blob: 63c062e37de0d4ef676280d25ae258435e4f1855 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* The aux map provides a multi-level lookup of the main surface address which
* ends up providing information about the auxiliary surface data, including
* the address where the auxiliary data resides.
*
* The below sections depict address splitting and formats of table entries of
* TGL platform. These may vary on other platforms.
*
* The 48-bit VMA (GPU) address of the main surface is split to do the address
* lookup:
*
* 48 bit address of main surface
* +--------+--------+--------+------+
* | 47:36 | 35:24 | 23:16 | 15:0 |
* | L3-idx | L2-idx | L1-idx | ... |
* +--------+--------+--------+------+
*
* The GFX_AUX_TABLE_BASE_ADDR points to a buffer. The L3 Table Entry is
* located by indexing into this buffer as a uint64_t array using the L3-idx
* value. The 64-bit L3 entry is defined as:
*
* +-------+-------------+------+---+
* | 63:48 | 47:15 | 14:1 | 0 |
* | ... | L2-tbl-addr | ... | V |
* +-------+-------------+------+---+
*
* If the `V` (valid) bit is set, then the L2-tbl-addr gives the address for
* the level-2 table entries, with the lower address bits filled with zero.
* The L2 Table Entry is located by indexing into this buffer as a uint64_t
* array using the L2-idx value. The 64-bit L2 entry is similar to the L3
* entry, except with 2 additional address bits:
*
* +-------+-------------+------+---+
* | 63:48 | 47:13 | 12:1 | 0 |
* | ... | L1-tbl-addr | ... | V |
* +-------+-------------+------+---+
*
* If the `V` bit is set, then the L1-tbl-addr gives the address for the
* level-1 table entries, with the lower address bits filled with zero. The L1
* Table Entry is located by indexing into this buffer as a uint64_t array
* using the L1-idx value. The 64-bit L1 entry is defined as:
*
* +--------+------+-------+-------+-------+---------------+-----+---+
* | 63:58 | 57 | 56:54 | 53:52 | 51:48 | 47:8 | 7:1 | 0 |
* | Format | Y/Cr | Depth | TM | ... | aux-data-addr | ... | V |
* +--------+------+-------+-------+-------+---------------+-----+---+
*
* Where:
* - Format: See `get_format_encoding`
* - Y/Cr: 0=Y(Luma), 1=Cr(Chroma)
* - (bit) Depth: See `get_bpp_encoding`
* - TM (Tile-mode): 0=Ys, 1=Y, 2=rsvd, 3=rsvd
* - aux-data-addr: VMA/GPU address for the aux-data
* - V: entry is valid
*
* BSpec 44930
*/
#include "intel_aux_map.h"
#include "intel_gem.h"
#include "dev/intel_device_info.h"
#include "isl/isl.h"
#include "util/list.h"
#include "util/ralloc.h"
#include "util/u_atomic.h"
#include "util/u_math.h"
#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#define INTEL_AUX_MAP_FORMAT_BITS_MASK 0xfff0000000000000ull
/* Mask with the firt 48bits set */
#define VALID_ADDRESS_MASK ((1ull << 48) - 1)
#define L3_ENTRY_L2_ADDR_MASK 0xffffffff8000ull
#define L3_L2_BITS_PER_LEVEL 12
#define L3_L2_SUB_TABLE_LEN (sizeof(uint64_t) * (1ull << L3_L2_BITS_PER_LEVEL))
static const bool aux_map_debug = false;
/**
* Auxiliary surface mapping formats
*
* Several formats of AUX mapping exist. The supported formats
* are designated by generation and granularity here. A device
* can support more than one format, depending on Hardware, but
* we expect only one of them of a device is needed. Otherwise,
* we could need to change this enum into a bit map in such case
* later.
*/
enum intel_aux_map_format {
/**
* 64KB granularity format on GFX12 devices
*/
INTEL_AUX_MAP_GFX12_64KB = 0,
/**
* 1MB granularity format on GFX125 devices
*/
INTEL_AUX_MAP_GFX125_1MB,
INTEL_AUX_MAP_LAST,
};
/**
* An incomplete description of AUX mapping formats
*
* Theoretically, many things can be different, depending on hardware
* design like level of page tables, address splitting, format bits
* etc. We only manage the known delta to simplify the implementation
* this time.
*/
struct aux_format_info {
/**
* Granularity of main surface in compression. It must be power of 2.
*/
uint64_t main_page_size;
/**
* Page size of level 1 page table. It must be power of 2.
*/
uint64_t l1_page_size;
/**
* Mask of index bits of level 1 page table in address splitting.
*/
uint64_t l1_index_mask;
/**
* Offset of index bits of level 1 page table in address splitting.
*/
uint64_t l1_index_offset;
};
static const struct aux_format_info aux_formats[] = {
[INTEL_AUX_MAP_GFX12_64KB] = {
.main_page_size = 64 * 1024,
.l1_page_size = 8 * 1024,
.l1_index_mask = 0xff,
.l1_index_offset = 16,
},
[INTEL_AUX_MAP_GFX125_1MB] = {
.main_page_size = 1024 * 1024,
.l1_page_size = 2 * 1024,
.l1_index_mask = 0xf,
.l1_index_offset = 20,
},
};
struct aux_map_buffer {
struct list_head link;
struct intel_buffer *buffer;
};
struct intel_aux_level {
/* GPU address of the current level */
uint64_t address;
/* Pointer to the GPU entries of this level */
uint64_t *entries;
union {
/* Host tracking of a parent level to its children (only use on L3/L2
* levels which have 4096 entries)
*/
struct intel_aux_level *children[4096];
/* Refcount of AUX pages at the L1 level (MTL has only 16 entries in L1,
* which Gfx12 has 256 entries)
*/
uint32_t ref_counts[256];
};
};
struct intel_aux_map_context {
void *driver_ctx;
pthread_mutex_t mutex;
struct intel_aux_level *l3_level;
struct intel_mapped_pinned_buffer_alloc *buffer_alloc;
uint32_t num_buffers;
struct list_head buffers;
uint32_t tail_offset, tail_remaining;
uint32_t state_num;
const struct aux_format_info *format;
};
static inline uint64_t
get_page_mask(const uint64_t page_size)
{
return page_size - 1;
}
static inline uint64_t
get_meta_page_size(const struct aux_format_info *info)
{
return info->main_page_size / INTEL_AUX_MAP_MAIN_SIZE_SCALEDOWN;
}
static inline uint64_t
get_index(const uint64_t main_address,
const uint64_t index_mask, const uint64_t index_offset)
{
return (main_address >> index_offset) & index_mask;
}
uint64_t
intel_aux_get_meta_address_mask(struct intel_aux_map_context *ctx)
{
return (~get_page_mask(get_meta_page_size(ctx->format))) & VALID_ADDRESS_MASK;
}
uint64_t
intel_aux_main_to_aux_offset(struct intel_aux_map_context *ctx,
uint64_t main_offset)
{
return main_offset / INTEL_AUX_MAP_MAIN_SIZE_SCALEDOWN;
}
static const struct aux_format_info *
get_format(enum intel_aux_map_format format)
{
assert(format < INTEL_AUX_MAP_LAST);
assert(ARRAY_SIZE(aux_formats) == INTEL_AUX_MAP_LAST);
return &aux_formats[format];
}
static enum intel_aux_map_format
select_format(const struct intel_device_info *devinfo)
{
if (devinfo->verx10 >= 125)
return INTEL_AUX_MAP_GFX125_1MB;
else if (devinfo->verx10 == 120)
return INTEL_AUX_MAP_GFX12_64KB;
else
return INTEL_AUX_MAP_LAST;
}
static bool
add_buffer(struct intel_aux_map_context *ctx)
{
struct aux_map_buffer *buf = rzalloc(ctx, struct aux_map_buffer);
if (!buf)
return false;
const uint32_t size = 0x100000;
buf->buffer = ctx->buffer_alloc->alloc(ctx->driver_ctx, size);
if (!buf->buffer) {
ralloc_free(buf);
return false;
}
assert(buf->buffer->map != NULL);
list_addtail(&buf->link, &ctx->buffers);
ctx->tail_offset = 0;
ctx->tail_remaining = size;
p_atomic_inc(&ctx->num_buffers);
return true;
}
static void
advance_current_pos(struct intel_aux_map_context *ctx, uint32_t size)
{
assert(ctx->tail_remaining >= size);
ctx->tail_remaining -= size;
ctx->tail_offset += size;
}
static bool
align_and_verify_space(struct intel_aux_map_context *ctx, uint32_t size,
uint32_t alignment)
{
if (ctx->tail_remaining < size)
return false;
struct aux_map_buffer *tail =
list_last_entry(&ctx->buffers, struct aux_map_buffer, link);
uint64_t gpu = tail->buffer->gpu + ctx->tail_offset;
uint64_t aligned = align64(gpu, alignment);
if ((aligned - gpu) + size > ctx->tail_remaining) {
return false;
} else {
if (aligned - gpu > 0)
advance_current_pos(ctx, aligned - gpu);
return true;
}
}
static void
get_current_pos(struct intel_aux_map_context *ctx, uint64_t *gpu, uint64_t **map)
{
assert(!list_is_empty(&ctx->buffers));
struct aux_map_buffer *tail =
list_last_entry(&ctx->buffers, struct aux_map_buffer, link);
if (gpu)
*gpu = tail->buffer->gpu + ctx->tail_offset;
if (map)
*map = (uint64_t*)((uint8_t*)tail->buffer->map + ctx->tail_offset);
}
static struct intel_aux_level *
add_sub_table(struct intel_aux_map_context *ctx,
struct intel_aux_level *parent,
uint32_t parent_index,
uint32_t size, uint32_t align)
{
if (!align_and_verify_space(ctx, size, align)) {
if (!add_buffer(ctx))
return NULL;
UNUSED bool aligned = align_and_verify_space(ctx, size, align);
assert(aligned);
}
struct intel_aux_level *level = rzalloc(ctx, struct intel_aux_level);
get_current_pos(ctx, &level->address, &level->entries);
memset(level->entries, 0, size);
advance_current_pos(ctx, size);
if (parent != NULL) {
assert(parent->children[parent_index] == NULL);
parent->children[parent_index] = level;
}
return level;
}
uint32_t
intel_aux_map_get_state_num(struct intel_aux_map_context *ctx)
{
return p_atomic_read(&ctx->state_num);
}
struct intel_aux_map_context *
intel_aux_map_init(void *driver_ctx,
struct intel_mapped_pinned_buffer_alloc *buffer_alloc,
const struct intel_device_info *devinfo)
{
struct intel_aux_map_context *ctx;
enum intel_aux_map_format format = select_format(devinfo);
if (format == INTEL_AUX_MAP_LAST)
return NULL;
ctx = ralloc(NULL, struct intel_aux_map_context);
if (!ctx)
return NULL;
if (pthread_mutex_init(&ctx->mutex, NULL))
return NULL;
ctx->format = get_format(format);
ctx->driver_ctx = driver_ctx;
ctx->buffer_alloc = buffer_alloc;
ctx->num_buffers = 0;
list_inithead(&ctx->buffers);
ctx->tail_offset = 0;
ctx->tail_remaining = 0;
ctx->state_num = 0;
ctx->l3_level = add_sub_table(ctx, NULL, 0,
L3_L2_SUB_TABLE_LEN, L3_L2_SUB_TABLE_LEN);
if (ctx->l3_level != NULL) {
if (aux_map_debug)
fprintf(stderr, "AUX-MAP L3: 0x%"PRIx64", map=%p\n",
ctx->l3_level->address, ctx->l3_level->entries);
p_atomic_inc(&ctx->state_num);
return ctx;
} else {
ralloc_free(ctx);
return NULL;
}
}
void
intel_aux_map_finish(struct intel_aux_map_context *ctx)
{
if (!ctx)
return;
pthread_mutex_destroy(&ctx->mutex);
list_for_each_entry_safe(struct aux_map_buffer, buf, &ctx->buffers, link) {
ctx->buffer_alloc->free(ctx->driver_ctx, buf->buffer);
list_del(&buf->link);
p_atomic_dec(&ctx->num_buffers);
ralloc_free(buf);
}
ralloc_free(ctx);
}
uint32_t
intel_aux_map_get_alignment(struct intel_aux_map_context *ctx)
{
return ctx->format->main_page_size;
}
uint64_t
intel_aux_map_get_base(struct intel_aux_map_context *ctx)
{
/**
* This get initialized in intel_aux_map_init, and never changes, so there is
* no need to lock the mutex.
*/
return ctx->l3_level->address;
}
static uint8_t
get_bpp_encoding(enum isl_format format)
{
if (isl_format_is_yuv(format)) {
switch (format) {
case ISL_FORMAT_YCRCB_NORMAL:
case ISL_FORMAT_YCRCB_SWAPY:
case ISL_FORMAT_PLANAR_420_8: return 3;
case ISL_FORMAT_PLANAR_420_12: return 2;
case ISL_FORMAT_PLANAR_420_10: return 1;
case ISL_FORMAT_PLANAR_420_16: return 0;
default:
unreachable("Unsupported format!");
return 0;
}
} else {
switch (isl_format_get_layout(format)->bpb) {
case 16: return 0;
case 8: return 4;
case 32: return 5;
case 64: return 6;
case 128: return 7;
default:
unreachable("Unsupported bpp!");
return 0;
}
}
}
#define INTEL_AUX_MAP_ENTRY_Ys_TILED_BIT (0x0ull << 52)
#define INTEL_AUX_MAP_ENTRY_Y_TILED_BIT (0x1ull << 52)
uint64_t
intel_aux_map_format_bits(enum isl_tiling tiling, enum isl_format format,
uint8_t plane)
{
/* gfx12.5+ uses tile-4 rather than y-tiling, and gfx12.5+ also uses
* compression info from the surface state and ignores the aux-map format
* bits metadata.
*/
if (!isl_tiling_is_any_y(tiling))
return 0;
if (aux_map_debug)
fprintf(stderr, "AUX-MAP entry %s, bpp_enc=%d\n",
isl_format_get_name(format),
isl_format_get_aux_map_encoding(format));
assert(tiling == ISL_TILING_ICL_Ys ||
tiling == ISL_TILING_ICL_Yf ||
tiling == ISL_TILING_Y0);
uint64_t format_bits =
((uint64_t)isl_format_get_aux_map_encoding(format) << 58) |
((uint64_t)(plane > 0) << 57) |
((uint64_t)get_bpp_encoding(format) << 54) |
/* TODO: We assume that Yf is not Tiled-Ys, but waiting on
* clarification
*/
(tiling == ISL_TILING_ICL_Ys ? INTEL_AUX_MAP_ENTRY_Ys_TILED_BIT :
INTEL_AUX_MAP_ENTRY_Y_TILED_BIT);
assert((format_bits & INTEL_AUX_MAP_FORMAT_BITS_MASK) == format_bits);
return format_bits;
}
uint64_t
intel_aux_map_format_bits_for_isl_surf(const struct isl_surf *isl_surf)
{
assert(!isl_format_is_planar(isl_surf->format));
return intel_aux_map_format_bits(isl_surf->tiling, isl_surf->format, 0);
}
static uint64_t
get_l1_addr_mask(struct intel_aux_map_context *ctx)
{
uint64_t l1_addr = ~get_page_mask(ctx->format->l1_page_size);
return l1_addr & VALID_ADDRESS_MASK;
}
static bool
get_aux_entry(struct intel_aux_map_context *ctx, uint64_t main_address,
uint32_t *l1_index_out, uint64_t *l1_entry_addr_out,
uint64_t **l1_entry_map_out,
struct intel_aux_level **l1_aux_level_out,
bool create)
{
struct intel_aux_level *l3_level = ctx->l3_level;
struct intel_aux_level *l2_level;
struct intel_aux_level *l1_level;
uint32_t l3_index = (main_address >> 36) & 0xfff;
if (l3_level->children[l3_index] == NULL) {
if (!create)
return false;
l2_level =
add_sub_table(ctx, ctx->l3_level, l3_index,
L3_L2_SUB_TABLE_LEN, L3_L2_SUB_TABLE_LEN);
if (l2_level != NULL) {
if (aux_map_debug)
fprintf(stderr, "AUX-MAP L3[0x%x]: 0x%"PRIx64", map=%p\n",
l3_index, l2_level->address, l2_level->entries);
} else {
unreachable("Failed to add L2 Aux-Map Page Table!");
}
l3_level->entries[l3_index] = (l2_level->address & L3_ENTRY_L2_ADDR_MASK) |
INTEL_AUX_MAP_ENTRY_VALID_BIT;
} else {
l2_level = l3_level->children[l3_index];
}
uint32_t l2_index = (main_address >> 24) & 0xfff;
uint64_t l1_page_size = ctx->format->l1_page_size;
if (l2_level->children[l2_index] == NULL) {
if (!create)
return false;
l1_level = add_sub_table(ctx, l2_level, l2_index, l1_page_size, l1_page_size);
if (l1_level != NULL) {
if (aux_map_debug)
fprintf(stderr, "AUX-MAP L2[0x%x]: 0x%"PRIx64", map=%p\n",
l2_index, l1_level->address, l1_level->entries);
} else {
unreachable("Failed to add L1 Aux-Map Page Table!");
}
l2_level->entries[l2_index] = (l1_level->address & get_l1_addr_mask(ctx)) |
INTEL_AUX_MAP_ENTRY_VALID_BIT;
} else {
l1_level = l2_level->children[l2_index];
}
uint32_t l1_index = get_index(main_address, ctx->format->l1_index_mask,
ctx->format->l1_index_offset);
if (l1_index_out)
*l1_index_out = l1_index;
if (l1_entry_addr_out)
*l1_entry_addr_out = intel_canonical_address(l1_level->address + l1_index * sizeof(uint64_t));
if (l1_entry_map_out)
*l1_entry_map_out = &l1_level->entries[l1_index];
if (l1_aux_level_out)
*l1_aux_level_out = l1_level;
return true;
}
static bool
add_mapping(struct intel_aux_map_context *ctx, uint64_t main_address,
uint64_t aux_address, uint64_t format_bits,
bool *state_changed)
{
if (aux_map_debug)
fprintf(stderr, "AUX-MAP 0x%"PRIx64" => 0x%"PRIx64"\n", main_address,
aux_address);
uint32_t l1_index;
uint64_t *l1_entry;
struct intel_aux_level *l1_aux_level;
get_aux_entry(ctx, main_address, &l1_index, NULL, &l1_entry,
&l1_aux_level, true);
const uint64_t l1_data =
(aux_address & intel_aux_get_meta_address_mask(ctx)) |
format_bits |
INTEL_AUX_MAP_ENTRY_VALID_BIT;
const uint64_t current_l1_data = *l1_entry;
if ((current_l1_data & INTEL_AUX_MAP_ENTRY_VALID_BIT) == 0) {
assert(l1_aux_level->ref_counts[l1_index] == 0);
assert((aux_address & 0xffULL) == 0);
if (aux_map_debug)
fprintf(stderr, "AUX-MAP L1[0x%x] 0x%"PRIx64" -> 0x%"PRIx64"\n",
l1_index, current_l1_data, l1_data);
/**
* We use non-zero bits in 63:1 to indicate the entry had been filled
* previously. If these bits are non-zero and they don't exactly match
* what we want to program into the entry, then we must force the
* aux-map tables to be flushed.
*/
if (current_l1_data != 0 && \
(current_l1_data | INTEL_AUX_MAP_ENTRY_VALID_BIT) != l1_data)
*state_changed = true;
*l1_entry = l1_data;
} else {
if (aux_map_debug)
fprintf(stderr, "AUX-MAP L1[0x%x] is already marked valid!\n",
l1_index);
if (*l1_entry != l1_data) {
if (aux_map_debug)
fprintf(stderr,
"AUX-MAP L1[0x%x] overwrite 0x%"PRIx64" != 0x%"PRIx64"\n",
l1_index, current_l1_data, l1_data);
return false;
}
}
l1_aux_level->ref_counts[l1_index]++;
return true;
}
uint64_t *
intel_aux_map_get_entry(struct intel_aux_map_context *ctx,
uint64_t main_address,
uint64_t *aux_entry_address)
{
pthread_mutex_lock(&ctx->mutex);
uint64_t *l1_entry_map;
get_aux_entry(ctx, main_address, NULL, aux_entry_address, &l1_entry_map,
NULL, true);
pthread_mutex_unlock(&ctx->mutex);
return l1_entry_map;
}
/**
* We mark the leaf entry as invalid, but we don't attempt to cleanup the
* other levels of translation mappings. Since we attempt to re-use VMA
* ranges, hopefully this will not lead to unbounded growth of the translation
* tables.
*/
static void
remove_l1_mapping_locked(struct intel_aux_map_context *ctx, uint64_t main_address,
bool reset_refcount, bool *state_changed)
{
uint32_t l1_index;
uint64_t *l1_entry;
struct intel_aux_level *l1_aux_level;
if (!get_aux_entry(ctx, main_address, &l1_index, NULL, &l1_entry,
&l1_aux_level, false))
return;
const uint64_t current_l1_data = *l1_entry;
const uint64_t l1_data = current_l1_data & ~INTEL_AUX_MAP_ENTRY_VALID_BIT;
if ((current_l1_data & INTEL_AUX_MAP_ENTRY_VALID_BIT) == 0) {
assert(l1_aux_level->ref_counts[l1_index] == 0);
return;
} else if (reset_refcount) {
l1_aux_level->ref_counts[l1_index] = 0;
if (unlikely(l1_data == 0))
*state_changed = true;
*l1_entry = l1_data;
} else {
assert(l1_aux_level->ref_counts[l1_index] > 0);
if (--l1_aux_level->ref_counts[l1_index] == 0) {
/**
* We use non-zero bits in 63:1 to indicate the entry had been filled
* previously. In the unlikely event that these are all zero, we
* force a flush of the aux-map tables.
*/
if (unlikely(l1_data == 0))
*state_changed = true;
*l1_entry = l1_data;
}
}
}
static void
remove_mapping_locked(struct intel_aux_map_context *ctx, uint64_t main_address,
uint64_t size, bool reset_refcount, bool *state_changed)
{
if (aux_map_debug)
fprintf(stderr, "AUX-MAP remove 0x%"PRIx64"-0x%"PRIx64"\n", main_address,
main_address + size);
uint64_t main_inc_addr = main_address;
uint64_t main_page_size = ctx->format->main_page_size;
assert((main_address & get_page_mask(main_page_size)) == 0);
while (main_inc_addr - main_address < size) {
remove_l1_mapping_locked(ctx, main_inc_addr, reset_refcount,
state_changed);
main_inc_addr += main_page_size;
}
}
bool
intel_aux_map_add_mapping(struct intel_aux_map_context *ctx, uint64_t main_address,
uint64_t aux_address, uint64_t main_size_B,
uint64_t format_bits)
{
bool state_changed = false;
pthread_mutex_lock(&ctx->mutex);
uint64_t main_inc_addr = main_address;
uint64_t aux_inc_addr = aux_address;
const uint64_t main_page_size = ctx->format->main_page_size;
assert((main_address & get_page_mask(main_page_size)) == 0);
const uint64_t aux_page_size = get_meta_page_size(ctx->format);
assert((aux_address & get_page_mask(aux_page_size)) == 0);
while (main_inc_addr - main_address < main_size_B) {
if (!add_mapping(ctx, main_inc_addr, aux_inc_addr, format_bits,
&state_changed)) {
break;
}
main_inc_addr = main_inc_addr + main_page_size;
aux_inc_addr = aux_inc_addr + aux_page_size;
}
bool success = main_inc_addr - main_address >= main_size_B;
if (!success && (main_inc_addr > main_address)) {
/* If the mapping failed, remove the mapped portion. */
remove_mapping_locked(ctx, main_address,
main_inc_addr - main_address,
false /* reset_refcount */, &state_changed);
}
pthread_mutex_unlock(&ctx->mutex);
if (state_changed)
p_atomic_inc(&ctx->state_num);
return success;
}
void
intel_aux_map_del_mapping(struct intel_aux_map_context *ctx, uint64_t main_address,
uint64_t size)
{
bool state_changed = false;
pthread_mutex_lock(&ctx->mutex);
remove_mapping_locked(ctx, main_address, size, false /* reset_refcount */,
&state_changed);
pthread_mutex_unlock(&ctx->mutex);
if (state_changed)
p_atomic_inc(&ctx->state_num);
}
void
intel_aux_map_unmap_range(struct intel_aux_map_context *ctx, uint64_t main_address,
uint64_t size)
{
bool state_changed = false;
pthread_mutex_lock(&ctx->mutex);
remove_mapping_locked(ctx, main_address, size, true /* reset_refcount */,
&state_changed);
pthread_mutex_unlock(&ctx->mutex);
if (state_changed)
p_atomic_inc(&ctx->state_num);
}
uint32_t
intel_aux_map_get_num_buffers(struct intel_aux_map_context *ctx)
{
return p_atomic_read(&ctx->num_buffers);
}
void
intel_aux_map_fill_bos(struct intel_aux_map_context *ctx, void **driver_bos,
uint32_t max_bos)
{
assert(p_atomic_read(&ctx->num_buffers) >= max_bos);
uint32_t i = 0;
list_for_each_entry(struct aux_map_buffer, buf, &ctx->buffers, link) {
if (i >= max_bos)
return;
driver_bos[i++] = buf->buffer->driver_bo;
}
}