blob: 2ac5baeece972ecd06c8c7f2096ca9a2b44915a0 [file] [log] [blame]
/*
* Copyright 2023 Intel Corporation
* SPDX-License-Identifier: MIT
*/
/**
* \file brw_nir_lower_cooperative_matrix.c
* Lower cooperative matrix to subgroup operations.
*
* All supported matrix types are assumed to have either 8 rows or 8
* columns. The other dimension of the matrix is typically 8 times the number
* of data elements that can be stored in a 32-bit dword. Matrix data is
* indexed by a combination of an array element and a subgroup invocation ID.
*
* Two layouts for matrix data are used. In the first layout,
* subgroupShuffle(slice[N], ...) accesses row N of the matrix. This will be
* called row-major hereafter. In the other layout,
* subgroupShuffle(slice[...], M) accesses column M of the matrix. This will
* be called column-major hereafter. In cases where a single 32-bit value is
* stored in each entry, these layouts are identical.
*
* The subtle difference arises when multiple values are packed into a single
* 32-bit dword. If two 16-bit values are packed in a single 32-bit value in
* column-major, subgroupShuffle(slice[0], 1) holds matrix entries m[1][1] and
* m[2][1] (in m[row][column] notation). In row-major, that same shuffle holds
* m[0][2] and m[0][3].
*
* There is an alternate way to think about the matrix layouts. Every matrix
* size supported by the Intel driver is either Sx8 (e.g., 16x8 for float16 B
* matrix) or Sx8T (e.g., 8x32 for int8 A matrix). The A matrix and B matrix
* layouts are such that a single 8 dword register hold an entire row of the
* matrix.
*
* Consider a matrix stored starting in register g32. In an A matrix, the
* packed dwords of g32 contain only the data for a single row of the
* matrix. g32 is row 0, g33 is row 1, etc. In a B matrix, the packed dwords
* of g(32+N).X contain only the data for a single column of the
* matrix. g[32:40].0 is column 0, g[32:40].1 is column 1, etc.
*
* This leads to some shenanigans in \c lower_cmat_load_store.
*
* In the common case, A, C, and result matrices are stored row major while B
* matrices are stored column major. This arrangement facilitates efficient
* dot product operations using DPAS or DP4A instructions.
*
* Future optimizations are possible when row and column major are
* flipped. That is, efficient dot products are also possible when A, C, and
* result matrices are column major while B is row major.
*/
#include "brw_nir.h"
typedef struct {
/* Vector type that holds the elements packed. */
const glsl_type *type;
/* How many cmat elements per slice element. */
unsigned packing_factor;
struct glsl_cmat_description desc;
/* Used by the tables. Variable holding a slice or
* arrays-of-arrays of slices.
*
* If present, the var->type (without arrays!) should match
* the type above.
*/
nir_variable *var;
} slice_info;
#define BRW_MAX_PACKING_FACTOR 4
struct lower_cmat_state {
void *temp_ctx;
nir_shader *shader;
struct hash_table *slice_var_to_slice_info;
struct hash_table *mat_var_to_slice_info;
unsigned subgroup_size;
struct {
nir_def *tmp[NIR_MAX_VEC_COMPONENTS * BRW_MAX_PACKING_FACTOR];
} scratch;
};
static bool
cmat_descriptions_are_equal(struct glsl_cmat_description a,
struct glsl_cmat_description b)
{
return a.element_type == b.element_type &&
a.scope == b.scope &&
a.rows == b.rows &&
a.cols == b.cols &&
a.use == b.use;
}
static void
print_coop_types(struct lower_cmat_state *state)
{
fprintf(stderr, "--- Slices to Cooperative Matrix type table\n");
hash_table_foreach(state->slice_var_to_slice_info, e) {
nir_variable *var = (void *)e->key;
const slice_info *info = e->data;
fprintf(stderr, "%p: %s -> %s\n", var, var->name,
glsl_get_type_name(glsl_cmat_type(&info->desc)));
}
fprintf(stderr, "\n\n");
}
static const slice_info *
get_slice_info(struct lower_cmat_state *state, nir_deref_instr *deref)
{
nir_variable *var = nir_deref_instr_get_variable(deref);
struct hash_entry *entry = _mesa_hash_table_search(state->slice_var_to_slice_info, var);
assert(entry != NULL);
return entry->data;
}
static bool
lower_cmat_filter(const nir_instr *instr, const void *_state)
{
if (instr->type == nir_instr_type_deref) {
nir_deref_instr *deref = nir_instr_as_deref(instr);
return glsl_type_is_cmat(deref->type);
}
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_cmat_construct:
case nir_intrinsic_cmat_load:
case nir_intrinsic_cmat_store:
case nir_intrinsic_cmat_length:
case nir_intrinsic_cmat_muladd:
case nir_intrinsic_cmat_convert:
case nir_intrinsic_cmat_unary_op:
case nir_intrinsic_cmat_binary_op:
case nir_intrinsic_cmat_scalar_op:
case nir_intrinsic_cmat_bitcast:
case nir_intrinsic_cmat_insert:
case nir_intrinsic_cmat_extract:
case nir_intrinsic_cmat_copy:
return true;
default:
return false;
}
}
static void
init_slice_info(struct lower_cmat_state *state,
struct glsl_cmat_description desc,
slice_info *info)
{
enum glsl_base_type base_type;
/* Number of matrix elements stored by each subgroup invocation. If the
* data is packed, the slice size will be less than this.
*/
const unsigned elements_per_invocation =
(desc.rows * desc.cols) / state->subgroup_size;
assert(elements_per_invocation > 0);
const unsigned element_bits = 32;
const unsigned bits = glsl_base_type_get_bit_size(desc.element_type);
/* Each invocation must have at least one dword of data, and that dword
* must be tightly packed with values. No matter the matrix dimensions, a
* matrix of uint8_t data must pack 4 values in each entry.
*/
const unsigned packing_factor = element_bits / bits;
assert(packing_factor <= BRW_MAX_PACKING_FACTOR);
assert(elements_per_invocation >= packing_factor);
switch (desc.element_type) {
case GLSL_TYPE_FLOAT:
base_type = GLSL_TYPE_FLOAT;
break;
case GLSL_TYPE_UINT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_BFLOAT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_UINT16:
base_type = GLSL_TYPE_UINT;
break;
case GLSL_TYPE_INT:
case GLSL_TYPE_INT8:
case GLSL_TYPE_INT16:
base_type = GLSL_TYPE_INT;
break;
default:
unreachable("Invalid cooperative matrix element type.");
}
unsigned len = elements_per_invocation / packing_factor;
/* Supported matrix sizes are designed to fill either 4 or 8 SIMD8
* registers on DG2. That means:
*
* 4 regsiters 8 registers
* SIMD32 len = 1 len = 2
* SIMD16 len = 2 len = 4
* SIMD8 len = 4 len = 8
*
* On Xe2, supported matrix sizes are still designed to fill 4 registers
* (e.g., 8x32 uint8_t) or 8 registers (e.g., 16x16 float16). However, the
* 16x16 float16 matrix will assign 16 elements per channel at SIMD16.
*/
assert(len == 1 || len == 2 || len == 4 || len == 8 || len == 16);
const struct glsl_type *slice_type = glsl_vector_type(base_type, len);
info->type = slice_type;
info->desc = desc;
info->packing_factor = packing_factor;
}
static void
lower_cmat_load_store(nir_builder *b, nir_intrinsic_instr *intrin,
struct lower_cmat_state *state)
{
const bool load = intrin->intrinsic == nir_intrinsic_cmat_load;
const unsigned mat_src = load ? 0 : 1;
const unsigned ptr_src = load ? 1 : 0;
nir_deref_instr *slice = nir_src_as_deref(intrin->src[mat_src]);
const slice_info *info = get_slice_info(state, slice);
const struct glsl_cmat_description desc = info->desc;
nir_def *results[NIR_MAX_VEC_COMPONENTS];
const unsigned num_components = glsl_get_vector_elements(slice->type);
nir_deref_instr *pointer = nir_src_as_deref(intrin->src[ptr_src]);
const unsigned ptr_comp_width = glsl_get_bit_size(pointer->type);
const unsigned ptr_num_comps = glsl_get_vector_elements(pointer->type);
/* The stride is given in number of elements of the pointed type, which
* doesn't necessarily match the matrix element type, so we need to adjust
* it considering it may be a vector and have a different bit-width.
*/
nir_def *stride = nir_udiv_imm(b,
nir_imul_imm(b,
intrin->src[2].ssa,
ptr_comp_width * ptr_num_comps),
glsl_base_type_get_bit_size(desc.element_type));
/* The data that will be packed is in successive columns for A and
* accumulator matrices. The data that will be packed for B matrices is in
* successive rows.
*/
const unsigned cols =
desc.use != GLSL_CMAT_USE_B ? desc.cols / info->packing_factor : desc.cols;
nir_def *invocation = nir_load_subgroup_invocation(b);
nir_def *invocation_div_cols = nir_udiv_imm(b, invocation, cols);
nir_def *invocation_mod_cols = nir_umod_imm(b, invocation, cols);
nir_def *i_stride;
const bool memory_layout_matches_register_layout =
(nir_intrinsic_matrix_layout(intrin) == GLSL_MATRIX_LAYOUT_ROW_MAJOR) ==
(desc.use != GLSL_CMAT_USE_B);
if (memory_layout_matches_register_layout) {
/* In the row-major arrangement, data is loaded a dword at a time
* instead of a single element at a time. For this reason the stride is
* divided by the packing factor.
*/
i_stride = nir_udiv_imm(b, stride, info->packing_factor);
} else {
/* In the column-major arrangement, data is loaded a single element at a
* time. Because the data elements are transposed, the step direction
* that moves a single (packed) element in the row-major arrangement has
* to explicitly step over the packing factor count of elements. For
* this reason the stride is multiplied by the packing factor.
*
* NOTE: The unscaled stride is also still needed when stepping from one
* packed element to the next. This occurs in the for-j loop below.
*/
i_stride = nir_imul_imm(b, stride, info->packing_factor);
}
nir_def *base_offset;
nir_def *i_step;
if (nir_intrinsic_matrix_layout(intrin) == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
base_offset = nir_iadd(b,
nir_imul(b,
invocation_div_cols,
i_stride),
invocation_mod_cols);
i_step = nir_imul_imm(b, i_stride, state->subgroup_size / cols);
} else {
base_offset = nir_iadd(b,
nir_imul(b,
invocation_mod_cols,
i_stride),
invocation_div_cols);
i_step = nir_imm_int(b, state->subgroup_size / cols);
}
if (memory_layout_matches_register_layout) {
const struct glsl_type *element_type =
glsl_scalar_type(glsl_get_base_type(slice->type));
pointer = nir_build_deref_cast(b, &pointer->def, pointer->modes,
element_type,
glsl_get_bit_size(element_type) / 8);
for (unsigned i = 0; i < num_components; i++) {
nir_def *offset = nir_imul_imm(b, i_step, i);
nir_deref_instr *memory_deref =
nir_build_deref_ptr_as_array(b, pointer,
nir_i2iN(b,
nir_iadd(b,
base_offset,
offset),
pointer->def.bit_size));
if (load) {
results[i] = nir_load_deref(b, memory_deref);
} else {
nir_def *src = nir_channel(b, nir_load_deref(b, slice), i);
nir_store_deref(b, memory_deref, src, 0x1);
}
}
} else {
const struct glsl_type *element_type = glsl_scalar_type(desc.element_type);
const unsigned element_bits = glsl_base_type_get_bit_size(desc.element_type);
const unsigned element_stride = element_bits / 8;
pointer = nir_build_deref_cast(b, &pointer->def, pointer->modes, element_type,
element_stride);
for (unsigned i = 0; i < num_components; i++) {
nir_def *i_offset = nir_imul_imm(b, i_step, i);
nir_def *v[4];
for (unsigned j = 0; j < info->packing_factor; j++) {
nir_def *offset = nir_iadd(b, nir_imul_imm(b, stride, j), i_offset);
nir_deref_instr *memory_deref =
nir_build_deref_ptr_as_array(b, pointer,
nir_i2iN(b,
nir_iadd(b,
base_offset,
offset),
pointer->def.bit_size));
if (load) {
v[j] = nir_load_deref(b, memory_deref);
} else {
nir_def *src = nir_channel(b, nir_load_deref(b, slice), i);
nir_def *v =
nir_channel(b, nir_unpack_bits(b, src, element_bits), j);
nir_store_deref(b, memory_deref, v, 0x1);
}
}
if (load) {
results[i] = nir_pack_bits(b, nir_vec(b, v, info->packing_factor),
info->packing_factor * element_bits);
}
}
}
if (load)
nir_store_deref(b, slice, nir_vec(b, results, num_components),
nir_component_mask(num_components));
}
/* Unpack, apply operation, then pack again. */
static nir_def *
emit_packed_alu1(nir_builder *b,
struct lower_cmat_state *state,
const slice_info *src_info,
const slice_info *dst_info,
nir_op op,
nir_def *src)
{
const unsigned dst_bits = glsl_base_type_bit_size(dst_info->desc.element_type);
const unsigned src_bits = glsl_base_type_bit_size(src_info->desc.element_type);
const unsigned src_components = glsl_get_vector_elements(src_info->type);
const unsigned dst_components = glsl_get_vector_elements(dst_info->type);
assert(src_components * src_info->packing_factor ==
dst_components * dst_info->packing_factor);
/* Store the result of all individual unpacked values. */
assert(src_components * src_info->packing_factor <= ARRAY_SIZE(state->scratch.tmp));
nir_def **tmp = state->scratch.tmp;
for (unsigned i = 0; i < src_components; i++) {
nir_def *chan = nir_channel(b, src, i);
for (unsigned j = 0; j < src_info->packing_factor; j++) {
const unsigned pos = (i * src_info->packing_factor) + j;
nir_def *val = nir_channel(b, nir_unpack_bits(b, chan, src_bits), j);
tmp[pos] = nir_build_alu1(b, op, val);
}
}
/* Store each element of the result, might pack multiple values. */
nir_def *results[NIR_MAX_VEC_COMPONENTS] = {};
assert(dst_components <= ARRAY_SIZE(results));
/* Store each packed element in destination, to be combined
* into results.
*/
nir_def *partial[BRW_MAX_PACKING_FACTOR];
for (unsigned i = 0; i < dst_components; i++) {
for (unsigned j = 0; j < dst_info->packing_factor; j++) {
const unsigned pos = (i * dst_info->packing_factor) + j;
partial[j] = tmp[pos];
}
results[i] =
nir_pack_bits(b, nir_vec(b, partial, dst_info->packing_factor),
dst_info->packing_factor * dst_bits);
}
return nir_vec(b, results, dst_components);
}
static nir_op
get_cmat_conversion_op(enum glsl_base_type src,
enum glsl_base_type dst)
{
if (src == GLSL_TYPE_BFLOAT16) {
assert(dst == GLSL_TYPE_FLOAT);
return nir_op_bf2f;
} else if (dst == GLSL_TYPE_BFLOAT16) {
assert(src == GLSL_TYPE_FLOAT);
return nir_op_f2bf;
} else {
return nir_type_conversion_op(nir_get_nir_type_for_glsl_base_type(src),
nir_get_nir_type_for_glsl_base_type(dst),
nir_rounding_mode_undef);
}
}
static void
lower_cmat_convert(nir_builder *b, nir_intrinsic_instr *intrin,
struct lower_cmat_state *state)
{
nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]);
nir_deref_instr *src_slice = nir_src_as_deref(intrin->src[1]);
const slice_info *dst_info = get_slice_info(state, dst_slice);
const slice_info *src_info = get_slice_info(state, src_slice);
const nir_cmat_signed cmat_signed_mask = nir_intrinsic_cmat_signed_mask(intrin);
enum glsl_base_type src_element_type = glsl_apply_signedness_to_base_type(
src_info->desc.element_type, cmat_signed_mask & NIR_CMAT_A_SIGNED);
enum glsl_base_type dst_element_type = glsl_apply_signedness_to_base_type(
dst_info->desc.element_type, cmat_signed_mask & NIR_CMAT_RESULT_SIGNED);
bool needs_intermediate =
(src_element_type == GLSL_TYPE_BFLOAT16 && dst_element_type != GLSL_TYPE_FLOAT) ||
(src_element_type != GLSL_TYPE_FLOAT && dst_element_type == GLSL_TYPE_BFLOAT16);
nir_def *result;
nir_def *src = nir_load_deref(b, src_slice);
if (needs_intermediate) {
/* Cooperative matrices must have the same "shape" to be converted. */
assert(src_info->desc.rows == dst_info->desc.rows);
assert(src_info->desc.cols == dst_info->desc.cols);
assert(src_info->desc.use == dst_info->desc.use);
assert(src_info->desc.scope == dst_info->desc.scope);
struct glsl_cmat_description float_desc = src_info->desc;
float_desc.element_type = GLSL_TYPE_FLOAT;
slice_info float_info = {};
init_slice_info(state, float_desc, &float_info);
nir_op op1 = get_cmat_conversion_op(src_element_type, GLSL_TYPE_FLOAT);
nir_op op2 = get_cmat_conversion_op(GLSL_TYPE_FLOAT, dst_element_type);
nir_def *tmp = emit_packed_alu1(b, state, src_info, &float_info, op1, src);
result = emit_packed_alu1(b, state, &float_info, dst_info, op2, tmp);
} else {
const unsigned dst_components = glsl_get_vector_elements(dst_info->type);
const unsigned dst_bits = glsl_base_type_bit_size(dst_info->desc.element_type);
result =
nir_convert_cmat_intel(b,
dst_components,
dst_info->packing_factor * dst_bits,
src,
.dst_cmat_desc = dst_info->desc,
.src_cmat_desc = src_info->desc);
}
nir_store_deref(b, dst_slice, result, nir_component_mask(result->num_components));
}
static void
lower_cmat_unary_op(nir_builder *b, nir_intrinsic_instr *intrin,
struct lower_cmat_state *state)
{
nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]);
nir_deref_instr *src_slice = nir_src_as_deref(intrin->src[1]);
const slice_info *dst_info = get_slice_info(state, dst_slice);
const slice_info *src_info = get_slice_info(state, src_slice);
assert(cmat_descriptions_are_equal(src_info->desc, dst_info->desc));
nir_def *result = emit_packed_alu1(b, state, src_info, dst_info,
nir_intrinsic_alu_op(intrin),
nir_load_deref(b, src_slice));
nir_store_deref(b, dst_slice, result, nir_component_mask(result->num_components));
}
static void
lower_cmat_binary_op(nir_builder *b, nir_intrinsic_instr *intrin,
struct lower_cmat_state *state)
{
nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]);
nir_deref_instr *src_a_slice = nir_src_as_deref(intrin->src[1]);
nir_deref_instr *src_b_slice = nir_src_as_deref(intrin->src[2]);
nir_def *src_a = nir_load_deref(b, src_a_slice);
nir_def *src_b = nir_load_deref(b, src_b_slice);
nir_def *results[NIR_MAX_VEC_COMPONENTS];
const unsigned num_components = glsl_get_vector_elements(dst_slice->type);
const slice_info *info = get_slice_info(state, dst_slice);
ASSERTED const slice_info *src_a_info = get_slice_info(state, src_a_slice);
ASSERTED const slice_info *src_b_info = get_slice_info(state, src_b_slice);
assert(cmat_descriptions_are_equal(info->desc, src_a_info->desc));
assert(cmat_descriptions_are_equal(info->desc, src_b_info->desc));
const unsigned bits = glsl_base_type_bit_size(info->desc.element_type);
for (unsigned i = 0; i < num_components; i++) {
nir_def *val_a = nir_channel(b, src_a, i);
nir_def *val_b = nir_channel(b, src_b, i);
results[i] =
nir_pack_bits(b, nir_build_alu2(b, nir_intrinsic_alu_op(intrin),
nir_unpack_bits(b, val_a, bits),
nir_unpack_bits(b, val_b, bits)),
info->packing_factor * bits);
}
nir_store_deref(b, dst_slice, nir_vec(b, results, num_components),
nir_component_mask(num_components));
}
static void
lower_cmat_scalar_op(nir_builder *b, nir_intrinsic_instr *intrin,
struct lower_cmat_state *state)
{
nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]);
nir_deref_instr *src_slice = nir_src_as_deref(intrin->src[1]);
nir_def *scalar = intrin->src[2].ssa;
nir_def *src = nir_load_deref(b, src_slice);
nir_def *results[NIR_MAX_VEC_COMPONENTS];
const unsigned num_components = glsl_get_vector_elements(dst_slice->type);
const slice_info *info = get_slice_info(state, dst_slice);
ASSERTED const slice_info *src_info = get_slice_info(state, src_slice);
assert(cmat_descriptions_are_equal(info->desc, src_info->desc));
const unsigned bits = glsl_base_type_bit_size(info->desc.element_type);
for (unsigned i = 0; i < num_components; i++) {
nir_def *val = nir_channel(b, src, i);
results[i] =
nir_pack_bits(b, nir_build_alu2(b, nir_intrinsic_alu_op(intrin),
nir_unpack_bits(b, val, bits),
scalar),
info->packing_factor * bits);
}
nir_store_deref(b, dst_slice, nir_vec(b, results, num_components),
nir_component_mask(num_components));
}
static nir_deref_instr *
lower_cmat_deref(nir_builder *b, nir_deref_instr *deref,
struct lower_cmat_state *state)
{
nir_deref_instr *parent = nir_deref_instr_parent(deref);
if (parent) {
assert(deref->deref_type == nir_deref_type_array);
parent = lower_cmat_deref(b, parent, state);
return nir_build_deref_array(b, parent, deref->arr.index.ssa);
} else {
assert(deref->deref_type == nir_deref_type_var);
assert(deref->var);
assert(glsl_type_is_cmat(glsl_without_array(deref->var->type)));
struct hash_entry *entry = _mesa_hash_table_search(state->mat_var_to_slice_info, deref->var);
assert(entry);
const slice_info *info = entry->data;
return nir_build_deref_var(b, info->var);
}
}
static nir_def *
lower_cmat_instr(nir_builder *b, nir_instr *instr, void *_state)
{
struct lower_cmat_state *state = _state;
if (instr->type == nir_instr_type_deref) {
nir_deref_instr *deref = lower_cmat_deref(b, nir_instr_as_deref(instr), state);
return &deref->def;
}
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_cmat_load:
case nir_intrinsic_cmat_store:
lower_cmat_load_store(b, intrin, state);
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
case nir_intrinsic_cmat_construct: {
nir_deref_instr *slice = nir_src_as_deref(intrin->src[0]);
nir_def *src = intrin->src[1].ssa;
const slice_info *info = get_slice_info(state, slice);
if (info->packing_factor > 1) {
src = nir_pack_bits(b, nir_replicate(b, src, info->packing_factor),
info->packing_factor * glsl_base_type_get_bit_size(info->desc.element_type));
}
const unsigned num_components = glsl_get_vector_elements(slice->type);
nir_store_deref(b, slice, nir_replicate(b, src, num_components),
nir_component_mask(num_components));
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
}
case nir_intrinsic_cmat_convert:
lower_cmat_convert(b, intrin, state);
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
case nir_intrinsic_cmat_unary_op:
lower_cmat_unary_op(b, intrin, state);
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
case nir_intrinsic_cmat_binary_op:
lower_cmat_binary_op(b, intrin, state);
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
case nir_intrinsic_cmat_scalar_op:
lower_cmat_scalar_op(b, intrin, state);
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
case nir_intrinsic_cmat_length: {
slice_info info = {};
init_slice_info(state, nir_intrinsic_cmat_desc(intrin), &info);
return nir_imm_intN_t(b, info.packing_factor *
glsl_get_vector_elements(info.type), 32);
}
case nir_intrinsic_cmat_muladd: {
nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]);
nir_deref_instr *A_slice = nir_src_as_deref(intrin->src[1]);
nir_deref_instr *B_slice = nir_src_as_deref(intrin->src[2]);
nir_deref_instr *accum_slice = nir_src_as_deref(intrin->src[3]);
const slice_info *dst_info = get_slice_info(state, dst_slice);
const slice_info *src_info = get_slice_info(state, A_slice);
const unsigned num_components = glsl_get_vector_elements(dst_slice->type);
const nir_cmat_signed cmat_signed_mask =
nir_intrinsic_cmat_signed_mask(intrin);
assert(((cmat_signed_mask & NIR_CMAT_A_SIGNED) == 0) ==
((cmat_signed_mask & NIR_CMAT_B_SIGNED) == 0));
assert(((cmat_signed_mask & NIR_CMAT_A_SIGNED) == 0) ==
((cmat_signed_mask & NIR_CMAT_C_SIGNED) == 0));
assert(((cmat_signed_mask & NIR_CMAT_A_SIGNED) == 0) ==
((cmat_signed_mask & NIR_CMAT_RESULT_SIGNED) == 0));
enum glsl_base_type src_type = src_info->desc.element_type;
enum glsl_base_type dst_type = dst_info->desc.element_type;
/* For integer types, the signedness is determined by flags on the
* muladd instruction. The types of the sources play no role. Adjust the
* types passed to the dpas_intel intrinsic to match.
*/
if (glsl_base_type_is_integer(src_type)) {
if ((cmat_signed_mask & NIR_CMAT_A_SIGNED) == 0) {
src_type = glsl_unsigned_base_type_of(src_type);
dst_type = glsl_unsigned_base_type_of(dst_type);
} else {
src_type = glsl_signed_base_type_of(src_type);
dst_type = glsl_signed_base_type_of(dst_type);
}
}
nir_def *result =
nir_dpas_intel(b,
dst_info->packing_factor * glsl_base_type_get_bit_size(dst_info->desc.element_type),
nir_load_deref(b, accum_slice),
nir_load_deref(b, A_slice),
nir_load_deref(b, B_slice),
.dest_base_type = dst_type,
.src_base_type = src_type,
.saturate = nir_intrinsic_saturate(intrin),
.systolic_depth = 8,
.repeat_count = 8);
nir_store_deref(b, dst_slice, result,
nir_component_mask(num_components));
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
}
case nir_intrinsic_cmat_bitcast: {
nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]);
nir_deref_instr *src_slice = nir_src_as_deref(intrin->src[1]);
const unsigned num_components = glsl_get_vector_elements(dst_slice->type);
assert(glsl_get_vector_elements(src_slice->type) == num_components);
nir_store_deref(b, dst_slice, nir_load_deref(b, src_slice),
nir_component_mask(num_components));
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
}
case nir_intrinsic_cmat_copy:
nir_copy_deref(b,
nir_src_as_deref(intrin->src[0]),
nir_src_as_deref(intrin->src[1]));
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
case nir_intrinsic_cmat_insert: {
nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]);
nir_def *scalar = intrin->src[1].ssa;
nir_deref_instr *src_slice = nir_src_as_deref(intrin->src[2]);
const nir_src dst_index = intrin->src[3];
const slice_info *info = get_slice_info(state, dst_slice);
ASSERTED const slice_info *src_info = get_slice_info(state, src_slice);
assert(cmat_descriptions_are_equal(info->desc, src_info->desc));
const unsigned bits = glsl_base_type_bit_size(info->desc.element_type);
const unsigned num_components = glsl_get_vector_elements(dst_slice->type);
nir_def *slice_index = nir_udiv_imm(b, dst_index.ssa, info->packing_factor);
nir_def *vector_index = nir_umod_imm(b, dst_index.ssa, info->packing_factor);
nir_def *results[NIR_MAX_VEC_COMPONENTS];
const int slice_constant_index = nir_src_is_const(dst_index)
? nir_src_as_uint(dst_index) / info->packing_factor
: -1;
for (unsigned i = 0; i < num_components; i++) {
nir_def *val = nir_channel(b, nir_load_deref(b, src_slice), i);
nir_def *insert;
if (slice_constant_index < 0 || slice_constant_index == i) {
if (info->packing_factor == 1) {
insert = scalar;
} else {
nir_def *unpacked = nir_unpack_bits(b, val, bits);
nir_def *v = nir_vector_insert(b, unpacked, scalar, vector_index);
insert = nir_pack_bits(b, v, bits * info->packing_factor);
}
} else {
insert = val;
}
results[i] = slice_constant_index < 0
? nir_bcsel(b, nir_ieq_imm(b, slice_index, i), insert, val)
: insert;
}
nir_store_deref(b, dst_slice, nir_vec(b, results, num_components),
nir_component_mask(num_components));
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
}
case nir_intrinsic_cmat_extract: {
nir_deref_instr *slice = nir_src_as_deref(intrin->src[0]);
const slice_info *info = get_slice_info(state, slice);
nir_def *index = intrin->src[1].ssa;
const unsigned bits = glsl_base_type_bit_size(info->desc.element_type);
nir_def *src =
nir_vector_extract(b, nir_load_deref(b, slice),
nir_udiv_imm(b, index, info->packing_factor));
if (info->packing_factor == 1) {
return src;
} else {
return nir_vector_extract(b,
nir_unpack_bits(b, src, bits),
nir_umod_imm(b, index, info->packing_factor));
}
return NIR_LOWER_INSTR_PROGRESS_REPLACE;
}
default:
unreachable("invalid cooperative matrix intrinsic");
}
}
static const glsl_type *
make_aoa_slice_type(const glsl_type *t, const glsl_type *slice_type)
{
if (glsl_type_is_array(t)) {
const glsl_type *s = make_aoa_slice_type(glsl_get_array_element(t), slice_type);
return glsl_array_type(s, glsl_array_size(t), 0);
}
assert(glsl_type_is_cmat(t));
return slice_type;
}
static void
create_slice_var(struct lower_cmat_state *state, nir_variable *var,
nir_function_impl *impl)
{
const struct glsl_type *mat_type = glsl_without_array(var->type);
assert(glsl_type_is_cmat(mat_type));
assert((!impl && var->data.mode == nir_var_shader_temp) ||
( impl && var->data.mode == nir_var_function_temp));
slice_info *info = rzalloc(state->temp_ctx, slice_info);
init_slice_info(state, *glsl_get_cmat_description(mat_type), info);
const glsl_type *aoa_slice_type = make_aoa_slice_type(var->type, info->type);
const char *slice_name = ralloc_asprintf(state->shader, "%s_slice", var->name);
info->var = impl ?
nir_local_variable_create(impl, aoa_slice_type, slice_name) :
nir_variable_create(state->shader, var->data.mode, aoa_slice_type, slice_name);
_mesa_hash_table_insert(state->mat_var_to_slice_info, var, info);
_mesa_hash_table_insert(state->slice_var_to_slice_info, info->var, info);
}
bool
brw_nir_lower_cmat(nir_shader *shader, unsigned subgroup_size)
{
void *temp_ctx = ralloc_context(NULL);
struct lower_cmat_state state = {
.temp_ctx = temp_ctx,
.shader = shader,
.slice_var_to_slice_info = _mesa_pointer_hash_table_create(temp_ctx),
.mat_var_to_slice_info = _mesa_pointer_hash_table_create(temp_ctx),
.subgroup_size = subgroup_size,
};
/* Create a slice array for each variable and add a map from the original
* variable back to it, so it can be reached during lowering.
*
* TODO: Cooperative matrix inside struct?
*/
nir_foreach_variable_in_shader(var, shader) {
if (glsl_type_is_cmat(glsl_without_array(var->type)))
create_slice_var(&state, var, NULL);
}
nir_foreach_function(func, shader) {
nir_foreach_function_temp_variable(var, func->impl) {
if (glsl_type_is_cmat(glsl_without_array(var->type)))
create_slice_var(&state, var, func->impl);
}
}
bool progress = nir_shader_lower_instructions(shader,
lower_cmat_filter,
lower_cmat_instr,
&state);
ralloc_free(temp_ctx);
return progress;
}