| /* |
| * Copyright © 2011 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| /** |
| * @file |
| * |
| * This file computes the "VUE map" for a (non-fragment) shader stage, which |
| * describes the layout of its output varyings. The VUE map is used to match |
| * outputs from one stage with the inputs of the next. |
| * |
| * Largely, varyings can be placed however we like - producers/consumers simply |
| * have to agree on the layout. However, there is also a "VUE Header" that |
| * prescribes a fixed-layout for items that interact with fixed function |
| * hardware, such as the clipper and rasterizer. |
| * |
| * Authors: |
| * Paul Berry <stereotype441@gmail.com> |
| * Chris Forbes <chrisf@ijw.co.nz> |
| * Eric Anholt <eric@anholt.net> |
| */ |
| |
| |
| #include "brw_compiler.h" |
| #include "dev/intel_debug.h" |
| #include "brw_nir.h" |
| |
| static unsigned |
| get_var_slots(gl_shader_stage stage, const nir_variable *var) |
| { |
| const struct glsl_type *type = var->type; |
| |
| if (nir_is_arrayed_io(var, stage)) { |
| assert(glsl_type_is_array(type)); |
| type = glsl_get_array_element(type); |
| } |
| |
| /* EXT_mesh_shader: PRIMITIVE_INDICES is a flat array, not a proper arrayed |
| * output, as opposed to D3D-style mesh shaders where it's addressed by the |
| * primitive index. Prevent assigning several slots to primitive indices, |
| * to avoid some issues. |
| */ |
| if (stage == MESA_SHADER_MESH && |
| var->data.location == VARYING_SLOT_PRIMITIVE_INDICES && |
| !nir_is_arrayed_io(var, stage)) |
| return 1; |
| |
| return glsl_count_vec4_slots(type, false, var->data.bindless); |
| } |
| |
| void |
| brw_compute_per_primitive_map(int *out_per_primitive_map, |
| uint32_t *out_per_primitive_stride, |
| uint32_t *out_first_offset, |
| uint32_t base_offset, |
| nir_shader *nir, |
| uint32_t variables_mode, |
| uint64_t slots_valid, |
| bool separate_shader) |
| { |
| memset(out_per_primitive_map, -1, sizeof(*out_per_primitive_map) * VARYING_SLOT_MAX); |
| *out_per_primitive_stride = base_offset; |
| *out_first_offset = UINT32_MAX; |
| |
| const uint64_t count_indices_bits = |
| VARYING_BIT_PRIMITIVE_COUNT | |
| VARYING_BIT_PRIMITIVE_INDICES; |
| const uint64_t per_primitive_header_bits = |
| VARYING_BIT_PRIMITIVE_SHADING_RATE | |
| VARYING_BIT_LAYER | |
| VARYING_BIT_VIEWPORT | |
| VARYING_BIT_CULL_PRIMITIVE; |
| const uint64_t per_primitive_outputs_written = |
| slots_valid & ~(count_indices_bits | per_primitive_header_bits); |
| |
| *out_first_offset = base_offset; |
| |
| /* We put each variable in its own 16B slot. Technically we could do a lot |
| * better by allocating the space needed for the variable since the data is |
| * constant and not interpolated for the fragment shader. Unfortunately the |
| * backend treats those values similarly to vertex attributes and making |
| * that change would require a pretty large change in the backend. Let's do |
| * this later. |
| */ |
| |
| /* Lay out builtins first */ |
| const uint64_t builtins = |
| per_primitive_outputs_written & BITFIELD64_MASK(VARYING_SLOT_VAR0); |
| u_foreach_bit64(location, builtins) { |
| assert(out_per_primitive_map[location] == -1); |
| |
| out_per_primitive_map[location] = *out_per_primitive_stride; |
| *out_per_primitive_stride += 16; |
| } |
| |
| uint32_t generics_offset = *out_per_primitive_stride; |
| |
| /* Lay out generics */ |
| const uint64_t generics = |
| per_primitive_outputs_written & ~BITFIELD64_MASK(VARYING_SLOT_VAR0); |
| const int first_generic_output = ffsll(generics) - 1; |
| u_foreach_bit64(location, generics) { |
| assert(out_per_primitive_map[location] == -1); |
| if (!separate_shader) { |
| /* Just append the location at the back */ |
| out_per_primitive_map[location] = *out_per_primitive_stride; |
| } else { |
| assert(location >= VARYING_SLOT_VAR0); |
| /* Each location has its fixed spot */ |
| out_per_primitive_map[location] = generics_offset + |
| 16 * (location - first_generic_output); |
| } |
| |
| *out_per_primitive_stride = |
| MAX2(out_per_primitive_map[location] + 16, |
| *out_per_primitive_stride); |
| |
| *out_first_offset = MIN2(out_per_primitive_map[location], |
| *out_first_offset); |
| } |
| |
| *out_first_offset = *out_first_offset == UINT32_MAX ? 0 : |
| ROUND_DOWN_TO(*out_first_offset, 32); |
| } |
| |
| static inline void |
| assign_vue_slot(struct intel_vue_map *vue_map, int varying, int slot) |
| { |
| /* Make sure this varying hasn't been assigned a slot already */ |
| assert (vue_map->varying_to_slot[varying] == -1); |
| |
| vue_map->varying_to_slot[varying] = slot; |
| vue_map->slot_to_varying[slot] = varying; |
| } |
| |
| /** |
| * Compute the VUE map for a shader stage. |
| */ |
| void |
| brw_compute_vue_map(const struct intel_device_info *devinfo, |
| struct intel_vue_map *vue_map, |
| uint64_t slots_valid, |
| enum intel_vue_layout layout, |
| uint32_t pos_slots) |
| { |
| vue_map->slots_valid = slots_valid; |
| vue_map->layout = layout; |
| |
| if (layout != INTEL_VUE_LAYOUT_FIXED) { |
| /* In SSO mode, we don't know whether the adjacent stage will |
| * read/write gl_ClipDistance, which has a fixed slot location. |
| * We have to assume the worst and reserve a slot for it, or else |
| * the rest of our varyings will be off by a slot. |
| * |
| * Note that we don't have to worry about COL/BFC, as those built-in |
| * variables only exist in legacy GL, which only supports VS and FS. |
| */ |
| slots_valid |= VARYING_BIT_CLIP_DIST0; |
| slots_valid |= VARYING_BIT_CLIP_DIST1; |
| } |
| |
| /* gl_Layer, gl_ViewportIndex & gl_PrimitiveShadingRateEXT don't get their |
| * own varying slots -- they are stored in the first VUE slot |
| * (VARYING_SLOT_PSIZ). |
| */ |
| slots_valid &= ~(VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PRIMITIVE_SHADING_RATE); |
| |
| /* gl_FrontFace is provided somewhere else in the FS thread payload, it's |
| * never in the VUE. |
| */ |
| slots_valid &= ~VARYING_BIT_FACE; |
| |
| /* Make sure that the values we store in vue_map->varying_to_slot and |
| * vue_map->slot_to_varying won't overflow the signed chars that are used |
| * to store them. Note that since vue_map->slot_to_varying sometimes holds |
| * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that |
| * BRW_VARYING_SLOT_COUNT is <= 127, not 128. |
| */ |
| STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127); |
| |
| for (int i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) { |
| vue_map->varying_to_slot[i] = -1; |
| vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD; |
| } |
| |
| int slot = 0; |
| |
| /* VUE header: format depends on chip generation and whether clipping is |
| * enabled. |
| * |
| * See the Sandybridge PRM, Volume 2 Part 1, section 1.5.1 (page 30), |
| * "Vertex URB Entry (VUE) Formats" which describes the VUE header layout. |
| * |
| * There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge: |
| * dword 0-3 of the header is shading rate, indices, point width, clip flags. |
| * dword 4-7 is the 4D space position |
| * dword 8-15 of the vertex header is the user clip distance if |
| * enabled. |
| * dword 8-11 or 16-19 is the first vertex element data we fill. |
| */ |
| assign_vue_slot(vue_map, VARYING_SLOT_PSIZ, slot++); |
| assign_vue_slot(vue_map, VARYING_SLOT_POS, slot++); |
| |
| /* When using Primitive Replication, multiple slots are used for storing |
| * positions for each view. |
| */ |
| assert(pos_slots >= 1); |
| if (pos_slots > 1) { |
| for (int i = 1; i < pos_slots; i++) { |
| vue_map->slot_to_varying[slot++] = VARYING_SLOT_POS; |
| } |
| } |
| |
| if (slots_valid & VARYING_BIT_CLIP_DIST0) |
| assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0, slot++); |
| if (slots_valid & VARYING_BIT_CLIP_DIST1) |
| assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1, slot++); |
| |
| /* Vertex URB Formats table says: "Vertex Header shall be padded at the |
| * end so that the header ends on a 32-byte boundary". |
| */ |
| slot += slot % 2; |
| |
| /* front and back colors need to be consecutive so that we can use |
| * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing |
| * two-sided color. |
| */ |
| if (slots_valid & VARYING_BIT_COL0) |
| assign_vue_slot(vue_map, VARYING_SLOT_COL0, slot++); |
| if (slots_valid & VARYING_BIT_BFC0) |
| assign_vue_slot(vue_map, VARYING_SLOT_BFC0, slot++); |
| if (slots_valid & VARYING_BIT_COL1) |
| assign_vue_slot(vue_map, VARYING_SLOT_COL1, slot++); |
| if (slots_valid & VARYING_BIT_BFC1) |
| assign_vue_slot(vue_map, VARYING_SLOT_BFC1, slot++); |
| |
| /* The hardware doesn't care about the rest of the vertex outputs, so we |
| * can assign them however we like. For normal programs, we simply assign |
| * them contiguously. |
| * |
| * We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX, |
| * since it's encoded as the clip distances by emit_clip_distances(). |
| * However, it may be output by transform feedback, and we'd rather not |
| * recompute state when TF changes, so we just always include it. |
| */ |
| if (layout != INTEL_VUE_LAYOUT_SEPARATE_MESH) { |
| const uint64_t builtins = slots_valid & BITFIELD64_MASK(VARYING_SLOT_VAR0); |
| u_foreach_bit64(varying, builtins) { |
| /* Already assigned above? */ |
| if (vue_map->varying_to_slot[varying] != -1) |
| continue; |
| assign_vue_slot(vue_map, varying, slot++); |
| } |
| } |
| |
| const int first_generic_slot = slot; |
| const uint64_t generics = slots_valid & ~BITFIELD64_MASK(VARYING_SLOT_VAR0); |
| u_foreach_bit64(varying, generics) { |
| if (layout != INTEL_VUE_LAYOUT_FIXED) { |
| slot = first_generic_slot + varying - VARYING_SLOT_VAR0; |
| } |
| assign_vue_slot(vue_map, varying, slot++); |
| } |
| |
| if (layout == INTEL_VUE_LAYOUT_SEPARATE_MESH) { |
| const uint64_t builtins = slots_valid & BITFIELD64_MASK(VARYING_SLOT_VAR0); |
| u_foreach_bit64(varying, builtins) { |
| /* Already assigned above? */ |
| if (vue_map->varying_to_slot[varying] != -1) |
| continue; |
| assign_vue_slot(vue_map, varying, slot++); |
| } |
| } |
| |
| vue_map->num_slots = slot; |
| vue_map->num_pos_slots = pos_slots; |
| vue_map->num_per_vertex_slots = 0; |
| vue_map->num_per_patch_slots = 0; |
| } |
| |
| /** |
| * Compute the VUE map for tessellation control shader outputs and |
| * tessellation evaluation shader inputs. |
| */ |
| void |
| brw_compute_tess_vue_map(struct intel_vue_map *vue_map, |
| uint64_t vertex_slots, |
| uint32_t patch_slots) |
| { |
| /* I don't think anything actually uses this... */ |
| vue_map->slots_valid = vertex_slots; |
| |
| /* separate isn't really meaningful, we always compiled tessellation |
| * shaders together, so use a fixed layout. |
| */ |
| vue_map->layout = INTEL_VUE_LAYOUT_FIXED; |
| |
| vertex_slots &= ~(VARYING_BIT_TESS_LEVEL_OUTER | |
| VARYING_BIT_TESS_LEVEL_INNER); |
| |
| /* Make sure that the values we store in vue_map->varying_to_slot and |
| * vue_map->slot_to_varying won't overflow the signed chars that are used |
| * to store them. Note that since vue_map->slot_to_varying sometimes holds |
| * values equal to VARYING_SLOT_TESS_MAX , we need to ensure that |
| * VARYING_SLOT_TESS_MAX is <= 127, not 128. |
| */ |
| STATIC_ASSERT(VARYING_SLOT_TESS_MAX <= 127); |
| |
| for (int i = 0; i < VARYING_SLOT_TESS_MAX ; ++i) { |
| vue_map->varying_to_slot[i] = -1; |
| vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD; |
| } |
| |
| int slot = 0; |
| |
| /* The first 8 DWords are reserved for the "Patch Header". |
| * |
| * VARYING_SLOT_TESS_LEVEL_OUTER / INNER live here, but the exact layout |
| * depends on the domain type. They might not be in slots 0 and 1 as |
| * described here, but pretending they're separate allows us to uniquely |
| * identify them by distinct slot locations. |
| */ |
| assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_INNER, slot++); |
| assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_OUTER, slot++); |
| |
| /* first assign per-patch varyings */ |
| while (patch_slots != 0) { |
| const int varying = ffsll(patch_slots) - 1; |
| if (vue_map->varying_to_slot[varying + VARYING_SLOT_PATCH0] == -1) { |
| assign_vue_slot(vue_map, varying + VARYING_SLOT_PATCH0, slot++); |
| } |
| patch_slots &= ~BITFIELD64_BIT(varying); |
| } |
| |
| /* apparently, including the patch header... */ |
| vue_map->num_per_patch_slots = slot; |
| |
| /* then assign per-vertex varyings for each vertex in our patch */ |
| while (vertex_slots != 0) { |
| const int varying = ffsll(vertex_slots) - 1; |
| if (vue_map->varying_to_slot[varying] == -1) { |
| assign_vue_slot(vue_map, varying, slot++); |
| } |
| vertex_slots &= ~BITFIELD64_BIT(varying); |
| } |
| |
| vue_map->num_per_vertex_slots = slot - vue_map->num_per_patch_slots; |
| vue_map->num_pos_slots = 0; |
| vue_map->num_slots = slot; |
| } |
| |
| static const char * |
| varying_name(brw_varying_slot slot, gl_shader_stage stage) |
| { |
| assume(slot < BRW_VARYING_SLOT_COUNT); |
| |
| if (slot < VARYING_SLOT_MAX) |
| return gl_varying_slot_name_for_stage((gl_varying_slot)slot, stage); |
| |
| static const char *brw_names[] = { |
| [BRW_VARYING_SLOT_PAD - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_PAD", |
| }; |
| |
| return brw_names[slot - VARYING_SLOT_MAX]; |
| } |
| |
| void |
| brw_print_vue_map(FILE *fp, const struct intel_vue_map *vue_map, |
| gl_shader_stage stage) |
| { |
| const char *layout_name = |
| vue_map->layout == INTEL_VUE_LAYOUT_FIXED ? "fixed" : |
| vue_map->layout == INTEL_VUE_LAYOUT_SEPARATE ? "separate" : |
| "separate-mesh"; |
| |
| if (vue_map->num_per_vertex_slots > 0 || vue_map->num_per_patch_slots > 0) { |
| fprintf(fp, "PUE map (%d slots, %d/patch, %d/vertex, %s)\n", |
| vue_map->num_slots, |
| vue_map->num_per_patch_slots, |
| vue_map->num_per_vertex_slots, |
| layout_name); |
| for (int i = 0; i < vue_map->num_slots; i++) { |
| if (vue_map->slot_to_varying[i] >= VARYING_SLOT_PATCH0) { |
| fprintf(fp, " [%02d] VARYING_SLOT_PATCH%d\n", i, |
| vue_map->slot_to_varying[i] - VARYING_SLOT_PATCH0); |
| } else { |
| fprintf(fp, " [%02d] %s\n", i, |
| varying_name(vue_map->slot_to_varying[i], stage)); |
| } |
| } |
| } else { |
| fprintf(fp, "%s VUE map (%d slots, %s)\n", |
| gl_shader_stage_name(stage), vue_map->num_slots, layout_name); |
| for (int i = 0; i < vue_map->num_slots; i++) { |
| fprintf(fp, " [%02d] %s\n", i, |
| varying_name(vue_map->slot_to_varying[i], stage)); |
| } |
| } |
| fprintf(fp, "\n"); |
| } |