_X, |
| ELK_PARAM_BUILTIN_TESS_LEVEL_INNER_Y, |
| |
| ELK_PARAM_BUILTIN_PATCH_VERTICES_IN, |
| |
| ELK_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X, |
| ELK_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y, |
| ELK_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z, |
| ELK_PARAM_BUILTIN_SUBGROUP_ID, |
| ELK_PARAM_BUILTIN_WORK_GROUP_SIZE_X, |
| ELK_PARAM_BUILTIN_WORK_GROUP_SIZE_Y, |
| ELK_PARAM_BUILTIN_WORK_GROUP_SIZE_Z, |
| ELK_PARAM_BUILTIN_WORK_DIM, |
| }; |
| |
| #define ELK_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \ |
| (ELK_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp)) |
| |
| #define ELK_PARAM_BUILTIN_IS_CLIP_PLANE(param) \ |
| ((param) >= ELK_PARAM_BUILTIN_CLIP_PLANE_0_X && \ |
| (param) <= ELK_PARAM_BUILTIN_CLIP_PLANE_7_W) |
| |
| #define ELK_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \ |
| (((param) - ELK_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2) |
| |
| #define ELK_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \ |
| (((param) - ELK_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3) |
| |
| enum elk_shader_reloc_id { |
| ELK_SHADER_RELOC_CONST_DATA_ADDR_LOW, |
| ELK_SHADER_RELOC_CONST_DATA_ADDR_HIGH, |
| ELK_SHADER_RELOC_SHADER_START_OFFSET, |
| ELK_SHADER_RELOC_DESCRIPTORS_ADDR_HIGH, |
| }; |
| |
| enum elk_shader_reloc_type { |
| /** An arbitrary 32-bit value */ |
| ELK_SHADER_RELOC_TYPE_U32, |
| /** A MOV instruction with an immediate source */ |
| ELK_SHADER_RELOC_TYPE_MOV_IMM, |
| }; |
| |
| /** Represents a code relocation |
| * |
| * Relocatable constants are immediates in the code which we want to be able |
| * to replace post-compile with the actual value. |
| */ |
| struct elk_shader_reloc { |
| /** The 32-bit ID of the relocatable constant */ |
| uint32_t id; |
| |
| /** Type of this relocation */ |
| enum elk_shader_reloc_type type; |
| |
| /** The offset in the shader to the relocated value |
| * |
| * For MOV_IMM relocs, this is an offset to the MOV instruction. This |
| * allows us to do some sanity checking while we update the value. |
| */ |
| uint32_t offset; |
| |
| /** Value to be added to the relocated value before it is written */ |
| uint32_t delta; |
| }; |
| |
| /** A value to write to a relocation */ |
| struct elk_shader_reloc_value { |
| /** The 32-bit ID of the relocatable constant */ |
| uint32_t id; |
| |
| /** The value with which to replace the relocated immediate */ |
| uint32_t value; |
| }; |
| |
| struct elk_stage_prog_data { |
| struct elk_ubo_range ubo_ranges[4]; |
| |
| unsigned nr_params; /**< number of float params/constants */ |
| |
| gl_shader_stage stage; |
| |
| /* zero_push_reg is a bitfield which indicates what push registers (if any) |
| * should be zeroed by SW at the start of the shader. The corresponding |
| * push_reg_mask_param specifies the param index (in 32-bit units) where |
| * the actual runtime 64-bit mask will be pushed. The shader will zero |
| * push reg i if |
| * |
| * reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i) |
| * |
| * If this field is set, elk_compiler::compact_params must be false. |
| */ |
| uint64_t zero_push_reg; |
| unsigned push_reg_mask_param; |
| |
| unsigned curb_read_length; |
| unsigned total_scratch; |
| unsigned total_shared; |
| |
| unsigned program_size; |
| |
| unsigned const_data_size; |
| unsigned const_data_offset; |
| |
| unsigned num_relocs; |
| const struct elk_shader_reloc *relocs; |
| |
| /** Does this program pull from any UBO or other constant buffers? */ |
| bool has_ubo_pull; |
| |
| /** |
| * Register where the thread expects to find input data from the URB |
| * (typically uniforms, followed by vertex or fragment attributes). |
| */ |
| unsigned dispatch_grf_start_reg; |
| |
| bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */ |
| |
| /* 32-bit identifiers for all push/pull parameters. These can be anything |
| * the driver wishes them to be; the core of the back-end compiler simply |
| * re-arranges them. The one restriction is that the bottom 2^16 values |
| * are reserved for builtins defined in the elk_param_builtin enum defined |
| * above. |
| */ |
| uint32_t *param; |
| |
| /* Whether shader uses atomic operations. */ |
| bool uses_atomic_load_store; |
| }; |
| |
| static inline uint32_t * |
| elk_stage_prog_data_add_params(struct elk_stage_prog_data *prog_data, |
| unsigned nr_new_params) |
| { |
| unsigned old_nr_params = prog_data->nr_params; |
| prog_data->nr_params += nr_new_params; |
| prog_data->param = reralloc(ralloc_parent(prog_data->param), |
| prog_data->param, uint32_t, |
| prog_data->nr_params); |
| return prog_data->param + old_nr_params; |
| } |
| |
| enum elk_barycentric_mode { |
| ELK_BARYCENTRIC_PERSPECTIVE_PIXEL = 0, |
| ELK_BARYCENTRIC_PERSPECTIVE_CENTROID = 1, |
| ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2, |
| ELK_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3, |
| ELK_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4, |
| ELK_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5, |
| ELK_BARYCENTRIC_MODE_COUNT = 6 |
| }; |
| #define ELK_BARYCENTRIC_PERSPECTIVE_BITS \ |
| ((1 << ELK_BARYCENTRIC_PERSPECTIVE_PIXEL) | \ |
| (1 << ELK_BARYCENTRIC_PERSPECTIVE_CENTROID) | \ |
| (1 << ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE)) |
| #define ELK_BARYCENTRIC_NONPERSPECTIVE_BITS \ |
| ((1 << ELK_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \ |
| (1 << ELK_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \ |
| (1 << ELK_BARYCENTRIC_NONPERSPECTIVE_SAMPLE)) |
| |
| enum elk_pixel_shader_computed_depth_mode { |
| ELK_PSCDEPTH_OFF = 0, /* PS does not compute depth */ |
| ELK_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */ |
| ELK_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */ |
| ELK_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */ |
| }; |
| |
| /* Data about a particular attempt to compile a program. Note that |
| * there can be many of these, each in a different GL state |
| * corresponding to a different elk_wm_prog_key struct, with different |
| * compiled programs. |
| */ |
| struct elk_wm_prog_data { |
| struct elk_stage_prog_data base; |
| |
| unsigned num_per_primitive_inputs; |
| unsigned num_varying_inputs; |
| |
| uint8_t reg_blocks_8; |
| uint8_t reg_blocks_16; |
| uint8_t reg_blocks_32; |
| |
| uint8_t dispatch_grf_start_reg_16; |
| uint8_t dispatch_grf_start_reg_32; |
| uint32_t prog_offset_16; |
| uint32_t prog_offset_32; |
| |
| struct { |
| /** @{ |
| * surface indices the WM-specific surfaces |
| */ |
| uint32_t render_target_read_start; |
| /** @} */ |
| } binding_table; |
| |
| uint8_t color_outputs_written; |
| uint8_t computed_depth_mode; |
| |
| bool computed_stencil; |
| bool early_fragment_tests; |
| bool post_depth_coverage; |
| bool inner_coverage; |
| bool dispatch_8; |
| bool dispatch_16; |
| bool dispatch_32; |
| bool dual_src_blend; |
| bool uses_pos_offset; |
| bool uses_omask; |
| bool uses_kill; |
| bool uses_src_depth; |
| bool uses_src_w; |
| bool uses_sample_mask; |
| bool uses_vmask; |
| bool has_side_effects; |
| bool pulls_bary; |
| |
| bool contains_flat_varying; |
| bool contains_noperspective_varying; |
| |
| /** True if the shader wants sample shading |
| * |
| * This corresponds to whether or not a gl_SampleId, gl_SamplePosition, or |
| * a sample-qualified input are used in the shader. It is independent of |
| * GL_MIN_SAMPLE_SHADING_VALUE in GL or minSampleShading in Vulkan. |
| */ |
| bool sample_shading; |
| |
| /** Should this shader be dispatched per-sample */ |
| enum elk_sometimes persample_dispatch; |
| |
| /** |
| * Shader writes the SampleMask and this is AND-ed with the API's |
| * SampleMask to generate a new coverage mask. |
| */ |
| enum elk_sometimes alpha_to_coverage; |
| |
| unsigned msaa_flags_param; |
| |
| /** |
| * Mask of which interpolation modes are required by the fragment shader. |
| * Those interpolations are delivered as part of the thread payload. Used |
| * in hardware setup on gfx6+. |
| */ |
| uint32_t barycentric_interp_modes; |
| |
| /** |
| * Whether nonperspective interpolation modes are used by the |
| * barycentric_interp_modes or fragment shader through interpolator messages. |
| */ |
| bool uses_nonperspective_interp_modes; |
| |
| /** |
| * Mask of which FS inputs are marked flat by the shader source. This is |
| * needed for setting up 3DSTATE_SF/SBE. |
| */ |
| uint32_t flat_inputs; |
| |
| /** |
| * The FS inputs |
| */ |
| uint64_t inputs; |
| |
| /* Mapping of VUE slots to interpolation modes. |
| * Used by the Gfx4-5 clip/sf/wm stages. |
| */ |
| unsigned char interp_mode[65]; /* ELK_VARYING_SLOT_COUNT */ |
| |
| /** |
| * Map from gl_varying_slot to the position within the FS setup data |
| * payload where the varying's attribute vertex deltas should be delivered. |
| * For varying slots that are not used by the FS, the value is -1. |
| */ |
| int urb_setup[VARYING_SLOT_MAX]; |
| int urb_setup_channel[VARYING_SLOT_MAX]; |
| |
| /** |
| * Cache structure into the urb_setup array above that contains the |
| * attribute numbers of active varyings out of urb_setup. |
| * The actual count is stored in urb_setup_attribs_count. |
| */ |
| uint8_t urb_setup_attribs[VARYING_SLOT_MAX]; |
| uint8_t urb_setup_attribs_count; |
| }; |
| |
| #ifdef GFX_VERx10 |
| |
| /** Returns the SIMD width corresponding to a given KSP index |
| * |
| * The "Variable Pixel Dispatch" table in the PRM (which can be found, for |
| * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to |
| * kernel start pointer (KSP) indices that is based on what dispatch widths |
| * are enabled. This function provides, effectively, the reverse mapping. |
| * |
| * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD |
| * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned. |
| */ |
| static inline unsigned |
| elk_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled, |
| bool simd16_enabled, bool simd32_enabled) |
| { |
| /* This function strictly ignores contiguous dispatch */ |
| switch (ksp_idx) { |
| case 0: |
| return simd8_enabled ? 8 : |
| (simd16_enabled && !simd32_enabled) ? 16 : |
| (simd32_enabled && !simd16_enabled) ? 32 : 0; |
| case 1: |
| return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0; |
| case 2: |
| return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0; |
| default: |
| unreachable("Invalid KSP index"); |
| } |
| } |
| |
| #define elk_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \ |
| elk_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \ |
| (wm_state)._16PixelDispatchEnable, \ |
| (wm_state)._32PixelDispatchEnable) |
| |
| #endif |
| |
| #define elk_wm_state_has_ksp(wm_state, ksp_idx) \ |
| (elk_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0) |
| |
| static inline uint32_t |
| _elk_wm_prog_data_prog_offset(const struct elk_wm_prog_data *prog_data, |
| unsigned simd_width) |
| { |
| switch (simd_width) { |
| case 8: return 0; |
| case 16: return prog_data->prog_offset_16; |
| case 32: return prog_data->prog_offset_32; |
| default: return 0; |
| } |
| } |
| |
| #define elk_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \ |
| _elk_wm_prog_data_prog_offset(prog_data, \ |
| elk_wm_state_simd_width_for_ksp(wm_state, ksp_idx)) |
| |
| static inline uint8_t |
| _elk_wm_prog_data_dispatch_grf_start_reg(const struct elk_wm_prog_data *prog_data, |
| unsigned simd_width) |
| { |
| switch (simd_width) { |
| case 8: return prog_data->base.dispatch_grf_start_reg; |
| case 16: return prog_data->dispatch_grf_start_reg_16; |
| case 32: return prog_data->dispatch_grf_start_reg_32; |
| default: return 0; |
| } |
| } |
| |
| #define elk_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \ |
| _elk_wm_prog_data_dispatch_grf_start_reg(prog_data, \ |
| elk_wm_state_simd_width_for_ksp(wm_state, ksp_idx)) |
| |
| static inline uint8_t |
| _elk_wm_prog_data_reg_blocks(const struct elk_wm_prog_data *prog_data, |
| unsigned simd_width) |
| { |
| switch (simd_width) { |
| case 8: return prog_data->reg_blocks_8; |
| case 16: return prog_data->reg_blocks_16; |
| case 32: return prog_data->reg_blocks_32; |
| default: return 0; |
| } |
| } |
| |
| #define elk_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \ |
| _elk_wm_prog_data_reg_blocks(prog_data, \ |
| elk_wm_state_simd_width_for_ksp(wm_state, ksp_idx)) |
| |
| static inline bool |
| elk_wm_prog_data_is_persample(const struct elk_wm_prog_data *prog_data, |
| enum intel_msaa_flags pushed_msaa_flags) |
| { |
| if (pushed_msaa_flags & INTEL_MSAA_FLAG_ENABLE_DYNAMIC) { |
| if (!(pushed_msaa_flags & INTEL_MSAA_FLAG_MULTISAMPLE_FBO)) |
| return false; |
| |
| if (prog_data->sample_shading) |
| assert(pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH); |
| |
| if (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH) |
| assert(prog_data->persample_dispatch != ELK_NEVER); |
| else |
| assert(prog_data->persample_dispatch != ELK_ALWAYS); |
| |
| return (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH) != 0; |
| } |
| |
| assert(prog_data->persample_dispatch == ELK_ALWAYS || |
| prog_data->persample_dispatch == ELK_NEVER); |
| |
| return prog_data->persample_dispatch; |
| } |
| |
| static inline uint32_t |
| elk_wm_prog_data_barycentric_modes(const struct elk_wm_prog_data *prog_data, |
| enum intel_msaa_flags pushed_msaa_flags) |
| { |
| uint32_t modes = prog_data->barycentric_interp_modes; |
| |
| /* In the non dynamic case, we can just return the computed modes from |
| * compilation time. |
| */ |
| if (!(pushed_msaa_flags & INTEL_MSAA_FLAG_ENABLE_DYNAMIC)) |
| return modes; |
| |
| if (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_INTERP) { |
| assert(prog_data->persample_dispatch == ELK_ALWAYS || |
| (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH)); |
| |
| /* Making dynamic per-sample interpolation work is a bit tricky. The |
| * hardware will hang if SAMPLE is requested but per-sample dispatch is |
| * not enabled. This means we can't preemptively add SAMPLE to the |
| * barycentrics bitfield. Instead, we have to add it late and only |
| * on-demand. Annoyingly, changing the number of barycentrics requested |
| * changes the whole PS shader payload so we very much don't want to do |
| * that. Instead, if the dynamic per-sample interpolation flag is set, |
| * we check to see if SAMPLE was requested and, if not, replace the |
| * highest barycentric bit in the [non]perspective grouping (CENTROID, |
| * if it exists, else PIXEL) with SAMPLE. The shader will stomp all the |
| * barycentrics in the shader with SAMPLE so it really doesn't matter |
| * which one we replace. The important thing is that we keep the number |
| * of barycentrics in each [non]perspective grouping the same. |
| */ |
| if ((modes & ELK_BARYCENTRIC_PERSPECTIVE_BITS) && |
| !(modes & BITFIELD_BIT(ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE))) { |
| int sample_mode = |
| util_last_bit(modes & ELK_BARYCENTRIC_PERSPECTIVE_BITS) - 1; |
| assert(modes & BITFIELD_BIT(sample_mode)); |
| |
| modes &= ~BITFIELD_BIT(sample_mode); |
| modes |= BITFIELD_BIT(ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE); |
| } |
| |
| if ((modes & ELK_BARYCENTRIC_NONPERSPECTIVE_BITS) && |
| !(modes & BITFIELD_BIT(ELK_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))) { |
| int sample_mode = |
| util_last_bit(modes & ELK_BARYCENTRIC_NONPERSPECTIVE_BITS) - 1; |
| assert(modes & BITFIELD_BIT(sample_mode)); |
| |
| modes &= ~BITFIELD_BIT(sample_mode); |
| modes |= BITFIELD_BIT(ELK_BARYCENTRIC_NONPERSPECTIVE_SAMPLE); |
| } |
| } else { |
| /* If we're not using per-sample interpolation, we need to disable the |
| * per-sample bits. |
| * |
| * SKL PRMs, Volume 2a: Command Reference: Instructions, |
| * 3DSTATE_WM:Barycentric Interpolation Mode: |
| |
| * "MSDISPMODE_PERSAMPLE is required in order to select Perspective |
| * Sample or Non-perspective Sample barycentric coordinates." |
| */ |
| modes &= ~(BITFIELD_BIT(ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE) | |
| BITFIELD_BIT(ELK_BARYCENTRIC_NONPERSPECTIVE_SAMPLE)); |
| } |
| |
| return modes; |
| } |
| |
| struct elk_push_const_block { |
| unsigned dwords; /* Dword count, not reg aligned */ |
| unsigned regs; |
| unsigned size; /* Bytes, register aligned */ |
| }; |
| |
| struct elk_cs_prog_data { |
| struct elk_stage_prog_data base; |
| |
| unsigned local_size[3]; |
| |
| /* Program offsets for the 8/16/32 SIMD variants. Multiple variants are |
| * kept when using variable group size, and the right one can only be |
| * decided at dispatch time. |
| */ |
| unsigned prog_offset[3]; |
| |
| /* Bitmask indicating which program offsets are valid. */ |
| unsigned prog_mask; |
| |
| /* Bitmask indicating which programs have spilled. */ |
| unsigned prog_spilled; |
| |
| bool uses_barrier; |
| bool uses_num_work_groups; |
| |
| struct { |
| struct elk_push_const_block cross_thread; |
| struct elk_push_const_block per_thread; |
| } push; |
| |
| struct { |
| /** @{ |
| * surface indices the CS-specific surfaces |
| */ |
| uint32_t work_groups_start; |
| /** @} */ |
| } binding_table; |
| }; |
| |
| static inline uint32_t |
| elk_cs_prog_data_prog_offset(const struct elk_cs_prog_data *prog_data, |
| unsigned dispatch_width) |
| { |
| assert(dispatch_width == 8 || |
| dispatch_width == 16 || |
| dispatch_width == 32); |
| const unsigned index = dispatch_width / 16; |
| assert(prog_data->prog_mask & (1 << index)); |
| return prog_data->prog_offset[index]; |
| } |
| |
| struct elk_ff_gs_prog_data { |
| unsigned urb_read_length; |
| unsigned total_grf; |
| |
| /** |
| * Gfx6 transform feedback: Amount by which the streaming vertex buffer |
| * indices should be incremented each time the GS is invoked. |
| */ |
| unsigned svbi_postincrement_value; |
| }; |
| |
| /** |
| * Enum representing the i965-specific vertex results that don't correspond |
| * exactly to any element of gl_varying_slot. The values of this enum are |
| * assigned such that they don't conflict with gl_varying_slot. |
| */ |
| typedef enum |
| { |
| ELK_VARYING_SLOT_NDC = VARYING_SLOT_MAX, |
| ELK_VARYING_SLOT_PAD, |
| /** |
| * Technically this is not a varying but just a placeholder that |
| * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord |
| * builtin variable to be compiled correctly. see compile_sf_prog() for |
| * more info. |
| */ |
| ELK_VARYING_SLOT_PNTC, |
| ELK_VARYING_SLOT_COUNT |
| } elk_varying_slot; |
| |
| /** |
| * We always program SF to start reading at an offset of 1 (2 varying slots) |
| * from the start of the vertex URB entry. This causes it to skip: |
| * - VARYING_SLOT_PSIZ and ELK_VARYING_SLOT_NDC on gfx4-5 |
| * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gfx6+ |
| */ |
| #define ELK_SF_URB_ENTRY_READ_OFFSET 1 |
| |
| /** |
| * Bitmask indicating which fragment shader inputs represent varyings (and |
| * hence have to be delivered to the fragment shader by the SF/SBE stage). |
| */ |
| #define ELK_FS_VARYING_INPUT_MASK \ |
| (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \ |
| ~VARYING_BIT_POS & ~VARYING_BIT_FACE) |
| |
| void elk_print_vue_map(FILE *fp, const struct intel_vue_map *vue_map, |
| gl_shader_stage stage); |
| |
| /** |
| * Convert a VUE slot number into a byte offset within the VUE. |
| */ |
| static inline unsigned elk_vue_slot_to_offset(unsigned slot) |
| { |
| return 16*slot; |
| } |
| |
| /** |
| * Convert a vertex output (elk_varying_slot) into a byte offset within the |
| * VUE. |
| */ |
| static inline unsigned |
| elk_varying_to_offset(const struct intel_vue_map *vue_map, unsigned varying) |
| { |
| return elk_vue_slot_to_offset(vue_map->varying_to_slot[varying]); |
| } |
| |
| void elk_compute_vue_map(const struct intel_device_info *devinfo, |
| struct intel_vue_map *vue_map, |
| uint64_t slots_valid, |
| enum intel_vue_layout layout, |
| uint32_t pos_slots); |
| |
| void elk_compute_tess_vue_map(struct intel_vue_map *const vue_map, |
| uint64_t slots_valid, |
| uint32_t is_patch); |
| |
| /* elk_interpolation_map.c */ |
| void elk_setup_vue_interpolation(const struct intel_vue_map *vue_map, |
| struct nir_shader *nir, |
| struct elk_wm_prog_data *prog_data); |
| |
| struct elk_vue_prog_data { |
| struct elk_stage_prog_data base; |
| struct intel_vue_map vue_map; |
| |
| /** Should the hardware deliver input VUE handles for URB pull loads? */ |
| bool include_vue_handles; |
| |
| unsigned urb_read_length; |
| unsigned total_grf; |
| |
| uint32_t clip_distance_mask; |
| uint32_t cull_distance_mask; |
| |
| /* Used for calculating urb partitions. In the VS, this is the size of the |
| * URB entry used for both input and output to the thread. In the GS, this |
| * is the size of the URB entry used for output. |
| */ |
| unsigned urb_entry_size; |
| |
| enum intel_shader_dispatch_mode dispatch_mode; |
| }; |
| |
| struct elk_vs_prog_data { |
| struct elk_vue_prog_data base; |
| |
| uint64_t inputs_read; |
| uint64_t double_inputs_read; |
| |
| unsigned nr_attribute_slots; |
| |
| bool uses_vertexid; |
| bool uses_instanceid; |
| bool uses_is_indexed_draw; |
| bool uses_firstvertex; |
| bool uses_baseinstance; |
| bool uses_drawid; |
| }; |
| |
| struct elk_tcs_prog_data |
| { |
| struct elk_vue_prog_data base; |
| |
| /** Should the non-SINGLE_PATCH payload provide primitive ID? */ |
| bool include_primitive_id; |
| |
| /** Number vertices in output patch */ |
| int instances; |
| |
| /** Track patch count threshold */ |
| int patch_count_threshold; |
| }; |
| |
| |
| struct elk_tes_prog_data |
| { |
| struct elk_vue_prog_data base; |
| |
| enum intel_tess_partitioning partitioning; |
| enum intel_tess_output_topology output_topology; |
| enum intel_tess_domain domain; |
| bool include_primitive_id; |
| }; |
| |
| struct elk_gs_prog_data |
| { |
| struct elk_vue_prog_data base; |
| |
| unsigned vertices_in; |
| |
| /** |
| * Size of an output vertex, measured in HWORDS (32 bytes). |
| */ |
| unsigned output_vertex_size_hwords; |
| |
| unsigned output_topology; |
| |
| /** |
| * Size of the control data (cut bits or StreamID bits), in hwords (32 |
| * bytes). 0 if there is no control data. |
| */ |
| unsigned control_data_header_size_hwords; |
| |
| /** |
| * Format of the control data (either GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID |
| * if the control data is StreamID bits, or |
| * GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits). |
| * Ignored if control_data_header_size is 0. |
| */ |
| unsigned control_data_format; |
| |
| bool include_primitive_id; |
| |
| /** |
| * The number of vertices emitted, if constant - otherwise -1. |
| */ |
| int static_vertex_count; |
| |
| int invocations; |
| |
| /** |
| * Gfx6: Provoking vertex convention for odd-numbered triangles |
| * in tristrips. |
| */ |
| unsigned pv_first:1; |
| |
| /** |
| * Gfx6: Number of varyings that are output to transform feedback. |
| */ |
| unsigned num_transform_feedback_bindings:7; /* 0-ELK_MAX_SOL_BINDINGS */ |
| |
| /** |
| * Gfx6: Map from the index of a transform feedback binding table entry to the |
| * gl_varying_slot that should be streamed out through that binding table |
| * entry. |
| */ |
| unsigned char transform_feedback_bindings[64 /* ELK_MAX_SOL_BINDINGS */]; |
| |
| /** |
| * Gfx6: Map from the index of a transform feedback binding table entry to the |
| * swizzles that should be used when streaming out data through that |
| * binding table entry. |
| */ |
| unsigned char transform_feedback_swizzles[64 /* ELK_MAX_SOL_BINDINGS */]; |
| }; |
| |
| struct elk_sf_prog_data { |
| uint32_t urb_read_length; |
| uint32_t total_grf; |
| |
| /* Each vertex may have up to 12 attributes, 4 components each, |
| * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11 |
| * rows. |
| * |
| * Actually we use 4 for each, so call it 12 rows. |
| */ |
| unsigned urb_entry_size; |
| }; |
| |
| struct elk_clip_prog_data { |
| uint32_t curb_read_length; /* user planes? */ |
| uint32_t clip_mode; |
| uint32_t urb_read_length; |
| uint32_t total_grf; |
| }; |
| |
| /* elk_any_prog_data is prog_data for any stage that maps to an API stage */ |
| union elk_any_prog_data { |
| struct elk_stage_prog_data base; |
| struct elk_vue_prog_data vue; |
| struct elk_vs_prog_data vs; |
| struct elk_tcs_prog_data tcs; |
| struct elk_tes_prog_data tes; |
| struct elk_gs_prog_data gs; |
| struct elk_wm_prog_data wm; |
| struct elk_cs_prog_data cs; |
| }; |
| |
| #define DEFINE_PROG_DATA_DOWNCAST(STAGE, CHECK) \ |
| static inline struct elk_##STAGE##_prog_data * \ |
| elk_##STAGE##_prog_data(struct elk_stage_prog_data *prog_data) \ |
| { \ |
| if (prog_data) \ |
| assert(CHECK); \ |
| return (struct elk_##STAGE##_prog_data *) prog_data; \ |
| } \ |
| static inline const struct elk_##STAGE##_prog_data * \ |
| elk_##STAGE##_prog_data_const(const struct elk_stage_prog_data *prog_data) \ |
| { \ |
| if (prog_data) \ |
| assert(CHECK); \ |
| return (const struct elk_##STAGE##_prog_data *) prog_data; \ |
| } |
| |
| DEFINE_PROG_DATA_DOWNCAST(vs, prog_data->stage == MESA_SHADER_VERTEX) |
| DEFINE_PROG_DATA_DOWNCAST(tcs, prog_data->stage == MESA_SHADER_TESS_CTRL) |
| DEFINE_PROG_DATA_DOWNCAST(tes, prog_data->stage == MESA_SHADER_TESS_EVAL) |
| DEFINE_PROG_DATA_DOWNCAST(gs, prog_data->stage == MESA_SHADER_GEOMETRY) |
| DEFINE_PROG_DATA_DOWNCAST(wm, prog_data->stage == MESA_SHADER_FRAGMENT) |
| DEFINE_PROG_DATA_DOWNCAST(cs, gl_shader_stage_uses_workgroup(prog_data->stage)) |
| |
| DEFINE_PROG_DATA_DOWNCAST(vue, prog_data->stage == MESA_SHADER_VERTEX || |
| prog_data->stage == MESA_SHADER_TESS_CTRL || |
| prog_data->stage == MESA_SHADER_TESS_EVAL || |
| prog_data->stage == MESA_SHADER_GEOMETRY) |
| |
| /* These are not really elk_stage_prog_data. */ |
| DEFINE_PROG_DATA_DOWNCAST(ff_gs, true) |
| DEFINE_PROG_DATA_DOWNCAST(clip, true) |
| DEFINE_PROG_DATA_DOWNCAST(sf, true) |
| #undef DEFINE_PROG_DATA_DOWNCAST |
| |
| struct elk_compile_stats { |
| uint32_t dispatch_width; /**< 0 for vec4 */ |
| uint32_t max_polygons; |
| uint32_t max_dispatch_width; |
| uint32_t instructions; |
| uint32_t sends; |
| uint32_t loops; |
| uint32_t cycles; |
| uint32_t spills; |
| uint32_t fills; |
| uint32_t max_live_registers; |
| }; |
| |
| /** @} */ |
| |
| struct elk_compiler * |
| elk_compiler_create(void *mem_ctx, const struct intel_device_info *devinfo); |
| |
| /** |
| * Returns a compiler configuration for use with disk shader cache |
| * |
| * This value only needs to change for settings that can cause different |
| * program generation between two runs on the same hardware. |
| * |
| * For example, it doesn't need to be different for gen 8 and gen 9 hardware, |
| * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used. |
| */ |
| uint64_t |
| elk_get_compiler_config_value(const struct elk_compiler *compiler); |
| |
| unsigned |
| elk_prog_data_size(gl_shader_stage stage); |
| |
| unsigned |
| elk_prog_key_size(gl_shader_stage stage); |
| |
| struct elk_compile_params { |
| void *mem_ctx; |
| |
| nir_shader *nir; |
| |
| struct elk_compile_stats *stats; |
| |
| void *log_data; |
| |
| char *error_str; |
| |
| uint64_t debug_flag; |
| |
| uint32_t source_hash; |
| }; |
| |
| /** |
| * Parameters for compiling a vertex shader. |
| * |
| * Some of these will be modified during the shader compilation. |
| */ |
| struct elk_compile_vs_params { |
| struct elk_compile_params base; |
| |
| const struct elk_vs_prog_key *key; |
| struct elk_vs_prog_data *prog_data; |
| |
| bool edgeflag_is_last; /* true for gallium */ |
| }; |
| |
| /** |
| * Compile a vertex shader. |
| * |
| * Returns the final assembly and updates the parameters structure. |
| */ |
| const unsigned * |
| elk_compile_vs(const struct elk_compiler *compiler, |
| struct elk_compile_vs_params *params); |
| |
| /** |
| * Parameters for compiling a tessellation control shader. |
| * |
| * Some of these will be modified during the shader compilation. |
| */ |
| struct elk_compile_tcs_params { |
| struct elk_compile_params base; |
| |
| const struct elk_tcs_prog_key *key; |
| struct elk_tcs_prog_data *prog_data; |
| }; |
| |
| /** |
| * Compile a tessellation control shader. |
| * |
| * Returns the final assembly and updates the parameters structure. |
| */ |
| const unsigned * |
| elk_compile_tcs(const struct elk_compiler *compiler, |
| struct elk_compile_tcs_params *params); |
| |
| /** |
| * Parameters for compiling a tessellation evaluation shader. |
| * |
| * Some of these will be modified during the shader compilation. |
| */ |
| struct elk_compile_tes_params { |
| struct elk_compile_params base; |
| |
| const struct elk_tes_prog_key *key; |
| struct elk_tes_prog_data *prog_data; |
| const struct intel_vue_map *input_vue_map; |
| }; |
| |
| /** |
| * Compile a tessellation evaluation shader. |
| * |
| * Returns the final assembly and updates the parameters structure. |
| */ |
| const unsigned * |
| elk_compile_tes(const struct elk_compiler *compiler, |
| struct elk_compile_tes_params *params); |
| |
| /** |
| * Parameters for compiling a geometry shader. |
| * |
| * Some of these will be modified during the shader compilation. |
| */ |
| struct elk_compile_gs_params { |
| struct elk_compile_params base; |
| |
| const struct elk_gs_prog_key *key; |
| struct elk_gs_prog_data *prog_data; |
| }; |
| |
| /** |
| * Compile a geometry shader. |
| * |
| * Returns the final assembly and updates the parameters structure. |
| */ |
| const unsigned * |
| elk_compile_gs(const struct elk_compiler *compiler, |
| struct elk_compile_gs_params *params); |
| |
| /** |
| * Compile a strips and fans shader. |
| * |
| * This is a fixed-function shader determined entirely by the shader key and |
| * a VUE map. |
| * |
| * Returns the final assembly and the program's size. |
| */ |
| const unsigned * |
| elk_compile_sf(const struct elk_compiler *compiler, |
| void *mem_ctx, |
| const struct elk_sf_prog_key *key, |
| struct elk_sf_prog_data *prog_data, |
| struct intel_vue_map *vue_map, |
| unsigned *final_assembly_size); |
| |
| /** |
| * Compile a clipper shader. |
| * |
| * This is a fixed-function shader determined entirely by the shader key and |
| * a VUE map. |
| * |
| * Returns the final assembly and the program's size. |
| */ |
| const unsigned * |
| elk_compile_clip(const struct elk_compiler *compiler, |
| void *mem_ctx, |
| const struct elk_clip_prog_key *key, |
| struct elk_clip_prog_data *prog_data, |
| struct intel_vue_map *vue_map, |
| unsigned *final_assembly_size); |
| |
| /** |
| * Parameters for compiling a fragment shader. |
| * |
| * Some of these will be modified during the shader compilation. |
| */ |
| struct elk_compile_fs_params { |
| struct elk_compile_params base; |
| |
| const struct elk_wm_prog_key *key; |
| struct elk_wm_prog_data *prog_data; |
| |
| const struct intel_vue_map *vue_map; |
| const struct elk_mue_map *mue_map; |
| |
| bool allow_spilling; |
| bool use_rep_send; |
| uint8_t max_polygons; |
| }; |
| |
| /** |
| * Compile a fragment shader. |
| * |
| * Returns the final assembly and updates the parameters structure. |
| */ |
| const unsigned * |
| elk_compile_fs(const struct elk_compiler *compiler, |
| struct elk_compile_fs_params *params); |
| |
| /** |
| * Parameters for compiling a compute shader. |
| * |
| * Some of these will be modified during the shader compilation. |
| */ |
| struct elk_compile_cs_params { |
| struct elk_compile_params base; |
| |
| const struct elk_cs_prog_key *key; |
| struct elk_cs_prog_data *prog_data; |
| }; |
| |
| /** |
| * Compile a compute shader. |
| * |
| * Returns the final assembly and updates the parameters structure. |
| */ |
| const unsigned * |
| elk_compile_cs(const struct elk_compiler *compiler, |
| struct elk_compile_cs_params *params); |
| |
| /** |
| * Compile a fixed function geometry shader. |
| * |
| * Returns the final assembly and the program's size. |
| */ |
| const unsigned * |
| elk_compile_ff_gs_prog(struct elk_compiler *compiler, |
| void *mem_ctx, |
| const struct elk_ff_gs_prog_key *key, |
| struct elk_ff_gs_prog_data *prog_data, |
| struct intel_vue_map *vue_map, |
| unsigned *final_assembly_size); |
| |
| void elk_debug_key_recompile(const struct elk_compiler *c, void *log, |
| gl_shader_stage stage, |
| const struct elk_base_prog_key *old_key, |
| const struct elk_base_prog_key *key); |
| |
| unsigned |
| elk_cs_push_const_total_size(const struct elk_cs_prog_data *cs_prog_data, |
| unsigned threads); |
| |
| void |
| elk_write_shader_relocs(const struct elk_isa_info *isa, |
| void *program, |
| const struct elk_stage_prog_data *prog_data, |
| struct elk_shader_reloc_value *values, |
| unsigned num_values); |
| |
| /** |
| * Get the dispatch information for a shader to be used with GPGPU_WALKER and |
| * similar instructions. |
| * |
| * If override_local_size is not NULL, it must to point to a 3-element that |
| * will override the value from prog_data->local_size. This is used by |
| * ARB_compute_variable_group_size, where the size is set only at dispatch |
| * time (so prog_data is outdated). |
| */ |
| struct intel_cs_dispatch_info |
| elk_cs_get_dispatch_info(const struct intel_device_info *devinfo, |
| const struct elk_cs_prog_data *prog_data, |
| const unsigned *override_local_size); |
| |
| /** |
| * Return true if the given shader stage is dispatched contiguously by the |
| * relevant fixed function starting from channel 0 of the SIMD thread, which |
| * implies that the dispatch mask of a thread can be assumed to have the form |
| * '2^n - 1' for some n. |
| */ |
| static inline bool |
| elk_stage_has_packed_dispatch(ASSERTED const struct intel_device_info *devinfo, |
| gl_shader_stage stage, |
| const struct elk_stage_prog_data *prog_data) |
| { |
| /* The code below makes assumptions about the hardware's thread dispatch |
| * behavior that could be proven wrong in future generations -- Make sure |
| * to do a full test run with elk_fs_test_dispatch_packing() hooked up to |
| * the NIR front-end before changing this assertion. |
| */ |
| assert(devinfo->ver <= 8); |
| |
| switch (stage) { |
| case MESA_SHADER_FRAGMENT: { |
| /* The PSD discards subspans coming in with no lit samples, which in the |
| * per-pixel shading case implies that each subspan will either be fully |
| * lit (due to the VMask being used to allow derivative computations), |
| * or not dispatched at all. In per-sample dispatch mode individual |
| * samples from the same subspan have a fixed relative location within |
| * the SIMD thread, so dispatch of unlit samples cannot be avoided in |
| * general and we should return false. |
| */ |
| const struct elk_wm_prog_data *wm_prog_data = |
| (const struct elk_wm_prog_data *)prog_data; |
| return !wm_prog_data->persample_dispatch && |
| wm_prog_data->uses_vmask; |
| } |
| case MESA_SHADER_COMPUTE: |
| /* Compute shaders will be spawned with either a fully enabled dispatch |
| * mask or with whatever bottom/right execution mask was given to the |
| * GPGPU walker command to be used along the workgroup edges -- In both |
| * cases the dispatch mask is required to be tightly packed for our |
| * invocation index calculations to work. |
| */ |
| return true; |
| default: |
| /* Most remaining fixed functions are limited to use a packed dispatch |
| * mask due to the hardware representation of the dispatch mask as a |
| * single counter representing the number of enabled channels. |
| */ |
| return true; |
| } |
| } |
| |
| /** |
| * Computes the first varying slot in the URB produced by the previous stage |
| * that is used in the next stage. We do this by testing the varying slots in |
| * the previous stage's vue map against the inputs read in the next stage. |
| * |
| * Note that: |
| * |
| * - Each URB offset contains two varying slots and we can only skip a |
| * full offset if both slots are unused, so the value we return here is always |
| * rounded down to the closest multiple of two. |
| * |
| * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are |
| * part of the vue header, so if these are read we can't skip anything. |
| */ |
| static inline int |
| elk_compute_first_urb_slot_required(uint64_t inputs_read, |
| const struct intel_vue_map *prev_stage_vue_map) |
| { |
| if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PRIMITIVE_SHADING_RATE)) == 0) { |
| for (int i = 0; i < prev_stage_vue_map->num_slots; i++) { |
| int varying = prev_stage_vue_map->slot_to_varying[i]; |
| if (varying != ELK_VARYING_SLOT_PAD && varying > 0 && |
| varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0) |
| return ROUND_DOWN_TO(i, 2); |
| } |
| } |
| |
| return 0; |
| } |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |