blob: 15b530185c8426630d9f41fcf39951952029f340 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file
*
* Implements a pass that validates various invariants of the IR. The current
* pass only validates that GRF's uses are sane. More can be added later.
*/
#include "brw_shader.h"
#include "brw_cfg.h"
#include "brw_eu.h"
#define fsv_assert(assertion) \
{ \
if (!(assertion)) { \
fprintf(stderr, "ASSERT: Scalar %s validation failed!\n", \
_mesa_shader_stage_to_abbrev(s.stage)); \
brw_print_instruction(s, inst, stderr); \
fprintf(stderr, "%s:%d: '%s' failed\n", __FILE__, __LINE__, #assertion); \
abort(); \
} \
}
#define fsv_assert_eq(A, B) \
{ \
uintptr_t a = uintptr_t(A); \
uintptr_t b = uintptr_t(B); \
if (a != b) { \
fprintf(stderr, "ASSERT: Scalar %s validation failed!\n", \
_mesa_shader_stage_to_abbrev(s.stage)); \
brw_print_instruction(s, inst, stderr); \
fprintf(stderr, "%s:%d: A == B failed\n", __FILE__, __LINE__); \
fprintf(stderr, " A = %s = %" PRIuPTR "\n", #A, a); \
fprintf(stderr, " B = %s = %" PRIuPTR "\n", #B, b); \
abort(); \
} \
}
#define fsv_assert_ne(A, B) \
{ \
unsigned a = (A); \
unsigned b = (B); \
if (a == b) { \
fprintf(stderr, "ASSERT: Scalar %s validation failed!\n", \
_mesa_shader_stage_to_abbrev(s.stage)); \
brw_print_instruction(s, inst, stderr); \
fprintf(stderr, "%s:%d: A != B failed\n", __FILE__, __LINE__); \
fprintf(stderr, " A = %s = %u\n", #A, a); \
fprintf(stderr, " B = %s = %u\n", #B, b); \
abort(); \
} \
}
#define fsv_assert_lte(A, B) \
{ \
unsigned a = (A); \
unsigned b = (B); \
if (a > b) { \
fprintf(stderr, "ASSERT: Scalar %s validation failed!\n", \
_mesa_shader_stage_to_abbrev(s.stage)); \
brw_print_instruction(s, inst, stderr); \
fprintf(stderr, "%s:%d: A <= B failed\n", __FILE__, __LINE__); \
fprintf(stderr, " A = %s = %u\n", #A, a); \
fprintf(stderr, " B = %s = %u\n", #B, b); \
abort(); \
} \
}
#ifndef NDEBUG
static inline bool
is_ud_imm(const brw_reg &reg)
{
return reg.file == IMM && reg.type == BRW_TYPE_UD;
}
static inline bool
is_d_imm(const brw_reg &reg)
{
return reg.file == IMM && reg.type == BRW_TYPE_D;
}
static void
validate_memory_logical(const brw_shader &s, const brw_inst *inst)
{
const intel_device_info *devinfo = s.devinfo;
fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_OPCODE]));
fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_MODE]));
fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_BINDING_TYPE]));
fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_COORD_COMPONENTS]));
fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_ALIGNMENT]));
fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_DATA_SIZE]));
fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_COMPONENTS]));
fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_FLAGS]));
fsv_assert(is_d_imm(inst->src[MEMORY_LOGICAL_ADDRESS_OFFSET]));
enum lsc_opcode op = (enum lsc_opcode) inst->src[MEMORY_LOGICAL_OPCODE].ud;
enum memory_flags flags = (memory_flags)inst->src[MEMORY_LOGICAL_FLAGS].ud;
bool transpose = flags & MEMORY_FLAG_TRANSPOSE;
bool include_helpers = flags & MEMORY_FLAG_INCLUDE_HELPERS;
enum memory_logical_mode mode =
(memory_logical_mode)inst->src[MEMORY_LOGICAL_MODE].ud;
enum lsc_data_size data_size =
(enum lsc_data_size) inst->src[MEMORY_LOGICAL_DATA_SIZE].ud;
unsigned data_size_B = lsc_data_size_bytes(data_size);
if (!devinfo->has_lsc) {
fsv_assert(data_size == LSC_DATA_SIZE_D8U32 ||
data_size == LSC_DATA_SIZE_D16U32 ||
data_size == LSC_DATA_SIZE_D32 ||
data_size == LSC_DATA_SIZE_D64);
if (transpose) {
const unsigned min_alignment =
mode == MEMORY_MODE_SHARED_LOCAL ? 16 : 4;
fsv_assert(inst->src[MEMORY_LOGICAL_ALIGNMENT].ud >= min_alignment);
}
}
fsv_assert(!transpose || !include_helpers);
fsv_assert(!transpose || lsc_opcode_has_transpose(op));
if (inst->src[MEMORY_LOGICAL_BINDING_TYPE].ud == LSC_ADDR_SURFTYPE_FLAT)
fsv_assert(inst->src[MEMORY_LOGICAL_BINDING].file == BAD_FILE);
if (inst->src[MEMORY_LOGICAL_DATA1].file != BAD_FILE) {
fsv_assert(inst->src[MEMORY_LOGICAL_COMPONENTS].ud ==
inst->components_read(MEMORY_LOGICAL_DATA1));
fsv_assert(inst->src[MEMORY_LOGICAL_DATA0].type ==
inst->src[MEMORY_LOGICAL_DATA1].type);
}
if (inst->src[MEMORY_LOGICAL_DATA0].file != BAD_FILE) {
fsv_assert(inst->src[MEMORY_LOGICAL_COMPONENTS].ud ==
inst->components_read(MEMORY_LOGICAL_DATA0));
fsv_assert(brw_type_size_bytes(inst->src[MEMORY_LOGICAL_DATA0].type) ==
data_size_B);
}
if (inst->dst.file != BAD_FILE)
fsv_assert(brw_type_size_bytes(inst->dst.type) == data_size_B);
/** TGM messages cannot have a base offset */
if (mode == MEMORY_MODE_TYPED)
fsv_assert(inst->src[MEMORY_LOGICAL_ADDRESS_OFFSET].d == 0);
/* Offset must be DWord aligned */
fsv_assert((inst->src[MEMORY_LOGICAL_ADDRESS_OFFSET].d % 4) == 0);
switch (inst->opcode) {
case SHADER_OPCODE_MEMORY_LOAD_LOGICAL:
fsv_assert(op == LSC_OP_LOAD || op == LSC_OP_LOAD_CMASK ||
op == LSC_OP_LOAD_CMASK_MSRT);
fsv_assert(inst->src[MEMORY_LOGICAL_DATA0].file == BAD_FILE);
fsv_assert(inst->src[MEMORY_LOGICAL_DATA1].file == BAD_FILE);
break;
case SHADER_OPCODE_MEMORY_STORE_LOGICAL:
fsv_assert(lsc_opcode_is_store(op));
fsv_assert(inst->src[MEMORY_LOGICAL_DATA0].file != BAD_FILE);
fsv_assert(inst->src[MEMORY_LOGICAL_DATA1].file == BAD_FILE);
break;
case SHADER_OPCODE_MEMORY_ATOMIC_LOGICAL:
fsv_assert(lsc_opcode_is_atomic(op));
fsv_assert((inst->src[MEMORY_LOGICAL_DATA0].file == BAD_FILE)
== (lsc_op_num_data_values(op) < 1));
fsv_assert((inst->src[MEMORY_LOGICAL_DATA1].file == BAD_FILE)
== (lsc_op_num_data_values(op) < 2));
fsv_assert(inst->src[MEMORY_LOGICAL_COMPONENTS].ud == 1);
fsv_assert(!include_helpers);
break;
default:
unreachable("invalid opcode");
}
}
static const char *
brw_shader_phase_to_string(enum brw_shader_phase phase)
{
switch (phase) {
case BRW_SHADER_PHASE_INITIAL: return "INITIAL";
case BRW_SHADER_PHASE_AFTER_NIR: return "AFTER_NIR";
case BRW_SHADER_PHASE_AFTER_OPT_LOOP: return "AFTER_OPT_LOOP";
case BRW_SHADER_PHASE_AFTER_EARLY_LOWERING: return "AFTER_EARLY_LOWERING";
case BRW_SHADER_PHASE_AFTER_MIDDLE_LOWERING: return "AFTER_MIDDLE_LOWERING";
case BRW_SHADER_PHASE_AFTER_LATE_LOWERING: return "AFTER_LATE_LOWERING";
case BRW_SHADER_PHASE_AFTER_REGALLOC: return "AFTER_REGALLOC";
case BRW_SHADER_PHASE_INVALID: break;
}
unreachable("invalid_phase");
return NULL;
}
static void
brw_validate_instruction_phase(const brw_shader &s, brw_inst *inst)
{
enum brw_shader_phase invalid_from = BRW_SHADER_PHASE_INVALID;
switch (inst->opcode) {
case FS_OPCODE_FB_WRITE_LOGICAL:
case FS_OPCODE_FB_READ_LOGICAL:
case SHADER_OPCODE_TEX_LOGICAL:
case SHADER_OPCODE_TXD_LOGICAL:
case SHADER_OPCODE_TXF_LOGICAL:
case SHADER_OPCODE_TXL_LOGICAL:
case SHADER_OPCODE_TXS_LOGICAL:
case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
case FS_OPCODE_TXB_LOGICAL:
case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
case SHADER_OPCODE_TXF_MCS_LOGICAL:
case SHADER_OPCODE_LOD_LOGICAL:
case SHADER_OPCODE_TG4_LOGICAL:
case SHADER_OPCODE_TG4_BIAS_LOGICAL:
case SHADER_OPCODE_TG4_EXPLICIT_LOD_LOGICAL:
case SHADER_OPCODE_TG4_IMPLICIT_LOD_LOGICAL:
case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
case SHADER_OPCODE_TG4_OFFSET_LOD_LOGICAL:
case SHADER_OPCODE_TG4_OFFSET_BIAS_LOGICAL:
case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
case SHADER_OPCODE_GET_BUFFER_SIZE:
case SHADER_OPCODE_MEMORY_LOAD_LOGICAL:
case SHADER_OPCODE_MEMORY_STORE_LOGICAL:
case SHADER_OPCODE_MEMORY_ATOMIC_LOGICAL:
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
case SHADER_OPCODE_BTD_SPAWN_LOGICAL:
case SHADER_OPCODE_BTD_RETIRE_LOGICAL:
case RT_OPCODE_TRACE_RAY_LOGICAL:
case SHADER_OPCODE_URB_READ_LOGICAL:
case SHADER_OPCODE_URB_WRITE_LOGICAL:
case SHADER_OPCODE_REDUCE:
case SHADER_OPCODE_INCLUSIVE_SCAN:
case SHADER_OPCODE_EXCLUSIVE_SCAN:
case SHADER_OPCODE_VOTE_ANY:
case SHADER_OPCODE_VOTE_ALL:
case SHADER_OPCODE_VOTE_EQUAL:
case SHADER_OPCODE_BALLOT:
case SHADER_OPCODE_QUAD_SWAP:
case SHADER_OPCODE_READ_FROM_LIVE_CHANNEL:
case SHADER_OPCODE_READ_FROM_CHANNEL:
case SHADER_OPCODE_LOAD_REG:
invalid_from = BRW_SHADER_PHASE_AFTER_EARLY_LOWERING;
break;
case SHADER_OPCODE_LOAD_PAYLOAD:
invalid_from = BRW_SHADER_PHASE_AFTER_MIDDLE_LOWERING;
break;
default:
/* Nothing to do. */
break;
}
assert(s.phase < BRW_SHADER_PHASE_INVALID);
if (s.phase >= invalid_from) {
fprintf(stderr, "INVALID INSTRUCTION IN PHASE: %s\n",
brw_shader_phase_to_string(s.phase));
brw_print_instruction(s, inst, stderr);
abort();
}
}
void
brw_validate(const brw_shader &s)
{
const intel_device_info *devinfo = s.devinfo;
if (!s.cfg)
return;
s.cfg->validate(_mesa_shader_stage_to_abbrev(s.stage));
foreach_block(block, s.cfg) {
/* Track the last used address register. Usage of the address register
* in the IR should be limited to within a block, otherwise we would
* unable to schedule some instructions without spilling the address
* register to a VGRF.
*
* Another pattern we stick to when using the address register in the IR
* is that we write and read the register in pairs of instruction.
*/
uint32_t last_used_address_register[16] = {};
foreach_inst_in_block (brw_inst, inst, block) {
brw_validate_instruction_phase(s, inst);
switch (inst->opcode) {
case SHADER_OPCODE_SEND:
fsv_assert(is_uniform(inst->src[0]) && is_uniform(inst->src[1]));
break;
case SHADER_OPCODE_SEND_GATHER:
fsv_assert(is_uniform(inst->src[0]) && is_uniform(inst->src[1]));
fsv_assert(devinfo->ver >= 30);
break;
case BRW_OPCODE_MOV:
fsv_assert(inst->sources == 1);
break;
case SHADER_OPCODE_MEMORY_LOAD_LOGICAL:
case SHADER_OPCODE_MEMORY_STORE_LOGICAL:
case SHADER_OPCODE_MEMORY_ATOMIC_LOGICAL:
validate_memory_logical(s, inst);
break;
case SHADER_OPCODE_MEMORY_FENCE:
case SHADER_OPCODE_INTERLOCK:
fsv_assert(inst->exec_size == 1);
fsv_assert(inst->force_writemask_all);
fsv_assert(inst->sources == 2);
fsv_assert(is_ud_imm(inst->src[1])); /* commit enable */
break;
case SHADER_OPCODE_LOAD_REG: {
fsv_assert_eq(inst->sources, 1);
fsv_assert_eq(s.alloc.sizes[inst->dst.nr] * REG_SIZE, inst->size_written);
fsv_assert(!inst->is_partial_write());
fsv_assert_lte(inst->src[0].stride, 1);
/* For example, if file == UNIFORM, stride will be zero and offset
* may be non-zero.
*/
if (inst->src[0].stride != 0)
fsv_assert_eq(inst->src[0].offset, 0);
const brw_def_analysis &defs = s.def_analysis.require();
fsv_assert_eq(inst, defs.get(inst->dst));
break;
}
default:
break;
}
/* On Xe2, the "write the accumulator in addition to the explicit
* destination" bit no longer exists. Try to catch uses of this
* feature earlier in the process.
*/
if (devinfo->ver >= 20 && inst->writes_accumulator) {
fsv_assert(inst->dst.is_accumulator() ||
inst->opcode == BRW_OPCODE_ADDC ||
inst->opcode == BRW_OPCODE_MACH ||
inst->opcode == BRW_OPCODE_SUBB);
}
if (inst->is_3src(s.compiler)) {
const unsigned integer_sources =
brw_type_is_int(inst->src[0].type) +
brw_type_is_int(inst->src[1].type) +
brw_type_is_int(inst->src[2].type);
const unsigned float_sources =
brw_type_is_float_or_bfloat(inst->src[0].type) +
brw_type_is_float_or_bfloat(inst->src[1].type) +
brw_type_is_float_or_bfloat(inst->src[2].type);
fsv_assert((integer_sources == 3 && float_sources == 0) ||
(integer_sources == 0 && float_sources == 3));
if (devinfo->ver >= 10) {
for (unsigned i = 0; i < 3; i++) {
if (inst->src[i].file == IMM)
continue;
switch (inst->src[i].vstride) {
case BRW_VERTICAL_STRIDE_0:
case BRW_VERTICAL_STRIDE_4:
case BRW_VERTICAL_STRIDE_8:
case BRW_VERTICAL_STRIDE_16:
break;
case BRW_VERTICAL_STRIDE_1:
fsv_assert_lte(12, devinfo->ver);
break;
case BRW_VERTICAL_STRIDE_2:
fsv_assert_lte(devinfo->ver, 11);
break;
default:
fsv_assert(!"invalid vstride");
break;
}
}
} else if (s.grf_used != 0) {
/* Only perform the pre-Gfx10 checks after register allocation
* has occured.
*
* Many passes (e.g., constant copy propagation) will
* genenerate invalid 3-source instructions with the
* expectation that later passes (e.g., combine constants) will
* fix them.
*/
for (unsigned i = 0; i < 3; i++) {
fsv_assert_ne(inst->src[i].file, IMM);
/* A stride of 1 (the usual case) or 0, with a special
* "repctrl" bit, is allowed. The repctrl bit doesn't work
* for 64-bit datatypes, so if the source type is 64-bit
* then only a stride of 1 is allowed. From the Broadwell
* PRM, Volume 7 "3D Media GPGPU", page 944:
*
* This is applicable to 32b datatypes and 16b datatype.
* 64b datatypes cannot use the replicate control.
*/
const unsigned stride_in_bytes = byte_stride(inst->src[i]);
const unsigned size_in_bytes = brw_type_size_bytes(inst->src[i].type);
if (stride_in_bytes == 0) {
/* If the source is_scalar, then the stride will be
* converted to <4;4,1> in brw_lower_scalar_fp64_MAD
* after SIMD splitting.
*/
if (!inst->src[i].is_scalar)
fsv_assert_lte(size_in_bytes, 4);
} else {
fsv_assert_eq(stride_in_bytes, size_in_bytes);
}
}
}
}
if (inst->dst.file == VGRF) {
fsv_assert_lte(inst->dst.offset / REG_SIZE + regs_written(inst),
s.alloc.sizes[inst->dst.nr]);
if (inst->exec_size > 1)
fsv_assert_ne(inst->dst.stride, 0);
} else if (inst->dst.is_address()) {
fsv_assert(inst->dst.nr != 0);
}
bool read_address_reg = false;
for (unsigned i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF) {
fsv_assert_lte(inst->src[i].offset / REG_SIZE + regs_read(devinfo, inst, i),
s.alloc.sizes[inst->src[i].nr]);
} else if (inst->src[i].is_address()) {
fsv_assert(inst->src[i].nr != 0);
for (unsigned hw = 0; hw < inst->size_read(devinfo, i); hw += 2) {
fsv_assert_eq(inst->src[i].nr,
last_used_address_register[inst->src[i].address_slot(hw)]);
}
read_address_reg = true;
}
}
/* Accumulator Registers, bspec 47251:
*
* "When destination is accumulator with offset 0, destination
* horizontal stride must be 1."
*/
if (intel_needs_workaround(devinfo, 14014617373) &&
inst->dst.is_accumulator() &&
phys_subnr(devinfo, inst->dst) == 0) {
fsv_assert_eq(inst->dst.hstride, 1);
}
if (inst->is_math() && intel_needs_workaround(devinfo, 22016140776)) {
/* Wa_22016140776:
*
* Scalar broadcast on HF math (packed or unpacked) must not be
* used. Compiler must use a mov instruction to expand the
* scalar value to a vector before using in a HF (packed or
* unpacked) math operation.
*
* Since copy propagation knows about this restriction, nothing
* should be able to generate these invalid source strides. Detect
* potential problems sooner rather than later.
*/
if (devinfo->ver >= 20 && inst->writes_accumulator) {
fsv_assert(inst->dst.is_accumulator() ||
inst->opcode == BRW_OPCODE_ADDC ||
inst->opcode == BRW_OPCODE_MACH ||
inst->opcode == BRW_OPCODE_SUBB);
}
if (inst->is_3src(s.compiler)) {
const unsigned integer_sources =
brw_type_is_int(inst->src[0].type) +
brw_type_is_int(inst->src[1].type) +
brw_type_is_int(inst->src[2].type);
const unsigned float_sources =
brw_type_is_float(inst->src[0].type) +
brw_type_is_float(inst->src[1].type) +
brw_type_is_float(inst->src[2].type);
fsv_assert((integer_sources == 3 && float_sources == 0) ||
(integer_sources == 0 && float_sources == 3));
if (devinfo->ver >= 10) {
for (unsigned i = 0; i < 3; i++) {
if (inst->src[i].file == IMM)
continue;
switch (inst->src[i].vstride) {
case BRW_VERTICAL_STRIDE_0:
case BRW_VERTICAL_STRIDE_4:
case BRW_VERTICAL_STRIDE_8:
case BRW_VERTICAL_STRIDE_16:
break;
case BRW_VERTICAL_STRIDE_1:
fsv_assert_lte(12, devinfo->ver);
break;
case BRW_VERTICAL_STRIDE_2:
fsv_assert_lte(devinfo->ver, 11);
break;
default:
fsv_assert(!"invalid vstride");
break;
}
}
} else if (s.grf_used != 0) {
/* Only perform the pre-Gfx10 checks after register
* allocation has occured.
*
* Many passes (e.g., constant copy propagation) will
* genenerate invalid 3-source instructions with the
* expectation that later passes (e.g., combine constants)
* will fix them.
*/
for (unsigned i = 0; i < 3; i++) {
fsv_assert_ne(inst->src[i].file, IMM);
/* A stride of 1 (the usual case) or 0, with a special
* "repctrl" bit, is allowed. The repctrl bit doesn't
* work for 64-bit datatypes, so if the source type is
* 64-bit then only a stride of 1 is allowed. From the
* Broadwell PRM, Volume 7 "3D Media GPGPU", page 944:
*
* This is applicable to 32b datatypes and 16b
* datatype. 64b datatypes cannot use the replicate
* control.
*/
const unsigned stride_in_bytes = byte_stride(inst->src[i]);
const unsigned size_in_bytes = brw_type_size_bytes(inst->src[i].type);
if (stride_in_bytes == 0) {
fsv_assert_lte(size_in_bytes, 4);
} else {
fsv_assert_eq(stride_in_bytes, size_in_bytes);
}
}
}
}
if (inst->dst.file == VGRF) {
fsv_assert_lte(inst->dst.offset / REG_SIZE + regs_written(inst),
s.alloc.sizes[inst->dst.nr]);
}
for (unsigned i = 0; i < inst->sources; i++) {
fsv_assert(inst->src[i].is_scalar ||
!is_uniform(inst->src[i]) ||
inst->src[i].type != BRW_TYPE_HF);
}
}
/* Update the last used address register. */
if (read_address_reg) {
/* When an instruction only reads the address register, we assume
* the read parts are never going to be used again.
*/
for (unsigned i = 0; i < inst->sources; i++) {
if (!inst->src[i].is_address())
continue;
for (unsigned hw = 0; hw < inst->size_read(devinfo, i); hw += 2)
last_used_address_register[inst->src[i].address_slot(hw)] = 0;
}
}
if (inst->dst.is_address()) {
/* For the written part of the address register */
for (unsigned hw = 0; hw < inst->size_written; hw += 2)
last_used_address_register[inst->dst.address_slot(hw)] = inst->dst.nr;
} else if (inst->uses_address_register_implicitly()) {
/* If the instruction is making use of the address register,
* discard the entire thing.
*/
memset(last_used_address_register, 0,
sizeof(last_used_address_register));
}
}
}
}
#endif