blob: 0f8f658b1f7694580008e8943b521dc781a6d153 [file] [log] [blame]
/*
* Copyright © 2010 - 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#pragma once
#include <stdio.h>
#include "c11/threads.h"
#include "dev/intel_device_info.h"
#include "isl/isl.h"
#include "util/macros.h"
#include "util/mesa-sha1.h"
#include "util/enum_operators.h"
#include "util/ralloc.h"
#include "util/u_math.h"
#include "elk_isa_info.h"
#include "../intel_shader_enums.h"
#ifdef __cplusplus
extern "C" {
#endif
struct ra_regs;
struct nir_shader;
struct shader_info;
struct nir_shader_compiler_options;
typedef struct nir_shader nir_shader;
#define REG_CLASS_COUNT 20
struct elk_compiler {
const struct intel_device_info *devinfo;
/* This lock must be taken if the compiler is to be modified in any way,
* including adding something to the ralloc child list.
*/
mtx_t mutex;
struct elk_isa_info isa;
struct {
struct ra_regs *regs;
/**
* Array of the ra classes for the unaligned contiguous register
* block sizes used.
*/
struct ra_class **classes;
} vec4_reg_set;
struct {
struct ra_regs *regs;
/**
* Array of the ra classes for the unaligned contiguous register
* block sizes used, indexed by register size.
*/
struct ra_class *classes[REG_CLASS_COUNT];
/**
* ra class for the aligned barycentrics we use for PLN, which doesn't
* appear in *classes.
*/
struct ra_class *aligned_bary_class;
} fs_reg_sets[3];
void (*shader_debug_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
void (*shader_perf_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
bool scalar_stage[MESA_ALL_SHADER_STAGES];
struct nir_shader_compiler_options *nir_options[MESA_ALL_SHADER_STAGES];
/**
* Apply workarounds for SIN and COS output range problems.
* This can negatively impact performance.
*/
bool precise_trig;
/**
* Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
* Base Address? (If not, it's a normal GPU address.)
*/
bool constant_buffer_0_is_relative;
/**
* Whether or not the driver supports NIR shader constants. This controls
* whether nir_opt_large_constants will be run.
*/
bool supports_shader_constants;
/**
* Whether indirect UBO loads should use the sampler or go through the
* data/constant cache. For the sampler, UBO surface states have to be set
* up with VK_FORMAT_R32G32B32A32_FLOAT whereas if it's going through the
* constant or data cache, UBOs must use VK_FORMAT_RAW.
*/
bool indirect_ubos_use_sampler;
/** Whether we have an original 965G/GM clipping bug */
bool has_negative_rhw_bug;
/**
* Calling the ra_allocate function after each register spill can take
* several minutes. This option speeds up shader compilation by spilling
* more registers after the ra_allocate failure. Required for
* Cyberpunk 2077, which uses a watchdog thread to terminate the process
* in case the render thread hasn't responded within 2 minutes.
*/
int spilling_rate;
};
#define elk_shader_debug_log(compiler, data, fmt, ... ) do { \
static unsigned id = 0; \
compiler->shader_debug_log(data, &id, fmt, ##__VA_ARGS__); \
} while (0)
#define elk_shader_perf_log(compiler, data, fmt, ... ) do { \
static unsigned id = 0; \
compiler->shader_perf_log(data, &id, fmt, ##__VA_ARGS__); \
} while (0)
/**
* We use a constant subgroup size of 32. It really only needs to be a
* maximum and, since we do SIMD32 for compute shaders in some cases, it
* needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
* subgroup size of 32 but will act as if 16 or 24 of those channels are
* disabled.
*/
#define ELK_SUBGROUP_SIZE 32
/**
* Program key structures.
*
* When drawing, we look for the currently bound shaders in the program
* cache. This is essentially a hash table lookup, and these are the keys.
*
* Sometimes OpenGL features specified as state need to be simulated via
* shader code, due to a mismatch between the API and the hardware. This
* is often referred to as "non-orthagonal state" or "NOS". We store NOS
* in the program key so it's considered when searching for a program. If
* we haven't seen a particular combination before, we have to recompile a
* new specialized version.
*
* Shader compilation should not look up state in gl_context directly, but
* instead use the copy in the program key. This guarantees recompiles will
* happen correctly.
*
* @{
*/
enum PACKED elk_gfx6_gather_sampler_wa {
ELK_WA_SIGN = 1, /* whether we need to sign extend */
ELK_WA_8BIT = 2, /* if we have an 8bit format needing wa */
ELK_WA_16BIT = 4, /* if we have a 16bit format needing wa */
};
#define ELK_MAX_SAMPLERS 32
/* Provide explicit padding for each member, to ensure that the compiler
* initializes every bit in the shader cache keys. The keys will be compared
* with memcmp.
*/
PRAGMA_DIAGNOSTIC_PUSH
PRAGMA_DIAGNOSTIC_ERROR(-Wpadded)
/**
* Sampler information needed by VS, WM, and GS program cache keys.
*/
struct elk_sampler_prog_key_data {
/**
* EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
*
* This field is not consumed by the back-end compiler and is only relevant
* for the crocus OpenGL driver for Broadwell and earlier hardware.
*/
uint16_t swizzles[ELK_MAX_SAMPLERS];
uint32_t gl_clamp_mask[3];
/**
* For RG32F, gather4's channel select is broken.
*/
uint32_t gather_channel_quirk_mask;
/**
* For Sandybridge, which shader w/a we need for gather quirks.
*/
enum elk_gfx6_gather_sampler_wa gfx6_gather_wa[ELK_MAX_SAMPLERS];
};
enum elk_robustness_flags {
ELK_ROBUSTNESS_UBO = BITFIELD_BIT(0),
ELK_ROBUSTNESS_SSBO = BITFIELD_BIT(1),
};
struct elk_base_prog_key {
unsigned program_string_id;
enum elk_robustness_flags robust_flags:2;
unsigned padding:22;
/**
* Apply workarounds for SIN and COS input range problems.
* This limits input range for SIN and COS to [-2p : 2p] to
* avoid precision issues.
*/
bool limit_trig_input_range;
struct elk_sampler_prog_key_data tex;
};
/**
* The VF can't natively handle certain types of attributes, such as GL_FIXED
* or most 10_10_10_2 types. These flags enable various VS workarounds to
* "fix" attributes at the beginning of shaders.
*/
#define ELK_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
#define ELK_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
#define ELK_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
#define ELK_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
#define ELK_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
/**
* OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
* [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
* input vertex attributes. In Vulkan, we expose up to 29 user vertex input
* attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
*/
#define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
#define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 29)
/**
* Max number of binding table entries used for stream output.
*
* From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
* minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
*
* On Gfx6, the size of transform feedback data is limited not by the number
* of components but by the number of binding table entries we set aside. We
* use one binding table entry for a float, one entry for a vector, and one
* entry per matrix column. Since the only way we can communicate our
* transform feedback capabilities to the client is via
* MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
* worst case, in which all the varyings are floats, so we use up one binding
* table entry per component. Therefore we need to set aside at least 64
* binding table entries for use by transform feedback.
*
* Note: since we don't currently pack varyings, it is currently impossible
* for the client to actually use up all of these binding table entries--if
* all of their varyings were floats, they would run out of varying slots and
* fail to link. But that's a bug, so it seems prudent to go ahead and
* allocate the number of binding table entries we will need once the bug is
* fixed.
*/
#define ELK_MAX_SOL_BINDINGS 64
/** The program key for Vertex Shaders. */
struct elk_vs_prog_key {
struct elk_base_prog_key base;
/**
* Per-attribute workaround flags
*
* For each attribute, a combination of ELK_ATTRIB_WA_*.
*
* For OpenGL, where we expose a maximum of 16 user input attributes
* we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
* slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
* expose up to 28 user input vertex attributes that are mapped to slots
* starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
* enough to hold this many slots.
*/
uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
/**
* For pre-Gfx6 hardware, a bitfield indicating which texture coordinates
* are going to be replaced with point coordinates (as a consequence of a
* call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
* our SF thread requires exact matching between VS outputs and FS inputs,
* these texture coordinates will need to be unconditionally included in
* the VUE, even if they aren't written by the vertex shader.
*/
uint8_t point_coord_replace;
unsigned clamp_pointsize:1;
bool copy_edgeflag:1;
bool clamp_vertex_color:1;
/**
* How many user clipping planes are being uploaded to the vertex shader as
* push constants.
*
* These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
* clip distances.
*/
unsigned nr_userclip_plane_consts:4;
uint32_t padding: 17;
};
/** The program key for Tessellation Control Shaders. */
struct elk_tcs_prog_key
{
struct elk_base_prog_key base;
/** A bitfield of per-vertex outputs written. */
uint64_t outputs_written;
enum tess_primitive_mode _tes_primitive_mode;
/** Number of input vertices, 0 means dynamic */
unsigned input_vertices;
/** A bitfield of per-patch outputs written. */
uint32_t patch_outputs_written;
bool quads_workaround;
uint32_t padding:24;
};
#define ELK_MAX_TCS_INPUT_VERTICES (32)
static inline uint32_t
elk_tcs_prog_key_input_vertices(const struct elk_tcs_prog_key *key)
{
return key->input_vertices != 0 ?
key->input_vertices : ELK_MAX_TCS_INPUT_VERTICES;
}
/** The program key for Tessellation Evaluation Shaders. */
struct elk_tes_prog_key
{
struct elk_base_prog_key base;
/** A bitfield of per-vertex inputs read. */
uint64_t inputs_read;
/** A bitfield of per-patch inputs read. */
uint32_t patch_inputs_read;
/**
* How many user clipping planes are being uploaded to the tessellation
* evaluation shader as push constants.
*
* These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
* clip distances.
*/
unsigned nr_userclip_plane_consts:4;
unsigned clamp_pointsize:1;
uint32_t padding:27;
};
/** The program key for Geometry Shaders. */
struct elk_gs_prog_key
{
struct elk_base_prog_key base;
/**
* How many user clipping planes are being uploaded to the geometry shader
* as push constants.
*
* These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
* clip distances.
*/
unsigned nr_userclip_plane_consts:4;
unsigned clamp_pointsize:1;
unsigned padding:27;
};
enum elk_sf_primitive {
ELK_SF_PRIM_POINTS = 0,
ELK_SF_PRIM_LINES = 1,
ELK_SF_PRIM_TRIANGLES = 2,
ELK_SF_PRIM_UNFILLED_TRIS = 3,
};
struct elk_sf_prog_key {
uint64_t attrs;
bool contains_flat_varying;
unsigned char interp_mode[65]; /* ELK_VARYING_SLOT_COUNT */
uint8_t point_sprite_coord_replace;
enum elk_sf_primitive primitive:2;
bool do_twoside_color:1;
bool frontface_ccw:1;
bool do_point_sprite:1;
bool do_point_coord:1;
bool sprite_origin_lower_left:1;
bool userclip_active:1;
unsigned padding: 32;
};
enum elk_clip_mode {
ELK_CLIP_MODE_NORMAL = 0,
ELK_CLIP_MODE_CLIP_ALL = 1,
ELK_CLIP_MODE_CLIP_NON_REJECTED = 2,
ELK_CLIP_MODE_REJECT_ALL = 3,
ELK_CLIP_MODE_ACCEPT_ALL = 4,
ELK_CLIP_MODE_KERNEL_CLIP = 5,
};
enum elk_clip_fill_mode {
ELK_CLIP_FILL_MODE_LINE = 0,
ELK_CLIP_FILL_MODE_POINT = 1,
ELK_CLIP_FILL_MODE_FILL = 2,
ELK_CLIP_FILL_MODE_CULL = 3,
};
/* Note that if unfilled primitives are being emitted, we have to fix
* up polygon offset and flatshading at this point:
*/
struct elk_clip_prog_key {
uint64_t attrs;
float offset_factor;
float offset_units;
float offset_clamp;
bool contains_flat_varying;
bool contains_noperspective_varying;
unsigned char interp_mode[65]; /* ELK_VARYING_SLOT_COUNT */
unsigned primitive:4;
unsigned nr_userclip:4;
bool pv_first:1;
bool do_unfilled:1;
enum elk_clip_fill_mode fill_cw:2; /* includes cull information */
enum elk_clip_fill_mode fill_ccw:2; /* includes cull information */
bool offset_cw:1;
bool offset_ccw:1;
bool copy_bfc_cw:1;
bool copy_bfc_ccw:1;
enum elk_clip_mode clip_mode:3;
uint64_t padding:51;
};
/* A big lookup table is used to figure out which and how many
* additional regs will inserted before the main payload in the WM
* program execution. These mainly relate to depth and stencil
* processing and the early-depth-test optimization.
*/
enum elk_wm_iz_bits {
ELK_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
ELK_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
ELK_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
ELK_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
ELK_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
ELK_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
ELK_WM_IZ_BIT_MAX = 0x40
};
enum elk_sometimes {
ELK_NEVER = 0,
ELK_SOMETIMES,
ELK_ALWAYS
};
static inline enum elk_sometimes
elk_sometimes_invert(enum elk_sometimes x)
{
return (enum elk_sometimes)((int)ELK_ALWAYS - (int)x);
}
/** The program key for Fragment/Pixel Shaders. */
struct elk_wm_prog_key {
struct elk_base_prog_key base;
uint64_t input_slots_valid;
float alpha_test_ref;
uint8_t color_outputs_valid;
/* Some collection of ELK_WM_IZ_* */
uint8_t iz_lookup;
bool stats_wm:1;
bool flat_shade:1;
unsigned nr_color_regions:5;
bool emit_alpha_test:1;
enum compare_func alpha_test_func:3; /* < For Gfx4/5 MRT alpha test */
bool alpha_test_replicate_alpha:1;
enum elk_sometimes alpha_to_coverage:2;
bool clamp_fragment_color:1;
bool force_dual_color_blend:1;
/** Whether or inputs are interpolated at sample rate by default
*
* This corresponds to the sample shading API bit in Vulkan or OpenGL which
* controls how inputs with no interpolation qualifier are interpolated.
* This is distinct from the way that using gl_SampleID or similar requires
* us to run per-sample. Even when running per-sample due to gl_SampleID,
* we may still interpolate unqualified inputs at the pixel center.
*/
enum elk_sometimes persample_interp:2;
/* Whether or not we are running on a multisampled framebuffer */
enum elk_sometimes multisample_fbo:2;
enum elk_sometimes line_aa:2;
bool coherent_fb_fetch:1;
bool ignore_sample_mask_out:1;
uint64_t padding:56;
};
struct elk_cs_prog_key {
struct elk_base_prog_key base;
};
struct elk_ff_gs_prog_key {
uint64_t attrs;
/**
* Map from the index of a transform feedback binding table entry to the
* gl_varying_slot that should be streamed out through that binding table
* entry.
*/
unsigned char transform_feedback_bindings[ELK_MAX_SOL_BINDINGS];
/**
* Map from the index of a transform feedback binding table entry to the
* swizzles that should be used when streaming out data through that
* binding table entry.
*/
unsigned char transform_feedback_swizzles[ELK_MAX_SOL_BINDINGS];
/**
* Hardware primitive type being drawn, e.g. _3DPRIM_TRILIST.
*/
unsigned primitive:8;
unsigned pv_first:1;
unsigned need_gs_prog:1;
/**
* Number of varyings that are output to transform feedback.
*/
unsigned num_transform_feedback_bindings:7; /* 0-ELK_MAX_SOL_BINDINGS */
uint64_t padding:47;
};
/* elk_any_prog_key is any of the keys that map to an API stage */
union elk_any_prog_key {
struct elk_base_prog_key base;
struct elk_vs_prog_key vs;
struct elk_tcs_prog_key tcs;
struct elk_tes_prog_key tes;
struct elk_gs_prog_key gs;
struct elk_wm_prog_key wm;
struct elk_cs_prog_key cs;
};
PRAGMA_DIAGNOSTIC_POP
/** Max number of render targets in a shader */
#define ELK_MAX_DRAW_BUFFERS 8
/**
* Binding table index for the first gfx6 SOL binding.
*/
#define ELK_GFX6_SOL_BINDING_START 0
struct elk_ubo_range
{
uint16_t block;
/* In units of 32-byte registers */
uint8_t start;
uint8_t length;
};
/* We reserve the first 2^16 values for builtins */
#define ELK_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
enum elk_param_builtin {
ELK_PARAM_BUILTIN_ZERO,
ELK_PARAM_BUILTIN_CLIP_PLANE_0_X,
ELK_PARAM_BUILTIN_CLIP_PLANE_0_Y,
ELK_PARAM_BUILTIN_CLIP_PLANE_0_Z,
ELK_PARAM_BUILTIN_CLIP_PLANE_0_W,
ELK_PARAM_BUILTIN_CLIP_PLANE_1_X,
ELK_PARAM_BUILTIN_CLIP_PLANE_1_Y,
ELK_PARAM_BUILTIN_CLIP_PLANE_1_Z,
ELK_PARAM_BUILTIN_CLIP_PLANE_1_W,
ELK_PARAM_BUILTIN_CLIP_PLANE_2_X,
ELK_PARAM_BUILTIN_CLIP_PLANE_2_Y,
ELK_PARAM_BUILTIN_CLIP_PLANE_2_Z,
ELK_PARAM_BUILTIN_CLIP_PLANE_2_W,
ELK_PARAM_BUILTIN_CLIP_PLANE_3_X,
ELK_PARAM_BUILTIN_CLIP_PLANE_3_Y,
ELK_PARAM_BUILTIN_CLIP_PLANE_3_Z,
ELK_PARAM_BUILTIN_CLIP_PLANE_3_W,
ELK_PARAM_BUILTIN_CLIP_PLANE_4_X,
ELK_PARAM_BUILTIN_CLIP_PLANE_4_Y,
ELK_PARAM_BUILTIN_CLIP_PLANE_4_Z,
ELK_PARAM_BUILTIN_CLIP_PLANE_4_W,
ELK_PARAM_BUILTIN_CLIP_PLANE_5_X,
ELK_PARAM_BUILTIN_CLIP_PLANE_5_Y,
ELK_PARAM_BUILTIN_CLIP_PLANE_5_Z,
ELK_PARAM_BUILTIN_CLIP_PLANE_5_W,
ELK_PARAM_BUILTIN_CLIP_PLANE_6_X,
ELK_PARAM_BUILTIN_CLIP_PLANE_6_Y,
ELK_PARAM_BUILTIN_CLIP_PLANE_6_Z,
ELK_PARAM_BUILTIN_CLIP_PLANE_6_W,
ELK_PARAM_BUILTIN_CLIP_PLANE_7_X,
ELK_PARAM_BUILTIN_CLIP_PLANE_7_Y,
ELK_PARAM_BUILTIN_CLIP_PLANE_7_Z,
ELK_PARAM_BUILTIN_CLIP_PLANE_7_W,
ELK_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
ELK_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
ELK_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
ELK_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
ELK_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
ELK_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
ELK_PARAM_BUILTIN_PATCH_VERTICES_IN,
ELK_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
ELK_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
ELK_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
ELK_PARAM_BUILTIN_SUBGROUP_ID,
ELK_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
ELK_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
ELK_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
ELK_PARAM_BUILTIN_WORK_DIM,
};
#define ELK_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
(ELK_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
#define ELK_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
((param) >= ELK_PARAM_BUILTIN_CLIP_PLANE_0_X && \
(param) <= ELK_PARAM_BUILTIN_CLIP_PLANE_7_W)
#define ELK_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
(((param) - ELK_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
#define ELK_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
(((param) - ELK_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
enum elk_shader_reloc_id {
ELK_SHADER_RELOC_CONST_DATA_ADDR_LOW,
ELK_SHADER_RELOC_CONST_DATA_ADDR_HIGH,
ELK_SHADER_RELOC_SHADER_START_OFFSET,
ELK_SHADER_RELOC_DESCRIPTORS_ADDR_HIGH,
};
enum elk_shader_reloc_type {
/** An arbitrary 32-bit value */
ELK_SHADER_RELOC_TYPE_U32,
/** A MOV instruction with an immediate source */
ELK_SHADER_RELOC_TYPE_MOV_IMM,
};
/** Represents a code relocation
*
* Relocatable constants are immediates in the code which we want to be able
* to replace post-compile with the actual value.
*/
struct elk_shader_reloc {
/** The 32-bit ID of the relocatable constant */
uint32_t id;
/** Type of this relocation */
enum elk_shader_reloc_type type;
/** The offset in the shader to the relocated value
*
* For MOV_IMM relocs, this is an offset to the MOV instruction. This
* allows us to do some sanity checking while we update the value.
*/
uint32_t offset;
/** Value to be added to the relocated value before it is written */
uint32_t delta;
};
/** A value to write to a relocation */
struct elk_shader_reloc_value {
/** The 32-bit ID of the relocatable constant */
uint32_t id;
/** The value with which to replace the relocated immediate */
uint32_t value;
};
struct elk_stage_prog_data {
struct elk_ubo_range ubo_ranges[4];
unsigned nr_params; /**< number of float params/constants */
gl_shader_stage stage;
/* zero_push_reg is a bitfield which indicates what push registers (if any)
* should be zeroed by SW at the start of the shader. The corresponding
* push_reg_mask_param specifies the param index (in 32-bit units) where
* the actual runtime 64-bit mask will be pushed. The shader will zero
* push reg i if
*
* reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
*
* If this field is set, elk_compiler::compact_params must be false.
*/
uint64_t zero_push_reg;
unsigned push_reg_mask_param;
unsigned curb_read_length;
unsigned total_scratch;
unsigned total_shared;
unsigned program_size;
unsigned const_data_size;
unsigned const_data_offset;
unsigned num_relocs;
const struct elk_shader_reloc *relocs;
/** Does this program pull from any UBO or other constant buffers? */
bool has_ubo_pull;
/**
* Register where the thread expects to find input data from the URB
* (typically uniforms, followed by vertex or fragment attributes).
*/
unsigned dispatch_grf_start_reg;
bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
/* 32-bit identifiers for all push/pull parameters. These can be anything
* the driver wishes them to be; the core of the back-end compiler simply
* re-arranges them. The one restriction is that the bottom 2^16 values
* are reserved for builtins defined in the elk_param_builtin enum defined
* above.
*/
uint32_t *param;
/* Whether shader uses atomic operations. */
bool uses_atomic_load_store;
};
static inline uint32_t *
elk_stage_prog_data_add_params(struct elk_stage_prog_data *prog_data,
unsigned nr_new_params)
{
unsigned old_nr_params = prog_data->nr_params;
prog_data->nr_params += nr_new_params;
prog_data->param = reralloc(ralloc_parent(prog_data->param),
prog_data->param, uint32_t,
prog_data->nr_params);
return prog_data->param + old_nr_params;
}
enum elk_barycentric_mode {
ELK_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
ELK_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
ELK_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
ELK_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
ELK_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
ELK_BARYCENTRIC_MODE_COUNT = 6
};
#define ELK_BARYCENTRIC_PERSPECTIVE_BITS \
((1 << ELK_BARYCENTRIC_PERSPECTIVE_PIXEL) | \
(1 << ELK_BARYCENTRIC_PERSPECTIVE_CENTROID) | \
(1 << ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE))
#define ELK_BARYCENTRIC_NONPERSPECTIVE_BITS \
((1 << ELK_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
(1 << ELK_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
(1 << ELK_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
enum elk_pixel_shader_computed_depth_mode {
ELK_PSCDEPTH_OFF = 0, /* PS does not compute depth */
ELK_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
ELK_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
ELK_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
};
/* Data about a particular attempt to compile a program. Note that
* there can be many of these, each in a different GL state
* corresponding to a different elk_wm_prog_key struct, with different
* compiled programs.
*/
struct elk_wm_prog_data {
struct elk_stage_prog_data base;
unsigned num_per_primitive_inputs;
unsigned num_varying_inputs;
uint8_t reg_blocks_8;
uint8_t reg_blocks_16;
uint8_t reg_blocks_32;
uint8_t dispatch_grf_start_reg_16;
uint8_t dispatch_grf_start_reg_32;
uint32_t prog_offset_16;
uint32_t prog_offset_32;
struct {
/** @{
* surface indices the WM-specific surfaces
*/
uint32_t render_target_read_start;
/** @} */
} binding_table;
uint8_t color_outputs_written;
uint8_t computed_depth_mode;
bool computed_stencil;
bool early_fragment_tests;
bool post_depth_coverage;
bool inner_coverage;
bool dispatch_8;
bool dispatch_16;
bool dispatch_32;
bool dual_src_blend;
bool uses_pos_offset;
bool uses_omask;
bool uses_kill;
bool uses_src_depth;
bool uses_src_w;
bool uses_sample_mask;
bool uses_vmask;
bool has_side_effects;
bool pulls_bary;
bool contains_flat_varying;
bool contains_noperspective_varying;
/** True if the shader wants sample shading
*
* This corresponds to whether or not a gl_SampleId, gl_SamplePosition, or
* a sample-qualified input are used in the shader. It is independent of
* GL_MIN_SAMPLE_SHADING_VALUE in GL or minSampleShading in Vulkan.
*/
bool sample_shading;
/** Should this shader be dispatched per-sample */
enum elk_sometimes persample_dispatch;
/**
* Shader writes the SampleMask and this is AND-ed with the API's
* SampleMask to generate a new coverage mask.
*/
enum elk_sometimes alpha_to_coverage;
unsigned msaa_flags_param;
/**
* Mask of which interpolation modes are required by the fragment shader.
* Those interpolations are delivered as part of the thread payload. Used
* in hardware setup on gfx6+.
*/
uint32_t barycentric_interp_modes;
/**
* Whether nonperspective interpolation modes are used by the
* barycentric_interp_modes or fragment shader through interpolator messages.
*/
bool uses_nonperspective_interp_modes;
/**
* Mask of which FS inputs are marked flat by the shader source. This is
* needed for setting up 3DSTATE_SF/SBE.
*/
uint32_t flat_inputs;
/**
* The FS inputs
*/
uint64_t inputs;
/* Mapping of VUE slots to interpolation modes.
* Used by the Gfx4-5 clip/sf/wm stages.
*/
unsigned char interp_mode[65]; /* ELK_VARYING_SLOT_COUNT */
/**
* Map from gl_varying_slot to the position within the FS setup data
* payload where the varying's attribute vertex deltas should be delivered.
* For varying slots that are not used by the FS, the value is -1.
*/
int urb_setup[VARYING_SLOT_MAX];
int urb_setup_channel[VARYING_SLOT_MAX];
/**
* Cache structure into the urb_setup array above that contains the
* attribute numbers of active varyings out of urb_setup.
* The actual count is stored in urb_setup_attribs_count.
*/
uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
uint8_t urb_setup_attribs_count;
};
#ifdef GFX_VERx10
/** Returns the SIMD width corresponding to a given KSP index
*
* The "Variable Pixel Dispatch" table in the PRM (which can be found, for
* example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
* kernel start pointer (KSP) indices that is based on what dispatch widths
* are enabled. This function provides, effectively, the reverse mapping.
*
* If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
* width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
*/
static inline unsigned
elk_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
bool simd16_enabled, bool simd32_enabled)
{
/* This function strictly ignores contiguous dispatch */
switch (ksp_idx) {
case 0:
return simd8_enabled ? 8 :
(simd16_enabled && !simd32_enabled) ? 16 :
(simd32_enabled && !simd16_enabled) ? 32 : 0;
case 1:
return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
case 2:
return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
default:
unreachable("Invalid KSP index");
}
}
#define elk_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
elk_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
(wm_state)._16PixelDispatchEnable, \
(wm_state)._32PixelDispatchEnable)
#endif
#define elk_wm_state_has_ksp(wm_state, ksp_idx) \
(elk_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
static inline uint32_t
_elk_wm_prog_data_prog_offset(const struct elk_wm_prog_data *prog_data,
unsigned simd_width)
{
switch (simd_width) {
case 8: return 0;
case 16: return prog_data->prog_offset_16;
case 32: return prog_data->prog_offset_32;
default: return 0;
}
}
#define elk_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
_elk_wm_prog_data_prog_offset(prog_data, \
elk_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
static inline uint8_t
_elk_wm_prog_data_dispatch_grf_start_reg(const struct elk_wm_prog_data *prog_data,
unsigned simd_width)
{
switch (simd_width) {
case 8: return prog_data->base.dispatch_grf_start_reg;
case 16: return prog_data->dispatch_grf_start_reg_16;
case 32: return prog_data->dispatch_grf_start_reg_32;
default: return 0;
}
}
#define elk_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
_elk_wm_prog_data_dispatch_grf_start_reg(prog_data, \
elk_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
static inline uint8_t
_elk_wm_prog_data_reg_blocks(const struct elk_wm_prog_data *prog_data,
unsigned simd_width)
{
switch (simd_width) {
case 8: return prog_data->reg_blocks_8;
case 16: return prog_data->reg_blocks_16;
case 32: return prog_data->reg_blocks_32;
default: return 0;
}
}
#define elk_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
_elk_wm_prog_data_reg_blocks(prog_data, \
elk_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
static inline bool
elk_wm_prog_data_is_persample(const struct elk_wm_prog_data *prog_data,
enum intel_msaa_flags pushed_msaa_flags)
{
if (pushed_msaa_flags & INTEL_MSAA_FLAG_ENABLE_DYNAMIC) {
if (!(pushed_msaa_flags & INTEL_MSAA_FLAG_MULTISAMPLE_FBO))
return false;
if (prog_data->sample_shading)
assert(pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH);
if (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH)
assert(prog_data->persample_dispatch != ELK_NEVER);
else
assert(prog_data->persample_dispatch != ELK_ALWAYS);
return (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH) != 0;
}
assert(prog_data->persample_dispatch == ELK_ALWAYS ||
prog_data->persample_dispatch == ELK_NEVER);
return prog_data->persample_dispatch;
}
static inline uint32_t
elk_wm_prog_data_barycentric_modes(const struct elk_wm_prog_data *prog_data,
enum intel_msaa_flags pushed_msaa_flags)
{
uint32_t modes = prog_data->barycentric_interp_modes;
/* In the non dynamic case, we can just return the computed modes from
* compilation time.
*/
if (!(pushed_msaa_flags & INTEL_MSAA_FLAG_ENABLE_DYNAMIC))
return modes;
if (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_INTERP) {
assert(prog_data->persample_dispatch == ELK_ALWAYS ||
(pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH));
/* Making dynamic per-sample interpolation work is a bit tricky. The
* hardware will hang if SAMPLE is requested but per-sample dispatch is
* not enabled. This means we can't preemptively add SAMPLE to the
* barycentrics bitfield. Instead, we have to add it late and only
* on-demand. Annoyingly, changing the number of barycentrics requested
* changes the whole PS shader payload so we very much don't want to do
* that. Instead, if the dynamic per-sample interpolation flag is set,
* we check to see if SAMPLE was requested and, if not, replace the
* highest barycentric bit in the [non]perspective grouping (CENTROID,
* if it exists, else PIXEL) with SAMPLE. The shader will stomp all the
* barycentrics in the shader with SAMPLE so it really doesn't matter
* which one we replace. The important thing is that we keep the number
* of barycentrics in each [non]perspective grouping the same.
*/
if ((modes & ELK_BARYCENTRIC_PERSPECTIVE_BITS) &&
!(modes & BITFIELD_BIT(ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE))) {
int sample_mode =
util_last_bit(modes & ELK_BARYCENTRIC_PERSPECTIVE_BITS) - 1;
assert(modes & BITFIELD_BIT(sample_mode));
modes &= ~BITFIELD_BIT(sample_mode);
modes |= BITFIELD_BIT(ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE);
}
if ((modes & ELK_BARYCENTRIC_NONPERSPECTIVE_BITS) &&
!(modes & BITFIELD_BIT(ELK_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))) {
int sample_mode =
util_last_bit(modes & ELK_BARYCENTRIC_NONPERSPECTIVE_BITS) - 1;
assert(modes & BITFIELD_BIT(sample_mode));
modes &= ~BITFIELD_BIT(sample_mode);
modes |= BITFIELD_BIT(ELK_BARYCENTRIC_NONPERSPECTIVE_SAMPLE);
}
} else {
/* If we're not using per-sample interpolation, we need to disable the
* per-sample bits.
*
* SKL PRMs, Volume 2a: Command Reference: Instructions,
* 3DSTATE_WM:Barycentric Interpolation Mode:
* "MSDISPMODE_PERSAMPLE is required in order to select Perspective
* Sample or Non-perspective Sample barycentric coordinates."
*/
modes &= ~(BITFIELD_BIT(ELK_BARYCENTRIC_PERSPECTIVE_SAMPLE) |
BITFIELD_BIT(ELK_BARYCENTRIC_NONPERSPECTIVE_SAMPLE));
}
return modes;
}
struct elk_push_const_block {
unsigned dwords; /* Dword count, not reg aligned */
unsigned regs;
unsigned size; /* Bytes, register aligned */
};
struct elk_cs_prog_data {
struct elk_stage_prog_data base;
unsigned local_size[3];
/* Program offsets for the 8/16/32 SIMD variants. Multiple variants are
* kept when using variable group size, and the right one can only be
* decided at dispatch time.
*/
unsigned prog_offset[3];
/* Bitmask indicating which program offsets are valid. */
unsigned prog_mask;
/* Bitmask indicating which programs have spilled. */
unsigned prog_spilled;
bool uses_barrier;
bool uses_num_work_groups;
struct {
struct elk_push_const_block cross_thread;
struct elk_push_const_block per_thread;
} push;
struct {
/** @{
* surface indices the CS-specific surfaces
*/
uint32_t work_groups_start;
/** @} */
} binding_table;
};
static inline uint32_t
elk_cs_prog_data_prog_offset(const struct elk_cs_prog_data *prog_data,
unsigned dispatch_width)
{
assert(dispatch_width == 8 ||
dispatch_width == 16 ||
dispatch_width == 32);
const unsigned index = dispatch_width / 16;
assert(prog_data->prog_mask & (1 << index));
return prog_data->prog_offset[index];
}
struct elk_ff_gs_prog_data {
unsigned urb_read_length;
unsigned total_grf;
/**
* Gfx6 transform feedback: Amount by which the streaming vertex buffer
* indices should be incremented each time the GS is invoked.
*/
unsigned svbi_postincrement_value;
};
/**
* Enum representing the i965-specific vertex results that don't correspond
* exactly to any element of gl_varying_slot. The values of this enum are
* assigned such that they don't conflict with gl_varying_slot.
*/
typedef enum
{
ELK_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
ELK_VARYING_SLOT_PAD,
/**
* Technically this is not a varying but just a placeholder that
* compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
* builtin variable to be compiled correctly. see compile_sf_prog() for
* more info.
*/
ELK_VARYING_SLOT_PNTC,
ELK_VARYING_SLOT_COUNT
} elk_varying_slot;
/**
* We always program SF to start reading at an offset of 1 (2 varying slots)
* from the start of the vertex URB entry. This causes it to skip:
* - VARYING_SLOT_PSIZ and ELK_VARYING_SLOT_NDC on gfx4-5
* - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gfx6+
*/
#define ELK_SF_URB_ENTRY_READ_OFFSET 1
/**
* Bitmask indicating which fragment shader inputs represent varyings (and
* hence have to be delivered to the fragment shader by the SF/SBE stage).
*/
#define ELK_FS_VARYING_INPUT_MASK \
(BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
~VARYING_BIT_POS & ~VARYING_BIT_FACE)
void elk_print_vue_map(FILE *fp, const struct intel_vue_map *vue_map,
gl_shader_stage stage);
/**
* Convert a VUE slot number into a byte offset within the VUE.
*/
static inline unsigned elk_vue_slot_to_offset(unsigned slot)
{
return 16*slot;
}
/**
* Convert a vertex output (elk_varying_slot) into a byte offset within the
* VUE.
*/
static inline unsigned
elk_varying_to_offset(const struct intel_vue_map *vue_map, unsigned varying)
{
return elk_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
}
void elk_compute_vue_map(const struct intel_device_info *devinfo,
struct intel_vue_map *vue_map,
uint64_t slots_valid,
enum intel_vue_layout layout,
uint32_t pos_slots);
void elk_compute_tess_vue_map(struct intel_vue_map *const vue_map,
uint64_t slots_valid,
uint32_t is_patch);
/* elk_interpolation_map.c */
void elk_setup_vue_interpolation(const struct intel_vue_map *vue_map,
struct nir_shader *nir,
struct elk_wm_prog_data *prog_data);
struct elk_vue_prog_data {
struct elk_stage_prog_data base;
struct intel_vue_map vue_map;
/** Should the hardware deliver input VUE handles for URB pull loads? */
bool include_vue_handles;
unsigned urb_read_length;
unsigned total_grf;
uint32_t clip_distance_mask;
uint32_t cull_distance_mask;
/* Used for calculating urb partitions. In the VS, this is the size of the
* URB entry used for both input and output to the thread. In the GS, this
* is the size of the URB entry used for output.
*/
unsigned urb_entry_size;
enum intel_shader_dispatch_mode dispatch_mode;
};
struct elk_vs_prog_data {
struct elk_vue_prog_data base;
uint64_t inputs_read;
uint64_t double_inputs_read;
unsigned nr_attribute_slots;
bool uses_vertexid;
bool uses_instanceid;
bool uses_is_indexed_draw;
bool uses_firstvertex;
bool uses_baseinstance;
bool uses_drawid;
};
struct elk_tcs_prog_data
{
struct elk_vue_prog_data base;
/** Should the non-SINGLE_PATCH payload provide primitive ID? */
bool include_primitive_id;
/** Number vertices in output patch */
int instances;
/** Track patch count threshold */
int patch_count_threshold;
};
struct elk_tes_prog_data
{
struct elk_vue_prog_data base;
enum intel_tess_partitioning partitioning;
enum intel_tess_output_topology output_topology;
enum intel_tess_domain domain;
bool include_primitive_id;
};
struct elk_gs_prog_data
{
struct elk_vue_prog_data base;
unsigned vertices_in;
/**
* Size of an output vertex, measured in HWORDS (32 bytes).
*/
unsigned output_vertex_size_hwords;
unsigned output_topology;
/**
* Size of the control data (cut bits or StreamID bits), in hwords (32
* bytes). 0 if there is no control data.
*/
unsigned control_data_header_size_hwords;
/**
* Format of the control data (either GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
* if the control data is StreamID bits, or
* GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
* Ignored if control_data_header_size is 0.
*/
unsigned control_data_format;
bool include_primitive_id;
/**
* The number of vertices emitted, if constant - otherwise -1.
*/
int static_vertex_count;
int invocations;
/**
* Gfx6: Provoking vertex convention for odd-numbered triangles
* in tristrips.
*/
unsigned pv_first:1;
/**
* Gfx6: Number of varyings that are output to transform feedback.
*/
unsigned num_transform_feedback_bindings:7; /* 0-ELK_MAX_SOL_BINDINGS */
/**
* Gfx6: Map from the index of a transform feedback binding table entry to the
* gl_varying_slot that should be streamed out through that binding table
* entry.
*/
unsigned char transform_feedback_bindings[64 /* ELK_MAX_SOL_BINDINGS */];
/**
* Gfx6: Map from the index of a transform feedback binding table entry to the
* swizzles that should be used when streaming out data through that
* binding table entry.
*/
unsigned char transform_feedback_swizzles[64 /* ELK_MAX_SOL_BINDINGS */];
};
struct elk_sf_prog_data {
uint32_t urb_read_length;
uint32_t total_grf;
/* Each vertex may have up to 12 attributes, 4 components each,
* except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
* rows.
*
* Actually we use 4 for each, so call it 12 rows.
*/
unsigned urb_entry_size;
};
struct elk_clip_prog_data {
uint32_t curb_read_length; /* user planes? */
uint32_t clip_mode;
uint32_t urb_read_length;
uint32_t total_grf;
};
/* elk_any_prog_data is prog_data for any stage that maps to an API stage */
union elk_any_prog_data {
struct elk_stage_prog_data base;
struct elk_vue_prog_data vue;
struct elk_vs_prog_data vs;
struct elk_tcs_prog_data tcs;
struct elk_tes_prog_data tes;
struct elk_gs_prog_data gs;
struct elk_wm_prog_data wm;
struct elk_cs_prog_data cs;
};
#define DEFINE_PROG_DATA_DOWNCAST(STAGE, CHECK) \
static inline struct elk_##STAGE##_prog_data * \
elk_##STAGE##_prog_data(struct elk_stage_prog_data *prog_data) \
{ \
if (prog_data) \
assert(CHECK); \
return (struct elk_##STAGE##_prog_data *) prog_data; \
} \
static inline const struct elk_##STAGE##_prog_data * \
elk_##STAGE##_prog_data_const(const struct elk_stage_prog_data *prog_data) \
{ \
if (prog_data) \
assert(CHECK); \
return (const struct elk_##STAGE##_prog_data *) prog_data; \
}
DEFINE_PROG_DATA_DOWNCAST(vs, prog_data->stage == MESA_SHADER_VERTEX)
DEFINE_PROG_DATA_DOWNCAST(tcs, prog_data->stage == MESA_SHADER_TESS_CTRL)
DEFINE_PROG_DATA_DOWNCAST(tes, prog_data->stage == MESA_SHADER_TESS_EVAL)
DEFINE_PROG_DATA_DOWNCAST(gs, prog_data->stage == MESA_SHADER_GEOMETRY)
DEFINE_PROG_DATA_DOWNCAST(wm, prog_data->stage == MESA_SHADER_FRAGMENT)
DEFINE_PROG_DATA_DOWNCAST(cs, gl_shader_stage_uses_workgroup(prog_data->stage))
DEFINE_PROG_DATA_DOWNCAST(vue, prog_data->stage == MESA_SHADER_VERTEX ||
prog_data->stage == MESA_SHADER_TESS_CTRL ||
prog_data->stage == MESA_SHADER_TESS_EVAL ||
prog_data->stage == MESA_SHADER_GEOMETRY)
/* These are not really elk_stage_prog_data. */
DEFINE_PROG_DATA_DOWNCAST(ff_gs, true)
DEFINE_PROG_DATA_DOWNCAST(clip, true)
DEFINE_PROG_DATA_DOWNCAST(sf, true)
#undef DEFINE_PROG_DATA_DOWNCAST
struct elk_compile_stats {
uint32_t dispatch_width; /**< 0 for vec4 */
uint32_t max_polygons;
uint32_t max_dispatch_width;
uint32_t instructions;
uint32_t sends;
uint32_t loops;
uint32_t cycles;
uint32_t spills;
uint32_t fills;
uint32_t max_live_registers;
};
/** @} */
struct elk_compiler *
elk_compiler_create(void *mem_ctx, const struct intel_device_info *devinfo);
/**
* Returns a compiler configuration for use with disk shader cache
*
* This value only needs to change for settings that can cause different
* program generation between two runs on the same hardware.
*
* For example, it doesn't need to be different for gen 8 and gen 9 hardware,
* but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
*/
uint64_t
elk_get_compiler_config_value(const struct elk_compiler *compiler);
unsigned
elk_prog_data_size(gl_shader_stage stage);
unsigned
elk_prog_key_size(gl_shader_stage stage);
struct elk_compile_params {
void *mem_ctx;
nir_shader *nir;
struct elk_compile_stats *stats;
void *log_data;
char *error_str;
uint64_t debug_flag;
uint32_t source_hash;
};
/**
* Parameters for compiling a vertex shader.
*
* Some of these will be modified during the shader compilation.
*/
struct elk_compile_vs_params {
struct elk_compile_params base;
const struct elk_vs_prog_key *key;
struct elk_vs_prog_data *prog_data;
bool edgeflag_is_last; /* true for gallium */
};
/**
* Compile a vertex shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
elk_compile_vs(const struct elk_compiler *compiler,
struct elk_compile_vs_params *params);
/**
* Parameters for compiling a tessellation control shader.
*
* Some of these will be modified during the shader compilation.
*/
struct elk_compile_tcs_params {
struct elk_compile_params base;
const struct elk_tcs_prog_key *key;
struct elk_tcs_prog_data *prog_data;
};
/**
* Compile a tessellation control shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
elk_compile_tcs(const struct elk_compiler *compiler,
struct elk_compile_tcs_params *params);
/**
* Parameters for compiling a tessellation evaluation shader.
*
* Some of these will be modified during the shader compilation.
*/
struct elk_compile_tes_params {
struct elk_compile_params base;
const struct elk_tes_prog_key *key;
struct elk_tes_prog_data *prog_data;
const struct intel_vue_map *input_vue_map;
};
/**
* Compile a tessellation evaluation shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
elk_compile_tes(const struct elk_compiler *compiler,
struct elk_compile_tes_params *params);
/**
* Parameters for compiling a geometry shader.
*
* Some of these will be modified during the shader compilation.
*/
struct elk_compile_gs_params {
struct elk_compile_params base;
const struct elk_gs_prog_key *key;
struct elk_gs_prog_data *prog_data;
};
/**
* Compile a geometry shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
elk_compile_gs(const struct elk_compiler *compiler,
struct elk_compile_gs_params *params);
/**
* Compile a strips and fans shader.
*
* This is a fixed-function shader determined entirely by the shader key and
* a VUE map.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
elk_compile_sf(const struct elk_compiler *compiler,
void *mem_ctx,
const struct elk_sf_prog_key *key,
struct elk_sf_prog_data *prog_data,
struct intel_vue_map *vue_map,
unsigned *final_assembly_size);
/**
* Compile a clipper shader.
*
* This is a fixed-function shader determined entirely by the shader key and
* a VUE map.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
elk_compile_clip(const struct elk_compiler *compiler,
void *mem_ctx,
const struct elk_clip_prog_key *key,
struct elk_clip_prog_data *prog_data,
struct intel_vue_map *vue_map,
unsigned *final_assembly_size);
/**
* Parameters for compiling a fragment shader.
*
* Some of these will be modified during the shader compilation.
*/
struct elk_compile_fs_params {
struct elk_compile_params base;
const struct elk_wm_prog_key *key;
struct elk_wm_prog_data *prog_data;
const struct intel_vue_map *vue_map;
const struct elk_mue_map *mue_map;
bool allow_spilling;
bool use_rep_send;
uint8_t max_polygons;
};
/**
* Compile a fragment shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
elk_compile_fs(const struct elk_compiler *compiler,
struct elk_compile_fs_params *params);
/**
* Parameters for compiling a compute shader.
*
* Some of these will be modified during the shader compilation.
*/
struct elk_compile_cs_params {
struct elk_compile_params base;
const struct elk_cs_prog_key *key;
struct elk_cs_prog_data *prog_data;
};
/**
* Compile a compute shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
elk_compile_cs(const struct elk_compiler *compiler,
struct elk_compile_cs_params *params);
/**
* Compile a fixed function geometry shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
elk_compile_ff_gs_prog(struct elk_compiler *compiler,
void *mem_ctx,
const struct elk_ff_gs_prog_key *key,
struct elk_ff_gs_prog_data *prog_data,
struct intel_vue_map *vue_map,
unsigned *final_assembly_size);
void elk_debug_key_recompile(const struct elk_compiler *c, void *log,
gl_shader_stage stage,
const struct elk_base_prog_key *old_key,
const struct elk_base_prog_key *key);
unsigned
elk_cs_push_const_total_size(const struct elk_cs_prog_data *cs_prog_data,
unsigned threads);
void
elk_write_shader_relocs(const struct elk_isa_info *isa,
void *program,
const struct elk_stage_prog_data *prog_data,
struct elk_shader_reloc_value *values,
unsigned num_values);
/**
* Get the dispatch information for a shader to be used with GPGPU_WALKER and
* similar instructions.
*
* If override_local_size is not NULL, it must to point to a 3-element that
* will override the value from prog_data->local_size. This is used by
* ARB_compute_variable_group_size, where the size is set only at dispatch
* time (so prog_data is outdated).
*/
struct intel_cs_dispatch_info
elk_cs_get_dispatch_info(const struct intel_device_info *devinfo,
const struct elk_cs_prog_data *prog_data,
const unsigned *override_local_size);
/**
* Return true if the given shader stage is dispatched contiguously by the
* relevant fixed function starting from channel 0 of the SIMD thread, which
* implies that the dispatch mask of a thread can be assumed to have the form
* '2^n - 1' for some n.
*/
static inline bool
elk_stage_has_packed_dispatch(ASSERTED const struct intel_device_info *devinfo,
gl_shader_stage stage,
const struct elk_stage_prog_data *prog_data)
{
/* The code below makes assumptions about the hardware's thread dispatch
* behavior that could be proven wrong in future generations -- Make sure
* to do a full test run with elk_fs_test_dispatch_packing() hooked up to
* the NIR front-end before changing this assertion.
*/
assert(devinfo->ver <= 8);
switch (stage) {
case MESA_SHADER_FRAGMENT: {
/* The PSD discards subspans coming in with no lit samples, which in the
* per-pixel shading case implies that each subspan will either be fully
* lit (due to the VMask being used to allow derivative computations),
* or not dispatched at all. In per-sample dispatch mode individual
* samples from the same subspan have a fixed relative location within
* the SIMD thread, so dispatch of unlit samples cannot be avoided in
* general and we should return false.
*/
const struct elk_wm_prog_data *wm_prog_data =
(const struct elk_wm_prog_data *)prog_data;
return !wm_prog_data->persample_dispatch &&
wm_prog_data->uses_vmask;
}
case MESA_SHADER_COMPUTE:
/* Compute shaders will be spawned with either a fully enabled dispatch
* mask or with whatever bottom/right execution mask was given to the
* GPGPU walker command to be used along the workgroup edges -- In both
* cases the dispatch mask is required to be tightly packed for our
* invocation index calculations to work.
*/
return true;
default:
/* Most remaining fixed functions are limited to use a packed dispatch
* mask due to the hardware representation of the dispatch mask as a
* single counter representing the number of enabled channels.
*/
return true;
}
}
/**
* Computes the first varying slot in the URB produced by the previous stage
* that is used in the next stage. We do this by testing the varying slots in
* the previous stage's vue map against the inputs read in the next stage.
*
* Note that:
*
* - Each URB offset contains two varying slots and we can only skip a
* full offset if both slots are unused, so the value we return here is always
* rounded down to the closest multiple of two.
*
* - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
* part of the vue header, so if these are read we can't skip anything.
*/
static inline int
elk_compute_first_urb_slot_required(uint64_t inputs_read,
const struct intel_vue_map *prev_stage_vue_map)
{
if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PRIMITIVE_SHADING_RATE)) == 0) {
for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
int varying = prev_stage_vue_map->slot_to_varying[i];
if (varying != ELK_VARYING_SLOT_PAD && varying > 0 &&
varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
return ROUND_DOWN_TO(i, 2);
}
}
return 0;
}
#ifdef __cplusplus
} /* extern "C" */
#endif