blob: 158355f18dbe3d7842e3cb377d44990406af112a [file] [log] [blame]
/*
* Copyright © 2020 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/u_vector.h"
#include "nir.h"
#include "nir_worklist.h"
static bool
combine_all_barriers(nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *_)
{
nir_intrinsic_set_memory_modes(
a, nir_intrinsic_memory_modes(a) | nir_intrinsic_memory_modes(b));
nir_intrinsic_set_memory_semantics(
a, nir_intrinsic_memory_semantics(a) | nir_intrinsic_memory_semantics(b));
nir_intrinsic_set_memory_scope(
a, MAX2(nir_intrinsic_memory_scope(a), nir_intrinsic_memory_scope(b)));
nir_intrinsic_set_execution_scope(
a, MAX2(nir_intrinsic_execution_scope(a), nir_intrinsic_execution_scope(b)));
return true;
}
static bool
nir_opt_combine_barriers_impl(nir_function_impl *impl,
nir_combine_barrier_cb combine_cb,
void *data)
{
bool progress = false;
nir_foreach_block(block, impl) {
nir_intrinsic_instr *prev = NULL;
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic) {
prev = NULL;
continue;
}
nir_intrinsic_instr *current = nir_instr_as_intrinsic(instr);
if (current->intrinsic != nir_intrinsic_barrier) {
prev = NULL;
continue;
}
if (prev && combine_cb(prev, current, data)) {
nir_instr_remove(&current->instr);
progress = true;
} else {
prev = current;
}
}
}
return nir_progress(progress, impl,
nir_metadata_control_flow | nir_metadata_live_defs);
}
/* Combine adjacent scoped barriers. */
bool
nir_opt_combine_barriers(nir_shader *shader,
nir_combine_barrier_cb combine_cb,
void *data)
{
/* Default to combining everything. Only some backends can do better. */
if (!combine_cb)
combine_cb = combine_all_barriers;
bool progress = false;
nir_foreach_function_impl(impl, shader) {
if (nir_opt_combine_barriers_impl(impl, combine_cb, data)) {
progress = true;
}
}
return progress;
}
/** If \p instr is a nir_intrinsic_barrier, returns it, else NULL. */
static nir_intrinsic_instr *
instr_as_barrier(nir_instr *instr)
{
if (instr && instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
return intrin->intrinsic == nir_intrinsic_barrier ? intrin : NULL;
}
return NULL;
}
/**
* Return true if \p atomic is surrounded by a pattern:
*
* 1. Release barrier
* 2. Atomic operation
* 3. Acquire barrier
*
* where all three have the same mode, both barriers have the same scope,
* and that scope is \p max_scope or narrower.
*
* For simplicity, we require the barriers to have exactly the one mode
* used by the atomic, so that we don't have to compare many barriers for
* other side effects they may have. nir_opt_barrier_modes() can be used
* to help reduce unnecessary barrier modes.
*/
static bool
is_acquire_release_atomic(nir_intrinsic_instr *atomic, mesa_scope max_scope)
{
assert(atomic->intrinsic == nir_intrinsic_deref_atomic ||
atomic->intrinsic == nir_intrinsic_deref_atomic_swap);
nir_deref_instr *atomic_deref = nir_src_as_deref(atomic->src[0]);
nir_intrinsic_instr *prev =
instr_as_barrier(nir_instr_prev(&atomic->instr));
nir_intrinsic_instr *next =
instr_as_barrier(nir_instr_next(&atomic->instr));
if (!prev || !next)
return false;
return nir_intrinsic_memory_semantics(prev) == NIR_MEMORY_RELEASE &&
nir_intrinsic_memory_semantics(next) == NIR_MEMORY_ACQUIRE &&
nir_intrinsic_memory_modes(prev) == atomic_deref->modes &&
nir_intrinsic_memory_modes(next) == atomic_deref->modes &&
nir_intrinsic_memory_scope(prev) <= max_scope &&
nir_intrinsic_memory_scope(prev) == nir_intrinsic_memory_scope(next);
}
/**
* Remove redundant barriers between sequences of atomics.
*
* Some shaders contain back-to-back atomic accesses in SPIR-V with
* AcquireRelease semantics. In NIR, we translate these to a release
* memory barrier, the atomic, then an acquire memory barrier.
*
* This results in a lot of unnecessary memory barriers in the
* middle of the sequence of atomics:
*
* 1a. Release memory barrier
* 1b. Atomic
* 1c. Acquire memory barrier
* ...
* 2a. Release memory barrier
* 2b. Atomic
* 2c. Acquire memory barrier
* ...
*
* We pattern match for <release, atomic, acquire> instruction triplets,
* and when we find back-to-back occurrences of that pattern, we eliminate
* the barriers in-between the atomics (1c and 2a above):
*
* 1. Release memory barrier
* 2. Atomic
* ...
* m. Atomic
* n. Acquire memory barrier
*
* Some requirements:
* - The atomics' destinations must be unused (so their only effect is
* to update the associated memory store)
* - Matched barriers must impact the atomic's memory mode.
* - All barriers must have have identical scope no wider than \p max_scope
* (beyond that, removing synchronization could be observable).
*
* And for simplicity:
* - Barrier modes must be exactly the mode of the atomics (otherwise we'd
* have to take care to preserve side-effects for other modes).
* - Barriers must appear directly before/after the instruction (easier
* pattern matching, and it's what we generate for the SPIR-V construct)
*
* Other instructions are allowed to be present between the atomics, so
* long as they don't affect the relevant memory mode. Loads/stores or
* atomics not matching this pattern are not allowed (we stop matching).
* For example, this allows calculating the value to be used as the next
* atomic's operand to appear in-between the two.
*/
static bool
nir_opt_acquire_release_barriers_impl(nir_function_impl *impl,
mesa_scope max_scope)
{
bool progress = false;
nir_intrinsic_instr *last_atomic = NULL;
nir_foreach_block(block, impl) {
last_atomic = NULL;
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_load_deref_block_intel:
case nir_intrinsic_store_deref:
case nir_intrinsic_store_deref_block_intel:
if (last_atomic) {
/* If there is a load/store of the same mode as our matched
* atomic, then abandon our pattern match.
*/
nir_deref_instr *ref = nir_src_as_deref(intrin->src[0]);
nir_deref_instr *lastdr = nir_src_as_deref(last_atomic->src[0]);
if (nir_deref_mode_may_be(ref, lastdr->modes))
last_atomic = NULL;
}
break;
case nir_intrinsic_deref_atomic:
case nir_intrinsic_deref_atomic_swap:
if (nir_def_is_unused(&intrin->def) &&
is_acquire_release_atomic(intrin, max_scope)) {
if (!last_atomic) {
last_atomic = intrin;
} else {
nir_intrinsic_instr *last_acquire =
nir_instr_as_intrinsic(nir_instr_next(&last_atomic->instr));
nir_intrinsic_instr *this_release =
nir_instr_as_intrinsic(nir_instr_prev(&intrin->instr));
assert(last_acquire->intrinsic == nir_intrinsic_barrier);
assert(this_release->intrinsic == nir_intrinsic_barrier);
/* Verify that this atomic's barrier modes/scopes match
* the last atomic's modes/scope. (Note that we already
* verified that each atomic's pair of barriers match
* each other, so we can compare against either here.)
*/
if (nir_intrinsic_memory_modes(last_acquire) ==
nir_intrinsic_memory_modes(this_release) &&
nir_intrinsic_memory_scope(last_acquire) ==
nir_intrinsic_memory_scope(this_release)) {
progress = true;
nir_instr_remove(&last_acquire->instr);
nir_instr_remove(&this_release->instr);
}
/* Regardless of progress, continue matching from here */
last_atomic = intrin;
}
} else {
/* Abandon our pattern match, this is another kind of access */
last_atomic = NULL;
}
break;
default:
/* Ignore instructions that don't affect this kind of memory */
break;
}
}
}
nir_progress(progress, impl, nir_metadata_control_flow |
nir_metadata_live_defs);
return progress;
}
bool
nir_opt_acquire_release_barriers(nir_shader *shader, mesa_scope max_scope)
{
bool progress = false;
nir_foreach_function_impl(impl, shader) {
progress |= nir_opt_acquire_release_barriers_impl(impl, max_scope);
}
return progress;
}
static bool
barrier_happens_before(const nir_instr *a, const nir_instr *b)
{
if (a->block == b->block)
return a->index < b->index;
return nir_block_dominates(a->block, b->block);
}
static bool
nir_opt_barrier_modes_impl(nir_function_impl *impl)
{
bool progress = false;
nir_instr_worklist *barriers = nir_instr_worklist_create();
if (!barriers)
return false;
struct u_vector mem_derefs;
if (!u_vector_init(&mem_derefs, 32, sizeof(struct nir_instr *))) {
nir_instr_worklist_destroy(barriers);
return false;
}
const unsigned all_memory_modes = nir_var_image |
nir_var_mem_ssbo |
nir_var_mem_shared |
nir_var_mem_global;
nir_foreach_block_safe(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic == nir_intrinsic_barrier)
nir_instr_worklist_push_tail(barriers, instr);
} else if (instr->type == nir_instr_type_deref) {
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (nir_deref_mode_may_be(deref, all_memory_modes) ||
glsl_contains_atomic(deref->type)) {
nir_deref_instr **tail = u_vector_add(&mem_derefs);
*tail = deref;
}
}
}
}
nir_foreach_instr_in_worklist(instr, barriers) {
nir_intrinsic_instr *barrier = nir_instr_as_intrinsic(instr);
const unsigned barrier_modes = nir_intrinsic_memory_modes(barrier);
unsigned new_modes = barrier_modes & ~all_memory_modes;
/* If a barrier dominates all memory accesses for a particular mode (or
* there are none), then the barrier cannot affect those accesses. We
* can drop that mode from the barrier.
*
* For each barrier, we look at the list of memory derefs, and see if
* the barrier fails to dominate the deref. If so, then there's at
* least one memory access that may happen before the barrier, so we
* need to keep the mode. Any modes not kept are discarded.
*/
nir_deref_instr **p_deref;
u_vector_foreach(p_deref, &mem_derefs)
{
nir_deref_instr *deref = *p_deref;
const unsigned atomic_mode =
glsl_contains_atomic(deref->type) ? nir_var_mem_ssbo : 0;
const unsigned deref_modes =
(deref->modes | atomic_mode) & barrier_modes;
if (deref_modes &&
!barrier_happens_before(&barrier->instr, &deref->instr))
new_modes |= deref_modes;
}
/* If we don't need all the modes, update the barrier. */
if (barrier_modes != new_modes) {
nir_intrinsic_set_memory_modes(barrier, new_modes);
progress = true;
}
/* Shared memory only exists within a workgroup, so synchronizing it
* beyond workgroup scope is nonsense.
*/
if (nir_intrinsic_execution_scope(barrier) == SCOPE_NONE &&
new_modes == nir_var_mem_shared) {
nir_intrinsic_set_memory_scope(barrier,
MIN2(nir_intrinsic_memory_scope(barrier), SCOPE_WORKGROUP));
progress = true;
}
}
nir_instr_worklist_destroy(barriers);
u_vector_finish(&mem_derefs);
return progress;
}
/**
* Reduce barriers to remove unnecessary modes and scope.
*
* This pass must be called before nir_lower_explicit_io lowers derefs!
*
* Many shaders issue full memory barriers, which may need to synchronize
* access to images, SSBOs, shared local memory, or global memory. However,
* many of them only use a subset of those memory types - say, only SSBOs.
*
* Shaders may also have patterns such as:
*
* 1. shared local memory access
* 2. barrier with full variable modes
* 3. more shared local memory access
* 4. image access
*
* In this case, the barrier is needed to ensure synchronization between the
* various shared memory operations. Image reads and writes do also exist,
* but they are all on one side of the barrier, so it is a no-op for image
* access. We can drop the image mode from the barrier in this case too.
*
* In addition, we can reduce the memory scope of shared-only barriers, as
* shared local memory only exists within a workgroup.
*/
bool
nir_opt_barrier_modes(nir_shader *shader)
{
bool progress = false;
nir_foreach_function_impl(impl, shader) {
nir_metadata_require(impl, nir_metadata_dominance |
nir_metadata_instr_index);
bool impl_progress = nir_opt_barrier_modes_impl(impl);
progress |= nir_progress(impl_progress, impl,
nir_metadata_control_flow | nir_metadata_live_defs);
}
return progress;
}